高中数学建立空间直角坐标系-解立体几何题

合集下载

2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)

2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)

2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值; (3)求平面1ACD 与平面1CC D 所成二面角的余弦值. 【解析】(1)证明:在直三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,且AC AB ⊥,则1111AC A B ⊥以点1A 为坐标原点,1A A 、11A B 、11AC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,0,0A 、()2,2,0B 、()2,0,2C 、()10,0,0A 、()10,0,2B 、()10,0,2C 、()0,1,0D 、()1,0,0E 、11,,12F ⎛⎫⎪⎝⎭,则10,,12EF ⎛⎫= ⎪⎝⎭, 易知平面ABC 的一个法向量为()1,0,0m =,则0EF m ⋅=,故EF m ⊥,EF ⊄平面ABC ,故//EF 平面ABC .(2)()12,0,0C C =,()10,1,2C D =−,()1,2,0EB =,设平面1CC D 的法向量为()111,,u x y z =,则111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=−=⎪⎩,取12y =,可得()0,2,1u =,4cos ,5EB u EB u EB u⋅<>==⋅. 因此,直线BE 与平面1CC D 夹角的正弦值为45.(3)()12,0,2AC =,()10,1,0A D =, 设平面1ACD 的法向量为()222,,v x y z =,则122122200v AC x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩,取21x =,可得()1,0,1v =−,则1cos ,5u v u v u v⋅<>==−=⨯⋅因此,平面1ACD 与平面1CC D 2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【解析】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥; 在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC的中点,所以AC BE ⊥; 又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC EF ⊥,所以1=2AFC S AC EF ⋅△, 当EF BD ⊥时,EF 最小,即AFC △的面积最小. 因为ABD CBD ≌△△,所以2CB AB ==, 又因为60ACB ∠=︒,所以ABC 是等边三角形, 因为E 为AC 的中点,所以1AE EC ==,BE 因为AD CD ⊥,所以112DE AC ==, 在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz −,则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =−=−, 设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=−+=⎪⎨⋅=−+=⎪⎩,取y =()3,3,3n =, 又因为()31,0,0,4C F ⎛⎫− ⎪ ⎪⎝⎭,所以31,4CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,21n CF n CF n CF⋅===设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以4sin cos ,7nCF θ==所以CF 与平面ABD3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B −−的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.【解析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H . ∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE ∠=∠=︒,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==∠=∠=∠=∠=︒,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD 和Rt DHA ,EG DH == ∵,DC CF DC CB ⊥⊥,且CF CB C ⋂=,∴DC ⊥平面,BCF BCF ∠是二面角F DC B −−的平面角,则60BCF ∠=, ∴BCF △是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴FN BC ⊥,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN CD ⊥,而BC CD C ⋂=,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD FN AD ∴⊥.(2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz −,设(3,(1,0,3)A B D E,则32M ⎛⎫ ⎪ ⎪⎝⎭,333,,,(2,23,0),(2,22BM AD DE ⎛⎫∴=−=−−=− ⎪ ⎪⎝⎭ 设平面ADE 的法向量为(,,)nx y z =由00n AD n DE ⎧⋅=⎨⋅=⎩,得20230x x z ⎧−−=⎪⎨−+=⎪⎩,取(3,n =−,设直线BM 与平面ADE 所成角为θ,∴3||sin cos ,|||3n BM n BM n BMθ⋅=〈〉====⋅4.(2022·全国·统考高考真题)如图,PO 是三棱锥−P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B −−的正弦值. 【解析】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥−P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC , 所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒, 所以ODA OAD ∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以//OE 平面PAC(2)过点A 作//Az OP ,如图建立平面直角坐标系, 因为3PO =,5AP =,所以4OA =,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB = 所以12AC =,所以()O,()B,()P ,()0,12,0C ,所以32E ⎛⎫ ⎪⎝⎭,则332AE ⎛⎫= ⎪⎝⎭,()43,0,0AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y −,0x =,所以()0,3,2n =−;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a bc m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =−,0b =,所以()3,0,6m =−;所以cos ,13n m n m n m⋅−===设二面角C AE B −−的大小为θ,则43cos cos ,=13n m θ=, 所以11sin 13θ=,即二面角C AE B −−的正弦值为1113.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC −的体积.【解析】(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CDBD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD Ì平面BED , 所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)[方法一]:判别几何关系依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ===由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =. 222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥, 由于12AFCSAC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小 过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得EF =所以13,222DF BF DF ===−=, 所以34BF BD =过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以111323324F ABC ABCV SFH −=⋅⋅=⨯⨯=[方法二]:等体积转换AB BC =,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,BE ∴=连接EFADB CDB AF CF EF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆在中,当时,AFC 面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆==为中点DE=1若在中,32113222BEFBF S BF EF ∆∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC −−−∆∴=+=⋅=6.(2022·全国·统考高考真题)在四棱锥P ABCD −中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP ====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【解析】(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F , 因为//,1,2CD AB AD CD CB AB ====, 所以四边形ABCD 为等腰梯形, 所以12AE BF ==,故DE =BD = 所以222AD BD AB +=, 所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD , 所以PD BD ⊥, 又=PD AD D ⋂, 所以BD ⊥平面PAD , 又因为PA ⊂平面PAD , 所以BD PA ⊥;(2)如图,以点D 为原点建立空间直角坐标系,BD =则()()(1,0,0,,A B P ,则()()(1,0,3,0,3,3,AP BP DP =−=−=,设平面PAB 的法向量(),,n x y z =,则有0{30n AP x n BP ⋅=−=⋅=−=,可取()3,1,1n =, 则5cos ,5n DPn DP n DP ⋅==所以PD 与平面PAB7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N =,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯. 若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C −−的正弦值. 【解析】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h , 则111111112211433333A A BC A A ABC A ABC AB BC C C B V S h h V S A A V −−−=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =, 且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC , 由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A , 所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩, 可取()1,0,1m =−,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩, 可取()0,1,1n =−r , 则11cos ,22m nm n m n ⋅===⨯⋅,所以二面角A BD C −−=本课结束。

