建立空间直角坐标系的几个常见思路
建立空间直角坐标系的几个常见思路

建立空间直角坐标系的几种常见思路坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0),∴1(232)BC =--,,,(010)CD =-,,. 设1BC 与CD 所成的角为θ, 则11317cos 17BC CD BC CDθ==. 二、利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.由于BC =1,BB 1=2,AB =2,∠BCC 1=3π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、31022c ⎛⎫- ⎪ ⎪⎝⎭,,、133022C ⎛⎫⎪ ⎪⎝⎭,,. 设302E a ⎛⎫⎪ ⎪⎝⎭,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,,233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,即12a =或32a =(舍去).故31022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(002)B A BA ==,,,31222EA ⎛⎫=-- ⎪ ⎪⎝⎭,, 故11112cos 3EA B A EA B A θ==,即2tan 2θ=三、利用面面垂直关系构建直角坐标系 例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的余弦值.解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系. 设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、 V (0,0,3),∴AB =(0,2,0),VA =(1,0,-3).由(020)(103)0AB VA =-=,,,,,得 AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直,∴ AB ⊥平面VAD ;(2)设E 为DV 的中点,则13022E ⎛⎫- ⎪ ⎪⎝⎭,,∴33022EA ⎛⎫=-⎪ ⎪⎝⎭,,,33222EB ⎛⎫=- ⎪ ⎪⎝⎭,,,(103)DV =,,. ∴332(103)022EB DV ⎛⎫=-= ⎪ ⎪⎝⎭,,,,, ∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.∴21cos 7EA EB EAEB EA EB==,. 故所求二面角的余弦值为217. 四、利用正棱锥的中心与高所在直线构建直角坐标系例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h . (1)求∠DEB 的余弦值;(2)若BE ⊥VC ,求∠DEB 的余弦值.解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (—a ,a ,0)、D (-a ,—a ,0)、V (0,0,h )、222a a h E ⎛⎫- ⎪⎝⎭,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭,,,3222a h DE a ⎛⎫= ⎪⎝⎭,,.∴22226cos 10BE DEa h BE DE a h BE DE-+==+,, 即22226cos 10a h DEB a h -+=+∠;(2)因为E 是VC 的中点,又BE ⊥VC ,所以0BE VC =,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭,,,,,∴22230222a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+,,即1cos 3DEB =-∠. 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.下面以高考考题为例,剖析建立空间直角坐标系的三条途径. 五、利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例5已知两个正四棱锥P -ABCD 与 Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==n n.点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第(3)问也可用“等体积法”求距离.。
空间直角坐标系的建立

空间直角坐标系的建立空间直角坐标系是用于表示空间中一个点位置的一种系。
建立空间直角坐标系需要确定三个互相垂直的坐标轴,分别沿着三个方向选取单位长度,用来表示空间中的位置。
在这个坐标系中,根据对应的坐标值可以唯一地确定一个点的位置。
建立空间直角坐标系的方法和建立平面直角坐标系非常类似。
下面我们来介绍一下建立空间直角坐标系的步骤。
步骤一:确定原点建立空间直角坐标系需要确定一个起点,称为原点。
原点通常位于三个坐标轴的交点处。
可以任选一个位置作为原点。
步骤二:确定坐标轴方向建立空间直角坐标系需要确定三个互相垂直的坐标轴,它们固定的方向通常为正方向。
我们可以先确定一个坐标轴方向,比如说选择x轴(也可以选择y轴或z轴作为起点)。
确定x轴的正方向后,可以确定y轴的正方向与z轴的正方向。
y轴的正方向可以沿着x 轴与z轴之间垂直的方向上,z轴的正方向可以沿着x轴与y轴之间垂直的方向上。
步骤三:选取单位长度建立空间直角坐标系需要确定沿着坐标轴的单位长度。
我们需要选择一个单位长度用来表示空间中的位置。
通常情况下,我们可以选择1个单位长度。
空间直角坐标系的表示方法比较灵活。
通常情况下,我们可以用一个有序数对表示二维平面上的点,例如(1, 2),用一个有序三元组表示三维空间中的点,例如(1, 2, 3)。
其中,第一个元素对应x轴的坐标值,第二个元素对应y轴的坐标值,第三个元素对应z轴的坐标值。
在空间直角坐标系中,一个点的坐标可以表示为(x,y,z)。
其中x、y、z的取值范围是实数集合。
点的坐标是有序三元组(x,y,z)。
空间直角坐标系在数学中扮演了非常重要的角色,可用于描述空间中的物理现象,建立三维模型等等。
掌握建立空间直角坐标系的方法,对深入理解空间的坐标系,解决三维空间中的几何问题非常关键。
空间直角坐标系的建立过程

空间直角坐标系的建立过程空间直角坐标系的建立过程空间直角坐标系是三维空间中的一种描述方法,将空间中的任意一点用三个数表示出来,称为它的直角坐标。
直角坐标系是物理、数学、计算机等领域中最基本的描述工具之一,本文将介绍空间直角坐标系的建立过程。
1. 三视图法建立空间直角坐标系的第一步是选定坐标轴方向。
三视图法是空间坐标系建立的常用方法,通过正、侧、俯三个视图,确定坐标轴的方向和位置。
建立坐标系的步骤如下:(1)将图形分解成不同的平面(一般取三平面);(2)对每个平面分别画出三视图,分别为正视图、侧视图和俯视图;(3)在每个视图中确定一个原点,分别标出三个轴线(X、Y、Z);(4)确定每个轴线的正负方向。
通过三视图法建立的坐标系具有明确的方向和位置,但是缺陷也明显,需要在设计过程中进行大量的图形拆解和视图的绘制。
2. 直线法直线法是另一种常用的坐标系建立方法。
直线法的思想是将空间中三条相交直线作为坐标轴,其中一条为X 轴,与其垂直的两条线分别为Y轴和Z轴。
建立坐标系的步骤如下:(1)选择任意一个点作为坐标原点;(2)从原点引出三条互相垂直的直线,作为坐标轴;(3)根据轴线的正方向确定坐标系的符号约定。
直线法建立空间坐标系简单方便,但是需要选择相交直线,容易出现方向的混乱。
3. 利用矢量利用矢量建立空间坐标系的方法也比较简单,是通过三个相互垂直的单位矢量 i、j、k 来建立坐标系。
其中,i 矢量表示X轴的正方向,j 矢量表示Y轴的正方向,k 矢量表示Z轴的正方向。
建立坐标系的步骤如下:(1)选定任意一点作为坐标原点;(2)在原点处引出 i、j、k 三个相互垂直的单位矢量;(3)确定坐标系的符号约定。
利用矢量建立坐标系时,不需要考虑相交直线或者视图的绘制,建立方便。
在物理、数学、计算机等领域中广泛应用。
4. 总结空间直角坐标系是三维空间中最基本的描述方法之一,建立坐标系的方法有三视图法、直线法和利用矢量法。
建立空间直角坐标系建系的方法及技巧

建立空间直角坐标系建系的方法及技巧建立空间直角坐标系在解决立体几何问题中起着重要作用。
向量法是建系的一种常用方法,它引入了空间向量坐标运算,使解题过程更加简便。
建立适当的坐标系是向量解题的关键步骤之一,一般应使尽量多的点在数轴上或便于计算。
一种建系的方法是利用共顶点的互相垂直的三条棱构建直角坐标系。
例如,在长方体ABCD-A1B1C1D1中,点E、F分别在棱DD1、BB1上,且2DE=ED1,BF=2FB1.要证明点C1在平面AEF内,并求二面角A-EF-A1的正弦值。
另一种建系的方法是利用线面垂直关系构建直角坐标系。
例如,在菱形ABCD中,对角线AC与BD交于点O,AB=5,AC=6,点E、F分别在AD、CD上,AE=CF=,EF交BD于点H。
将△XXX沿EF折到△D'EF的位置,OD'=.要证明D'H⊥平面ABCD,并求二面角B-D'A-C的正弦值。
还有一种建系的方法是利用面面垂直关系构建直角坐标系。
例如,在四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底ABCD,AB=BC=1AD,∠BAD=∠ABC=90°,E是PD的中点。
要证明直线CE//平面PAB,求二面角M-AB-D的余弦值。
有些图形中虽没有明显交于一点的三条直线,但有一定对称关系,例如正三棱柱、正四棱柱等,利用自身对称性可建立空间直角坐标系。
例如,在圆锥D-O-ABC中,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD,ABC是底面的内接正三角形,P为DO上一点,PO=6DO。
要证明PA⊥平面PBC,并求二面角B-PC-E的余弦值。