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。

【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。

点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。

2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。

点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。

3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。

【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。

点评:利用向量垂直的充要条件及单位向量的概念。

4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。

【考点】本题主要考查平行向量及向量的坐标运算。

点评:简单题,按向量平行的充要条件计算。

5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。

高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解

高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解

高考总复习含详解答案高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解一、选择题1.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为()A .平行四边形B .梯形C .平面四边形D .空间四边形[答案]D [解析]∵AB →·BC →>0,∴∠ABC>π2,同理∠BCD>π2,∠CDA>π2,∠DAB >π2,由内角和定理知,四边形ABCD 一定不是平面四边形,故选 D. 2.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为()A .0B .1C .0或1D .任意实数[答案]C [解析]AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选 C. 3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,N 为BB 1的靠近B 的三等分点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则MN →等于()A .-12a +12b +13c B.12a +12b -13c C.12a -12b -13c D .-12a -12b +23c [答案] C。

高中数学立体几何建系设点专题

高中数学立体几何建系设点专题

ABCD 222,,,AQ PB 22222,,,,,2x 2)2PQ nn2ABQM ADCOPxyzMABD CO PxyzE C B ==32的正三角形,的正三角形,223a2a23(0,02a32a2a3a13OCDA1 B1 C1 AOCDA1 B1 xzyA BCA1B1C1MzyxCA1B1C1Mz解法二: 13(,,2)22a AC a a =-, 平面ABB 1A 1的一个法向量(1,0,0)n =-∴AC 1与侧面ABB 1A 1所成的角q 的正弦为:1sin cos ,AC n q =<> =1112||||AC n AC n ×=∴AC 1与侧面ABB 1A 1所成的角为30°练4:请在下列图形中建立适当的坐标系,并标明图中所有点的坐标。

(1)如图,在四棱锥P ABCD -中,PA ^底面,,,A B C D A B A D A C C D A B C ^^Ð=°,P A A B B C ==E 是PC 的中点的中点.. (2)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.中点.A P E B C D ABCD1A1C1B63611222226121++621566建立如图2所示的空间直角坐标系,设AB=2AB=2,,则(13,1,0(3,1,C 平面BB 1C 1C 的一个法向量为(1,0,0)n = ,所以AC 1113648AC n AC n ×== 。

3.已知正方体ABCD-A 1B 1C 1D 1的棱长为1,求异面直线BD 与B 1C 的距离。

的距离。

解:建立空间直角坐标系(如图),则B (0,0,0),C (1,0,0),D (1,1,0) B 1(0,0,1),则1111(1,1,1,0),1(1,0,,0,1),(0,0,1(0,0,1))BD B C BB ==-= 设与1,BD B C 都垂直的向量为(,,)n x y z =,则由0BD n x y ×=+=和10,B C n x z ×=-=1,x =令得1,1y z =-=,(1,1,1)n\=- \异面直线BD 与B 1C 的距离:的距离:111||13|cos ,|33BB n d BB BB n n ×=<>===4.4.四棱椎四棱椎P —ABCD 中,底面ABCD 是矩形,PCD D 为正三角形,为正三角形,平面,ABCD PCD 平面^PB PD E AC 为,^中点中点. . (1)求证:)求证:PB PB PB∥∥ 平面AEC AEC;; (2)求二面角E —AC AC——D 的大小的大小. . 解:设AD a CD ==,,过,,H CD PH P 垂足为作^A B C DP C D 平面平面^ ^\PH 平面ABCD ,又 是矩形底面ABCD 故可以分别以OH OH、、HC HC、、HP 所在直线为x 轴、轴、y y 轴、轴、z z 轴建立空间直角坐标系H-xyz H-xyz。

(常考题)北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)(4)

一、选择题1.在正四棱锥P ABCD -中,1PA PB PC PD AB =====,点Q ,R 分别在棱AB ,PC 上运动,当||QR 达到最小值时,||||PQ CQ 的值为( ) A .7010B .355 C .3510D .7052.如图,在几何体111ABC A B C -中,ABC ∆为正三角形,111////AA BB CC ,1AA ⊥平面ABC ,若E 是棱11B C 的中点,且1112AB AA CC BB ===,则异面直线1A E 与1AC 所成角的余弦值为( )A .1313B .21313C 26D 2263.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .22C .12-D .124.若直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,则1l 与2l 的位置关系是( ) A .12l l ⊥B .12l l C .1l 、2l 相交不垂直 D .不能确定5.在边长为2的菱形ABCD 中,23BD =ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π 6.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC 的中点,则异面直线MB 与1AA 所成角的余弦值为( )A .13B .223C .324D .127.如图,已知正三棱柱111ABC A B C -的棱长均为2,则异面直线1A B 与1BC 所成角的余弦值是( )A 3B .12C .14D .08.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( ) A .105B .1010C .32D .629.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)33310.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1211.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11AC 和11A B 的中点,当AE 和BF 所成角的余弦值为710时,AE 与平面11BCC B 所成角的正弦值为( ) A 15B 15C 5 D 512.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( )A .111222OM OA OB OC =++ B .OM OA OB OC =++ C .1133OM OA OB OC =-+ D .2OM OA OB OC =--二、填空题13.如图,正三棱柱111ABC A B C -的棱长均为2.点M 是侧棱1AA 的中点,点P 、Q 分别是侧面11BCC B ,底面ABC 的动点,且1A P 平面BCM ,PQ ⊥平面BCM .则点Q的轨迹的长度为___________.14.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____.15.如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点,E F ,且 22EF =,现有如下四个结论: ①AC BE ⊥;②//EF 平面ABCD ;③三棱锥A BEF -的体积为定值; ④异面直线,AE BF 所成的角为定值. 其中正确结论的序号是______.16.把地球看作是半径为R 的球,A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,求A B 、两点间的球面距离______________.17.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.18.正方体1111ABCD A BC D -的棱长为1,若动点P 在线段1BD 上运动, 则·DC AP 的取值范围 是 .19.已知P 是正方体1111ABCD A BC D -的棱11A D 上的动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值为__________. 20.已知平行六面体中,则____.三、解答题21.如图,在多面体ABCDEF 中,等腰梯形ABCD 所在平面垂直于正方形CDEF 所在平面,1,2DA AB BC CD ====.(Ⅰ)求证:AC ⊥平面ADE ;(Ⅱ)求BF 与平面ADE 所成角的正弦值.22.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD . (2)求二面角B AE C --的余弦值.23.如图,四边形ABCD 与四边形BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =(1)求证:平面ACF ⊥平面ABCD ; (2)求二面角A FC B --的余弦值.24.如图,在等腰直角三角形PAD 中,90A ∠=︒,8AD =,3AB =,B ,C 分别是PA ,PD 上的点,且//AD BC ,M ,N 分别为BP ,CD 的中点,现将BCP 沿BC折起,得到四棱锥P ABCD -,连结MN .(1)证明://MN 平面PAD ;(2)在翻折的过程中,当4PA =时,求二面角B PC D --的余弦值.25.如图,在四棱锥S ABCD -中,侧面SCD 为钝角三角形且垂直于底面ABCD ,底面为直角梯形且90ABC ∠=︒,12AB AD BC ==,CD SD =,点M 是SA 的中点.(1)求证:BD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60︒,求SD 与平面MBD 所成角的正弦值. 26.如图,在三棱锥P ABC -中,PAC △为等腰直角三角形,90APC ∠=︒,ABC 为正三角形,D 为AC 的中点,2AC =.(1)证明:PB AC ⊥; (2)若三棱锥P ABC -3A PCB --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】建立空间直角坐标系,利用三点共线的思想,分别求出点R ,Q ,利用两点距离公式求解,后利用导数求最值,进一步求出答案. 