另外,利用正棱锥的中心与高所在直线也可构建直角坐标系。
建立空间直角坐标系的方法及技巧有多种,根据不同的图形特点选择合适的方法,能够更加高效地解决立体几何问题。
1.中,给定正四棱锥P-ABCD,其所有棱长均为6.底面正方形ABCD的中心在坐标原点,棱AD、BC平行于x轴,棱AB、CD平行于y轴,顶点P在z轴的正半轴上。
建立空间直角坐标系的方法及技巧

建立空间直角坐标系的方法及技巧1.确定坐标轴方向:首先需要确定空间直角坐标系的坐标轴方向,通常选择三个相互垂直的轴,分别称为x轴、y轴和z轴。
可以选择其中一个轴为参考轴,然后使用右手定则来确定其他两个轴的方向。
在右手定则中,将右手的拇指、食指和中指分别与x、y和z轴对齐,那么食指和中指所形成的平面就是坐标系的平面,拇指的方向就是z轴的方向。
2.确定原点位置:确定好坐标轴方向后,需要确定坐标系的原点位置。
原点通常可以选择在三维空间中的一些特殊点上,例如物体的质心、交点或者其他方便计算的点。
原点的选择应根据具体问题和需求进行确定。
3.确定单位长度:建立坐标系后,需要确定单位长度,也就是每个坐标轴上的单位距离。
单位长度的选择应根据具体问题和需求进行确定,可以根据物体的大小和所需精度进行估计。
常用的单位长度包括米、厘米、毫米等。
4.标示坐标轴刻度:在建立坐标系后,需要在每个坐标轴上标示刻度,以便表示点的位置。
可以根据需求和所测量的物体大小来确定每个刻度的长度和数量。
通常可以使用尺子、直尺等工具来测量和标示刻度。
在标示刻度时,可以选择以原点为起点,沿着每个坐标轴正方向逐个标示刻度,或者以坐标轴的负方向为起点标示刻度。
5.标示点的坐标:建立好坐标轴和刻度后,就可以根据需要来标示空间中的点的坐标。
对于一个三维空间中的点,可以通过它到坐标轴的距离来确定它的坐标值。
通常可以使用直角坐标系中的(x,y,z)来表示一个点的坐标,其中x、y和z分别是点在x轴、y轴和z轴上的坐标值。
1.灵活选择参考轴:参考轴的选择应根据具体问题和需求进行确定。
在确定参考轴时,可以考虑使问题的描述尽量简洁和直观,同时方便计算和分析。
2.注意坐标轴的方向:在确定坐标轴的方向时,使用右手定则可以帮助确定其他两个轴的方向。
要确保坐标轴的方向满足右手定则中拇指、食指和中指的排列次序。
3.注意单位长度的选择:单位长度的选择应根据具体问题和需求进行确定。
建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法1.给定坐标轴方向及原点位置:最直接的方法是给定三个坐标轴的方向及原点位置。
通常,我们选择三个相互垂直的轴,并确定它们的正方向。
例如,我们可以选择X轴向右,Y轴向上,Z轴垂直于XOY平面向外,然后选择原点为坐标轴的交点。
通过这种方法,我们就可以建立一个三维直角坐标系。
2.使用原点和两个已知点:在给定两个已知点和原点的情况下,我们可以建立一个空间直角坐标系。
首先,我们将其中一个已知点作为坐标轴上的一个点,然后确定一个与此轴垂直的第二个轴。
接下来,我们确定第三个轴的方向,使其与前两个轴正交,并选择原点位置。
通过这种方法,我们可以构建一个三维直角坐标系。
3.使用平面和轴的交点:另一种建立空间直角坐标系的方法是确定两个平面及其在坐标轴上的交点。
首先,我们选择平面XY作为参考平面,并将其与X轴和Y轴在原点处的交点作为坐标轴上的两个点。
然后,选择两个非共线的轴分别与平面XZ和平面YZ正交,并确定它们的正方向。
通过这种方法,我们可以建立一个三维直角坐标系。
4.使用向量运算:通过向量运算的方法可以建立空间直角坐标系。
首先,选择一个已知向量为其中一个坐标轴的向量。
然后,选择另一个与已知向量相互垂直的向量,并进行正规化。
接下来,使用向量叉积运算确定第三个轴的方向,并对其进行正规化。
最后,选择原点位置。
通过这种方法,我们可以建立一个三维直角坐标系。
这些方法都是建立空间直角坐标系的常见方法,可以根据具体情况选择合适的方法进行建立。
空间向量之建立空间直角坐标系的方法及技巧

空间向量之建立空间直角坐标系的方法及技巧、禾U用共顶点的互相垂直的三条棱构建直角坐标系例1已知直四棱柱ABC D A i B i CD中,AA= 2,底面ABCD是直角梯形,/ A为直角,AB//CD AB= 4, AD= 2,DC= 1,求异面直线BC与DC所成角的余弦值.解析:如图1, 以D为坐标原点,分别以DA DC DD所在直线为x、y、z轴建立空间直角1 , 2)、B(2, 4, 0), •- BC =(-2,3,2) , CD=(0, -1,0).坐标系,则C (0,设BC i与CD所成的角为vCD 3 '1717二、利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC- ABC中,AB丄侧面BBCQ, E为棱CC上异于C C的一点,EAL EB.已知AB = J2 , BB = 2, BC= 1, / BCC=上.求二面角A- EB—A的平面角的正切值.3解析:如图2,以B为原点,分别以BB、BA所在直线为y轴、z轴,过B点垂直于平面AB 的直线为x轴建立空间直角坐标系.