【详解】以P 在底面的投影O 为坐标原点,建立如图所示的坐标系,设1(,,0)2Q a ,(,,)R m n q 因为211(0(,0),22P C -,112(,22PC =-, 又因为R 在PC 上,PR PC λ= 所以2(,m m q =,112(,),22λλ-, 所以R 1122(,),2222λλ=--+, 所以222211122222QR a λλ⎛⎛⎫⎛⎫=--+-++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭221324a a λλλ=+-++ 因为[]11,,0,122a λ⎡⎤∈-∈⎢⎥⎣⎦设2213()24f a a a λλλ=+-++,2213()24g a a λλλλ=+-++ 对其求导()2f a a λ'=-,1()22g a λλ'=-+当二个导数同时为0时,取最小值,即20a λ-=,1202a λ-+= 所以11,36a λ==时取最小值, 所以1121,,,1,,02623PQ CQ ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭所以PQ CQ=10所以当||QR 达到最小值时,||||PQCQ 的值为10故选:A. 【点睛】空间直角坐标系距离公式的理解:(1)两点间的距离公式其形式与平面向量的长度公式一致,它的几何意义是表示长方体的对角线的长度.(2)两点间的距离公式与坐标原点的选取无关,经过适当转化也可以求异面直线间的距离,点到面以及平面与平面的距离等. 本题主要是R 的坐标利用三点共线的思想去求.2.C解析:C 【解析】 【分析】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与AC 1所成角的余弦值 【详解】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴, CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 设AB =AA 1=CC 1=2BB 1=2,则A 11,2),A 0,),C 1(0,0,2),B 1(0,2,1),E (0,1,32), 1AE =(0,12-),1AC=(1,2), 设异面直线A 1E 与AC 1所成角为θ,则cosθ11111313A E AC A E AC ⋅===⋅. ∴异面直线A 1E 与AC 1. 故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.3.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.A解析:A 【分析】求出直线1l 、2l 的方向向量数量积为0,由此得到1l 与2l 的位置关系. 【详解】由题意,直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,2640a b ⋅=-+-=,∴1l 与2l 的位置关系是12l l ⊥.故选A . 【点睛】本题主要考查了两直线的位置关系的判断,考查直线与直线垂直的性质等基础知识,着重考查运算求解能力,属于基础题.5.C解析:C 【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC ﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案. 【详解】 如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱6,故662R ==因此,三棱锥A ﹣BCD 的内切球的表面积为226244(63R πππ=⨯=. 故选C . 【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.6.B解析:B 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,求得11,1,22MB ⎛⎫=--- ⎪⎝⎭,()10,? 02AA =,,利用空间向量夹角余弦公式能求出异面直线MB 与1AA 所成角的余弦值.【详解】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC , ∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 设11111222AA A B B C ===, 则11,1,22M ⎛⎫ ⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=, 设异面直线MB 与1AA 所成角为θ,则11cos 318MB AA MB AA θ⋅===⋅, ∴异面直线MB 与1AA 所成角的余弦值为3,故选B . 【点睛】本题主要考查异面直线所成角的余弦值的求法,是基础题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.7.C解析:C【分析】建立空间直角坐标系,结合空间向量的结论求解异面直线所成角的余弦值即可.【详解】以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则:()10,1,2A -,)B ,)12B ,()0,1,0C ,向量()13,1,2A B =-,()12B C =--, 11cos ,A B BC <>1111AB BC A B B C ⋅=⨯=14=. 本题选择C 选项.【点睛】本题主要考查异面直线所成的角的求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.8.A解析:A【分析】建立空间直角坐标系,求出向量AM与1BC的向量坐标,利用数量积求出异面直线A M B C所成角的余弦值.与1【详解】以D为坐标原点,建立空间直角坐标系,如图所示:设正方体的棱长为1,则(1,0,0)A ,1(1,0,1)A ,(1,1,0)B ,1(1,1,1)B ,(0,1,0)C ∵M 为11A B 的中点 ∴1(1,,1)2M ∴1(0,,1)2AM =,52AM =;1(1,0,1)B C =--,12B C =. ∴异面直线A M 与1B C所成角的余弦值为1111cos ,510AM B C AM B C AM B C⋅===⋅ 故选A.【点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角∠AEM (或其补角),是解题的关键.如果异面直线所成的角不容易找,则可以通过建立空间直角坐标系,利用空间向量来求解. 9.D解析:D【分析】设OM OC λ=,故(),,2M λλλ,()()242633MA MB OA OM OB OM λ⎛⎫=--⋅=- ⎪⎝-⎭⋅,计算得到答案. 【详解】 设OM OC λ=,即(),,2OM OC λλλλ==,故(),,2M λλλ,()()()()1,2,322,1,22MA MB OA OM OB OM λλλλλλ⋅=-⋅-=---⋅--- 224261610633λλλ⎛⎫=-+=-- ⎪⎝⎭, 当43λ=时,向量数量积有最小值,此时448,,333M ⎛⎫ ⎪⎝⎭. 故选:D.【点睛】本题考查了向量的数量积,二次函数求最值,意在考查学生的计算能力和综合应用能力. 10.B解析:B【分析】根据向量运算得到1113144BE BA AA A E AB AD AA =++=-++,得到答案. 【详解】()11111111131444BE BA AA A E AB AA A B A D AB AD AA =++=-+++=-++,故34x =-. 故选:B .【点睛】 本题考查了向量的运算,意在考查学生的计算能力和空间想象能力.11.B解析:B【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为710,求出12t AA ==.由此能求出AE 与平面11BCC B 所成角α的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则31,,(0,0,0),,22A E t B F t ⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭,(2AE =-,12,)t ,3(2BF =12,)t , AE ∵和BF 所成角的余弦值为710, 2221||||72|cos ,|10||||11t AE BF AE BF AE BF t -∴<>===+,解得2t =.∴(2AE =-,12,2), 平面11BCC B 的法向量(1,0,0)n =, AE ∴与平面11BCC B 所成角α的正弦值为:3||2sin ||||5AE n AE n α===. 故选:B .【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.C解析:C【分析】由共面向量定理可得:若定点M与点A、B、C一定共面,则存在实数x,y,使得AM xAB yAC=+,即(1)OM x y OA xOB yOC=--++,判断标准是验证OA,OB,OC三个向量的系数和是否为1,若为1则说明四点M,A,B,C一定共面,由此规则即可找出正确的条件.【详解】由题意,,A B C三点不共线,点O是平面ABC外一点,对于A由于向量的系数和是32,不是1,故此条件不能保证点M在面ABC上;对于B,等号右边三个向量的系数和为3,不满足四点共面的条件,故不能得到点M与,,A B C一定共面对于C,等号右边三个向量的系数和为1,满足四点共面的条件,故能得到点M与,,A B C一定共面对于D,等号右边三个向量的系数和为0,不满足四点共面的条件,故不能得到点M与,,A B C一定共面综上知,能得到点M与,,A B C一定共面的一个条件为C.故选:C.【点睛】本题考查平面向量的基本定理,利用向量判断四点共面的条件,解题的关键是熟练记忆四点共面的条件,利用它对四个条件进行判断得出正确答案,本题考查向量的基本概念,要熟练记忆.二、填空题13.【分析】根据已知可得点Q的轨迹是过△MBC的重心且与BC平行的线段进而根据正三棱柱ABC﹣A1B1C1中棱长均为2可得答案【详解】∵点P是侧面BCC1B1内的动点且A1P∥平面BCM则P点的轨迹是过解析:4 3【分析】根据已知可得点Q的轨迹是过△MBC的重心,且与BC平行的线段,进而根据正三棱柱ABC﹣A1B1C1中棱长均为2,可得答案.【详解】∵点P是侧面BCC1B1内的动点,且A1P∥平面BCM,则P点的轨迹是过A1点与平面MBC平行的平面与侧面BCC1B1的交线,则P点的轨迹是连接侧棱BB1,CC1中点的线段l,∵Q是底面ABC内的动点,且PQ⊥平面BCM,则点Q的轨迹是过l与平面MBC垂直的平面与平面ABC相交得到的的线段m,故线段m过△ABC的重心,且与BC平行,由正三棱柱ABC﹣A1B1C1中棱长均为2,故线段m的长为:23×2=43,故答案为4 3【点睛】本题考查的知识点是平面与平面之间的位置关系,棱柱的几何特征,动点的轨迹,难度中档.14.【解析】【分析】取MC中点O连结AOBO推导出AC=BM=AM=CM=1AO=BO=AO⊥MCAO⊥平面BMCAO⊥BO由此能求出AB两点之间的距离【详解】取MC中点O连结AOBO∵△ABC中∠C=10【解析】【分析】取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO =32,BO =72,AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点, ∴AC =BM =AM =CM =1,∴AO 2131()2- BO 22011172cos120121422BM MO BM OM ⎛⎫+-⨯⨯⨯+-⨯⨯⨯-= ⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |22371044BO AO +=+=, 10. 【点睛】 本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.15.①②③【分析】根据平面可判断①;根据可判断②;利用体积公式判断③;设用向量法求出的夹角的范围判断④【详解】连接由可知平面而平面故①正确;由且平面平面可得平面故②正确;三棱锥的体积为定值故③正确;建立解析:①②③【分析】根据AC ⊥平面11BB D D 可判断①;根据11//B D BD 可判断②;利用体积公式判断③;设11D E a =,用向量法求出,AE BF 的夹角的范围判断④.【详解】连接BD ,由AC BD ⊥,1AC DD ⊥,可知AC ⊥平面11BB D D ,而BE ⊂平面11BB D D ,AC BE ∴⊥,故①正确;由//EF BD ,且EF ⊄平面ABCD ,BD ⊂平面ABCD ,可得//EF 平面ABCD ,故②正确;1132A BEF BEF V S AC -=⋅ 112211232=⨯=, ∴三棱锥A BEF -的体积为定值,故③正确;建立坐标系如图所示;设11202D E a a ⎛=≤≤ ⎝⎭, 则()1,0,0A ,()1,1,0B ,22,1E ⎫⎪⎪⎝⎭, 2121,,12222F a ⎛⎫++ ⎪ ⎪⎝⎭, 221,,122AE a a ⎛⎫∴=- ⎪ ⎪⎝⎭,2121,,12222BF a a ⎛⎫=-- ⎪ ⎪⎝⎭, 设异面直线,AE BF 所成的角为θ, 则22322cos 22a a AE BF AE BF a a θ-+⋅==⋅-+ 212122a a =--+2232222a a a ⎛-+=-+ ⎝⎭∴当0a =时,cos θ取得最大值2, θ∴的最小值为30,即异面直线,AE BF 所成的角不为定值,故④错误; 故答案为:①②③【点睛】本题考查了线面垂直的性质定理、线面平行的判定定理、三棱锥的体积公式以及空间向量法求异面直线所成的角,综合性比较强,属于中档题.16.【分析】设球心为北纬纬线圈所在圆的圆心为半径为且是等边三角形即中由余弦定理得的值利用弧长公式求得两点间的球面距离【详解】设球心为北纬纬线圈所在圆的圆心为半径为则根据点位于北纬30°东经20°点位于北解析:5arccos 8R 【分析】设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,r =,且ABC 是等边三角形,即2AB R =,AOB 中,由余弦定理得AOB ∠的值,利用弧长公式求得,A B 两点间的球面距离.