由于BC= 1, BB= 2, AB= -/2,/ BCG=—,3•••在三棱柱ABC- ABC 中,有(0, 0, 0)、(0, 0,C1 第3 /—,—,0 .I2 2丿輛〕〔3设E — , a, 0 且一丄<a<3,I2丿22由EAL EB,得EAEB =0,CDBA 丄EB ,故二面角 A- EB —A i 的平面角日的大小为向量 BA 与 EA 的夹角.訳=BA = (0,0八 2) , EA 二三、利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥 V — ABCD 中,底面ABCD 是正方形,侧面 VAD 是正三角形,平面 VAD 丄底面ABCDAB 丄 VA又ABL AD 从而AB 与平面VAD 内两条相交直线 VA AD 都垂直,二 (2)设E 为DV 的中点,则J-1显1 I 22丿 即「2,一皿] X ,2—aJ< 2 丿+a (a —2)=a 2—2a+3=0,「. 'a —丄 |4 I 2丿3 4 即-2或a =| (舍去).故E 佇,,0 . ■ 3i3 去(3,0,_Q,时,2, -纠 辽 2丿 I 2 2丿,DV =(1,0, 3). 由已知有EA _ EB i , 故 COS V =灵晁^,即ta —子EA'B 1A 1(1)证明 AE 丄平面VAD(2)求面 VAD 与面VDB^成的二面角的余弦值.解析:(1) 取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设 AD= 2,则 A (1,0,0)、D (— 1,0,0)、B ( 1,2,0)、V (0,0,爲),二 AB =(0, 2, 0) , VA =( 1,0, — V 3 ).由 ABVA = (0,2,0壯1,0, - . 3) = 0,得AB 丄平面VAD故所求二面角的余弦值为 —217四、禾U 用正棱锥的中心与高所在直线构建直角坐标系已知正四棱锥 V-ABCD 中, E 为VC 中点,正四棱锥底面边长为 2a ,高为h .即 cos Z DEB =「6a 2 h :; 10a 1 2 +h 2(2)因为E 是VC 的中点,又BE! VCc 2 , 23 2 a h a 0 ,• h -、2a . 2 2 21 1,即 cos Z DEB 二-一• EB[DV 」i,o,J 3)=o ,••• E 吐 DV又 EAL DV 因此/ AEB 是所求二面角的平面角.(1) 求/ DEB 的余弦值;(2) 若BE! VC 求/ DEB 的余弦值.解析: (1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系, 其中O x / BC O y // AB,则由 AB^ 2a , OV= h ,有 B (a ,a , 0)、C (- a , a ,0)、D( - a , -a,0)、V (0, 0, h)、*222'丿•晁…3a ,I 2a h 2 2) 丨h a,_ •- cos :. BE ,DEBE DE 2 2 ? 10a h =o ,即 _3a,-a h I 22,2 心,a ,-h )“ , 这时 cos ;: BE ,DE -6a 2 h 2 10a 2 h 2E 八EB .'21 …cosEB _ 7图4所以五、利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等) 自身对称性可建立空间直角坐标系.例5已知两个正四棱锥 P — ABCDfQ-ABCD 勺高都为 2, AB= 4.(1) 证明:PQL 平面ABCD(2) 求异面直线 AQ 与 PB 所成的角;(3) 求点P 到平面QAD 勺距离.(2)由题设知,ABCDI 正方形,且ACL BD 由( 1),PQL 平面ABCD 故可分别以直线 CA, DB , QP 点评:禾U 用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得 出•第(3)问也可用“等体积法”求距离. 3 3 ,利用 为x , y , z 轴建立空间直角坐标系(如图 1),易得 A5 =(—2J2Q ,- 2),PB =(0,2、2- 2), cos :: AQ ,PB =AQ PB1 arccos —. 3(3)由(2)知,点 D(0,— 2矩0) AD =(—2逅,—2J2,0)PQ所求异面直线所成的角是 = (0,0, 4).设n = (x , y , z )是平面QAD 的一个法向量,则 0[nLAD = 0,得、,2x • z = 0,取 1,得 x y =0, n = (1, -1, - .2) •点P 到平面QAD 勺距离d -PQL nn| =2】2 .。
lbondAAA空间向量之--建立空间直角坐标系的方法及技巧

空间向量之 建立空间直角坐标系的方法及技巧 .一、利用共顶点的互相垂直的三条棱构建直角坐标系例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.;解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0),∴1(232)BC =--,,,(010)CD =-,,. 设1BC 与CD 所成的角为θ, 则11317cos 17BC CD BC CDθ==. 二、利用线面垂直关系构建直角坐标系~例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ⎛⎫- ⎪ ⎪⎝⎭,,、13302C ⎛⎫⎪ ⎪⎝⎭,,.设302E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<, 、由EA ⊥EB 1,得10EA EB =,即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪ ⎪⎪⎝⎝⎭,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,即12a =或32a =(舍去).故3102E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.》因11(002)B A BA ==,,,3122EA ⎛⎫=-- ⎪ ⎪⎝,, 故11112cos 3EA B A EA B A θ==,即2tan 2θ=三、利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .^(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的余弦值.解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、V (0,0,3),∴AB =(0,2,0),VA =(1,0,-3).#由(020)(103)0AB VA =-=,,,,,得 AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直,∴ AB ⊥平面VAD ; (2)设E 为DV 的中点,则13022E ⎛⎫- ⎪ ⎪⎝⎭,,∴33022EA ⎛⎫=- ⎪ ⎪⎝⎭,,,33222EB ⎛⎫=- ⎪ ⎪⎝⎭,,,(103)DV =,,. 》∴332(103)02EB DV ⎛⎫=-= ⎪ ⎪⎝⎭,,,,, ∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.∴21cos 7EA EB EAEB EA EB==,. 故所求二面角的余弦值为21. …四、利用正棱锥的中心与高所在直线构建直角坐标系例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h . (1)求∠DEB 的余弦值;(2)若BE ⊥VC ,求∠DEB 的余弦值.解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、222a a h E ⎛⎫- ⎪⎝⎭,,]∴3222a h BE a ⎛⎫=-- ⎪⎝⎭,,,3222a h DE a ⎛⎫= ⎪⎝⎭,,.∴22226cos 10BE DEa h BE DE a h BE DE-+==+,, 即22226cos 10a h DEB a h -+=+∠;(2)因为E 是VC 的中点,又BE ⊥VC ,所以0BE VC =,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭,,,,,》∴22230222a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+,,即1cos 3DEB =-∠.五、利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例5已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4.-:(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离.(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(022)AQ PB =--=-,,,,,1cos 3AQ PB AQ PB AQ PB<>==,.所求异面直线所成的角是1arccos3. (3)由(2)知,点(0(22220)(004)D AD PQ -=--=-,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得00z x y +=+=⎪⎩,,取x =1,得(11-,,n =.点P 到平面QAD 的距离22PQ d ==n n.点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第(3)问也可用“等体积法”求距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建立空间直角坐标系的几种常见思路
坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略.