【详解】设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,130OAO ∠=, 则3cos302r R ==, 根据A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,可得160AO B ∠=,1AO B ∴是等边三角形,即AB r R ==, ABC 中,由余弦定理可得2222232cos 4AB R R R R AOB ==+-⋅∠,求得5cos 8AOB ∠= ,5arccos 8AOB ∴∠=, ,A B ∴两点间的球面距离5arccos 8AB R AOB R =⋅∠=⋅.故答案为:5arccos 8R ⋅ 【点睛】 本题主要考查球面距离的求法,利用余弦定理解三角形,意在考查数形结合分析问题和解决问题的能力,属于中档题型. 17.【解析】∵∴∴故答案为 解析:111,,633【解析】∵ O G OM MG =+,1 2OM OA =,2 ,3MG MN MN ON OM ==-,1 ()2ON OB OC =+,∴111 633OG OA OB OC =++,∴16x =,13y z ==,故答案为111,,63318.【详解】试题分析:以所在的直线为轴以所在的直线为轴以所在的直线为轴建立空间直角坐标系则∴∵点在线段上运动∴且∴∴故答案为考点:空间向量数量积的运算解析:[]0,1【详解】试题分析:以所在的直线为轴,以所在的直线为轴,以所在的直线为轴,建立空间直角坐标系.则、、、、.∴、.∵点在线段上运动,∴,且.∴AP AB BP DC BP =+=+(),1,λλλ=--,∴,故答案为[]0,1.考点:空间向量数量积的运算.19.【解析】试题分析:因为//所以即为异面直线与所成的角为因为是正方体所以因为所以所以当时考点:1异面直线所成的角;2线面垂直线线垂直 解析:33【解析】试题分析:因为AB //CD ,所以PCD ∠即为异面直线AB 与CP 所成的角为α.因为1111ABCD A BC D -是正方体,所以11CD ADD A ⊥面,因为11DP ADDA ⊂面,所以DC DP ⊥.所以cos CD CP α=,当1CP CA =时,min 13(cos )33CD CD CA CDα===. 考点:1、异面直线所成的角;2、线面垂直、线线垂直.20.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键 解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)1510【分析】(Ⅰ)由面面垂直的性质定理得到DE ⊥平面ABCD ,从而得到DE AC ⊥,再由勾股定理的逆定理证明CA AD ⊥,即可得证;(Ⅱ)建立空间直角坐标系,利用空间向量法求出线面角的正弦值; 【详解】(Ⅰ)因为平面ABCD ⊥平面CDEF ,四边形CDEF 为矩形,所以CD DE ⊥,又平面ABCD 平面CDEF CD =,所以DE ⊥平面ABCD ,因为AC ⊂平面ABCD , 所以DE AC ⊥,在底面ABCD 中,过,A B 作,AN BM DC ⊥,交CD 于,N M ,因为1,2DA AB BC CD ====,所以12DN CM ==,所以2213122AN ⎛⎫=-= ⎪⎝⎭,所以2233322AC ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎝⎭⎝⎭,所以222AD AC CD +=,所以CA AD ⊥,又AD DE D ⋂=,,AD DE ⊂面ADE ,所以AC ⊥面ADE ;(Ⅱ)如图建立空间直角坐标系,则31,02B ⎫-⎪⎪⎝⎭,)3,0,2F ,所以31,222BF ⎛⎫= ⎪ ⎪⎝⎭由(1)可知AC ⊥面ADE ,则面ADE 的法向量可以为()1,0,0n =,设BF 与平面ADE 所成角为θ,则2223152sin 1031222n BF n BFθ===⋅⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,BF 与平面ADE 所成角的正弦值为1510;【点睛】本题考查了立体几何中的线面垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 22.(1)证明见解析;(2)2211. 【分析】(1)取SC 的中点F ,连接,DF EF ,证明四边形ADFE 为平行四边形,可得//AE DF ,即可证//AE 平面SCD ;(2)建立如图所示空间直角坐标系,然后写出各点坐标,得平面ABE 的法向量为AD ,计算平面ACE 的法向量m ,利用数量积公式代入计算二面角的余弦值. 【详解】(1)证明:取SC 的中点F ,连接,DF EF因为E 、F 为SB 、SC 的中点,所以//EF BC 且132EF BC ==,又因为//AD BC ,3AD =,6BC =,所以//EF AD 且EF AD =,所以四边形ADFE 为平行四边形,所以//AE DF ,又AE ⊄平面SCD ,DF ⊂平面SCD ,所以//AE 平面SCD . (2)因为SA ⊥平面ABCD ,AD AB ⊥,所以建立如图所示空间直角坐标系, 则(0,0,0),(4,0,0),(4,6,0),(0,3,0),(2,0,2)A B C D E ,(2,0,2),(4,0,0),(4,6,0)AE AB AC ===,(0,3,0)AD =由题意可知AD ⊥平面ABE ,设平面ACE 的法向量(,,)m x y z =所以00AC m AE m ⎧⋅=⎨⋅=⎩,则460220x y x z +=⎧⎨+=⎩,得(3,2,3)m =--设二面角B AE C --的平面角为θ,所以622cos cos ,11322AD m θAD m AD m⋅-====⨯,所以二面角B AE C --的余弦值为2211.【点睛】本题考查了立体几何中的线面平行的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过中位线平行证明线线平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 23.(1)证明见解析;(215. 【分析】(1)AC 与BD 交于点O ,连接FO 、FD ,证明FO AC ⊥,FO BD ⊥,然后得到FO ⊥平面ABCD 即可;(2)以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立空间直角坐标系,然后求出平面BFC 和平面ACF 的法向量,然后可算出答案.【详解】(1)证明:AC 与BD 交于点O ,连接FO 、FD ,∵FA FC =,O 是AC 中点,且O 是BD 中点,∴FO AC ⊥, ∵四边形BDEF 为菱形,60DBF ∠=︒, ∴FD FB =,∴FO BD ⊥, 又ACBD O =,∴FO ⊥平面ABCD ,∵FO ⊂平面ACF ,∴平面ACF ⊥平面ABCD (2)易知OA ,OB ,OF 两两垂直以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立如图所示的空间直角坐标系设2AB =,∵四边形ABCD 为菱形,60DAB ∠=︒ 则2BD =,∴1OB =,3OA OF ==故(0,0,0)O ,(0,1,0)B ,()3,0,0C -,()3F ∴(3,0,3CF =,3,1,0CB,()0,1,0OB =设平面BFC 的一个法向量为(,,)n x y z =则33030n CF x z n CB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,得()1,3,1n =-- 显然,()0,1,0OB =为平面ACF 的一个法向量 ∴15cos ,5OB n OB n OB n⋅<>==-⋅ 由图知,二面角A FC B --的平面角为锐角 ∴二面角A FC B --的余弦值为155【点睛】关键点睛:用向量法求解空间角的问题时,解题的关键是建立适当的空间直角坐标系,准确地写出点的坐标和算出直线的方向向量、平面的法向量.24.(1)证明见解析;(2)63-. 【分析】(1)取AB 的中点E ,连结EM ,EN ,根据线面平行的判定定理以及面面平行的判定定理,先证明平面//MNE 平面PAD ,进而可证//MN 平面PAD ;(2)根据题中条件,以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,分别求出两平面的法向量,由向量夹角公式,即可求出结果. 【详解】(1)证明:在四棱锥P ABCD -中,取AB 的中点E ,连结EM ,EN . 因为M ,N 分别为BP ,CD 的中点,//AD BC . 所以//ME PA ,//EN AD .因为PA ⊂平面PAD ,ME ⊄平面PAD , 所以//ME 平面PAD , 同理,//EN 平面PAD .又因为ME NE E ⋂=,ME 、NE ⊂平面MNE , 所以平面//MNE 平面PAD . 因为MN ⊂平面MNE , 所以//MN 平面PAD ;(2)因为在等腰直角三角形PAD 中,90A ∠=︒,//AD BC , 所以BC PA ⊥,即在四棱锥P ABCD -中,BC PB ⊥,BC AB ⊥. 因为//AD BC ,所以AD PB ⊥,AD AB ⊥, 因为PB AB B ⋂=,PB 、AB平面PAB ,所以AD ⊥平面PAB ,所以PA AD ⊥.又因为8AD =,3AB =,4PA =,所以5PB =. 所以222AB PA PB +=,所以PA AB ⊥.以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则()3,0,0B ,()0,0,4P ,()0,8,0D ,()3,5,0C , 所以(3,0,4)PB =-,(3,5,4)PC =-,(0,4)8,PD =-.设()1111,,x n y z =为平面PBC 的一个法向量,则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111113403540x z x y z -=⎧⎨+-=⎩, 令14x =,得1(4,0,3)n =;设()2222,,n x y z =为平面PCD 的一个法向量,则2200n PD n PC ⎧⋅=⎪⎨⋅=⎪⎩,即222228403540y z x y z -=⎧⎨+-=⎩, 令21y =,得2(1,1,2)n =.所以1212212cos ,34n n n n n n⋅<>===. 因为二面角B PC D --是钝角, 所以二面角B PC D --的余弦值是 【点睛】 方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可. 25.(1)证明见解析;(2. 【分析】(1)根据已知条件证明BD CD ⊥,根据线面垂直的判定定理即可得到BD ⊥平面SCD ;(2)根据已知条件建立合适的空间直角坐标系,利用直线的方向向量与平面法向量夹角的余弦值的绝对值求解出SD 与平面MBD 所成角的正弦值. 【详解】解:(1)证明:取BC 的中点E ,连接DE ,设==AB AD a ,2BC a =,依题意,四边形ABED 为正方形, 且有BE DE CE a ===,BD CD ==, ∴222BD CD BC +=,则BD CD ⊥. 又平面SCD ⊥底面ABCD ,平面SCD底面ABCD CD =,∴BD ⊥平面SCD(2)过点S 作CD 的垂线,交CD 延长线于点H ,连接AH , ∵平面SCD ⊥底面ABCD ,平面SCD底面ABCD CD =,SH CD ⊥,SH ⊂平面SCD ,SH ⊥底面ABCD ,故DH 为斜线SD 在底面ABCD 内的射影,SDH ∠为斜线SD 与底面ABCD 所成的角,即60SDH ∠=︒. 由(1)得,2SD a =,∴在Rt SHD 中,2SD a =,62SH a =, 在ADH 中,45ADH ∠=︒,AD a =,22DH a =,由余弦定理得222222cos 45222AH a a a a a ⎛⎫=+-⋅⋅⋅︒= ⎪ ⎪⎝⎭, ∴222AH DH AD +=,从而90AHD ∠=︒,过点D 作//DF SH ,∴DF ⊥底面ABCD ,∴DB 、DC 、DF 两两垂直,如图,以点D 为坐标原点,DB 为x 轴正方向,DC 为y 轴正方向,DF 为z 轴正方向建立空间直角坐标系,则)2,0,0Ba ,()2,0C a ,260,2S ⎛⎫- ⎪⎝⎭,22,,022A a ⎛⎫- ⎪ ⎪⎝⎭,226,,424M a a ⎛⎫- ⎪ ⎪⎝⎭,设平面MBD 的法向量(),,n x y z =,由202022n DB ax n DM ax ⎧⋅==⎪⎨⋅=-=⎪⎩,取1z =,得30,,12n ⎛⎫= ⎪ ⎪⎝⎭,又0,,2SD a ⎛⎫= ⎪ ⎪⎝⎭,∴sin cos ,n SD θ=<>==, ∴SD 与平面MBD所成角的正弦值为14. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果. 26.(1)证明见解析;(2 【分析】(1)根据PAC △为等腰直角三角形,D 为中点,得到PDAC ⊥,再根据ABC 为正三角形,D 为中点,得到BD AC ⊥.然后利用线面垂直的判定定理证明.(2)设三棱锥P ABC -的高为h ,由 1132P ABC V AC BD h -=⨯⨯⨯⨯==, 求得h ,由以D 为坐标原点,建立空间直角坐标系,设为平面PBC 的一个法向量(),,n x y z =,又DB 是平面PAC 的一个法向量,然后由cos ,DB n DB n DB n⋅=求解..【详解】(1)∵PAC △为等腰直角三角形,D 为中点,. ∴PD AC ⊥,又ABC 为正三角形,D 为中点, ∴BD AC ⊥.