一、利用共顶点的互相垂直的三条棱构建直角坐标系
例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.
解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0),
∴1(232)BC =--,,,(010)CD =-,
,. 设1BC 与CD 所成的角为θ,
则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系
例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3
π.求二面角A -EB 1-A 1的平面角的正切值.
解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.
由于BC =1,BB 1=2,AB =2,∠BCC 1=3
π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ⎛⎫- ⎪ ⎪⎝⎭
,,、133022C ⎛⎫ ⎪ ⎪⎝
⎭,,. 设302E a ⎛⎫ ⎪ ⎪⎝⎭
,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,
即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎝⎭
,,,,
233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭
, 即12a =或32a =(舍去).故31022E ⎛⎫ ⎪ ⎪⎝⎭
,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.
因11(002)B A BA ==,,,3122EA ⎛⎫=-- ⎪ ⎪⎝,, 故11
112cos 3
EA B A EA B A θ==,即2tan θ=
三、利用面面垂直关系构建直角坐标系
例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .
(1)证明AB ⊥平面VAD ;
(2)求面VAD 与面VDB 所成的二面角的余弦值.
解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.
设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、
V (0,0,3),∴AB =(0,2,0),VA =(1,0,-3).
由(020)(103)0AB VA =-=,
,,,,得 AB ⊥VA .
又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直,∴ AB ⊥平面VAD ;
(2)设E 为DV 的中点,则1302E ⎛⎫- ⎪ ⎪⎝⎭
,,
∴3
302EA ⎛⎫=- ⎪ ⎪⎝⎭,,,3322
EB ⎛⎫=- ⎪ ⎪⎝⎭,,,(103)DV =,,. ∴332(103)022EB DV ⎛⎫=-= ⎪ ⎪⎝⎭
,,,,, ∴EB ⊥DV .
又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.
∴21cos 7EA EB EA EB EA EB ==,. 故所求二面角的余弦值为217
. 四、利用正棱锥的中心与高所在直线构建直角坐标系
例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h .
(1)求∠DEB 的余弦值;
(2)若BE ⊥VC ,求∠DEB 的余弦值.
解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、222a a h E ⎛⎫
- ⎪⎝⎭
,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭,,,3222a h DE a ⎛⎫= ⎪⎝⎭
,,. ∴22
226cos 10BE DE
a h BE DE a h BE DE -+==+,, 即22
226cos 10a h DEB a h
-+=+∠; (2)因为E 是VC 的中点,又BE ⊥VC ,
所以0BE VC =,即3()02
22a h a a a h ⎛⎫----= ⎪⎝⎭,,,,, ∴22
230222
a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+,,即1cos 3
DEB =-∠. 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.下面以高考考题为例,剖析建立空间直角坐标系的三条途径.
五、利用图形中的对称关系建立坐标系
图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.
例5已知两个正四棱锥P -ABCD 与
Q -ABCD 的高都为2,AB =4.
(1)证明:PQ ⊥平面ABCD ;
(2)求异面直线AQ 与PB 所成的角;
(3)求点P 到平面QAD 的距离.
简解:(1)略;
(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB <>=
=,. 所求异面直线所成的角是1arccos 3
. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-,
,,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪
⎩,,取x =1,得
(112)--,,n =.点P 到平面QAD 的距离22PQ d ==n
n .
点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第
(3)问也可用“等体积法”求距离.。