又PD BD D ⋂=,PD ,BD ⊂平面PBD ,∴AC ⊥平面PBD . 又PB ⊂平面PBD , ∴PB AC ⊥.(2)设三棱锥P ABC -的高为h ,sin60BD BC =︒=∴11333233P ABC V AC BD h h -=⨯⨯⨯⨯==, ∴1h =. 又112PD AC ==, ∴PD ⊥平面ABC .如图,以D 为坐标原点,建立空间直角坐标系D xyz -,则()1,0,0A ,()3,0B,()1,0,0C -,()0,0,1P∴()0,3,0=DB ,()1,0,1CP =,()1,3,0CB =. 设(),,n x y z =为平面PBC 的一个法向量,则00CP n CB n ⎧⋅=⎨⋅=⎩,即030x z x +=⎧⎪⎨+=⎪⎩令1x =,得31y z ⎧=⎪⎨⎪=-⎩∴31,1n ⎛⎫=-- ⎪ ⎪⎝⎭.又DB 是平面PAC 的一个法向量, ∴7cos ,7DB n DB n DB n⋅==-∴二面角A PC B --7【点睛】方法点睛:向量法求二面角的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为()A.B.C.D.【答案】C【解析】∵底面,∴而底面是正方形,∴∴面,则∴就是二面角的平面角在中,∵,是中点∴,即二面角的大小为,故选C2.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()【答案】B【解析】略3.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥中,底面为矩形,平面,点在线段上,平面.(1)求证:平面;(2)若,,求二面角的大小.【答案】(1)详见解析;(2)详见解析.【解析】(1)要证线与面垂直,即证垂直于平面内的两条相交直线,根据已知的线与面垂直,得到线性垂直,得证;(2)法一:根据前问所证,平面,易证底面是正方形,所以可以根据三垂线定理做出二面角的平面角,即设的交点为,过点作于点,连,易证为二面角的平面角,在直角三角形内求得角;法二:以为原点建立平面直角坐标系,根据向量法,求两个平面的法向量,利用法向量夹角的余弦值计算二面角的余弦值.试题解析:解:(1)证明:∵,∴.同理由,可证得.又,∴.(2)解法一:设的交点为,过点作于点,连易证为二面角的平面角由(1)知为正方形,在中,,二面角的大小为解法二:分别以射线,,为轴,轴,轴的正半轴建立空间直角坐标系.由(1)知,又,∴.故矩形为正方形,∴.∴.∴.设平面的一个法向量为,则,即,∴,取,得.∵,∴为平面的一个法向量.所以.设二面角的平面角为,由图知,则二面角的大小为【考点】1.线与面垂直的判定;2.二面角的计算;3.几何法与向量法求二面角.4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.(本小题12分)已知三棱柱中,底面,,,分别为的中点.(1)求证://平面;(2)求证:;(3)求三棱锥A-BCB的体积.1【答案】(1)见解析:(2)见解析;(3)【解析】(1)欲证//平面,AB中点G,连DG,CG,只需证明是平行四边形,∥即可;(2)证明面面垂直采用证明线面垂直,通过证明因为底面为等腰三角形,,又因为,所以可证得;(3)转化顶点所求三棱锥的体积为,即可求得试题解析:(I)取AB中点G,连DG,CG,在三棱柱中,底面ABC ,是矩形.∵D,E分别为AB1,CC1的中点,∴,是平行四边形,∥∵GC平面ABC,平面ABC,∴DE//平面ABC .(II)三棱柱中,底面ABC,∴中点,又,∴(III)由(II)得,在,,【考点】1.证明线面平行;2.证明面面垂直;3.求体积6.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离7.已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥;②若∥,则∥;③若⊥,则⊥;④若⊥,则⊥;其中正确结论的个数是( )A.0B.1C.2D.3【答案】A【解析】若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题•错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题‚错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题ƒ错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;【考点】直线与直线、平面与平面的平行与垂直的命题判断.8.已知,,则的最小值.【答案】【解析】,因此当时取最小值【考点】空间向量模9.截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C.球D.圆台【答案】C【解析】圆柱的截面可以是矩形,圆锥的截面可以是三角形,圆台的截面可以是梯形,值有球的截面都是圆,故选C.【考点】几何体的截面图形.10.一个正方体的展开图如图所示,为原正方体的顶点,则在原来的正方体中()A.B.C.与所成的角为D.与相交【答案】C【解析】把展开图还原为立体图形,如下图正方体,可见与是异面直线,它们甩成的角为60°.【考点】多面体的展开图,两直线的位置关系.11.在三棱锥中,已知,则三棱锥外接球的表面积为.【答案】【解析】设中点为,由于,则点到点的距离相等,因此是三棱锥外接球的直径,由题意,是等边三角形,,所以,.【考点】几何体与外接球,球的表面积.【名师】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.12.如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于()A. B. C. D.【答案】D【解析】为了便于解析,可设三棱锥为正三棱锥,为正三棱锥的高;为正三棱锥有高,因为底面相同,则它们的体积比为高之比,已知三棱锥的体积为2,所以三棱锥的体积为:(1),由题意可知,且,所以由平行得到,所以,(面BCG所在的平面图如左下角简图),同理,,则,所以,那么,亦即,设,那么,则,而,所以,则,所以,所以,又,所以,(2),且,所以:(3),由(2)×(3)得到:代入到(1)得到:三棱锥的体积就是.【考点】1.简单几何体体积;2.三角形相似比的应用.【方法点晴】此题主要考查三角形相似比在求简单几何体体积中应用方面的内容,属于中高档题.根据题意可借助正三棱锥(或正四面体)模型来帮助思考,值得注意的是所求三棱锥体积的高与原三棱锥的高往往是不在同一直线上的,当然这两个高的比值也是解决此问题的关键点,需要借助这两高与垂线之间的比值进行转换,在此过程中多次使用了相似三角形的相似比,从而问题可得解决.13.如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.【答案】(1)见解析;(2)450(3)【解析】(1)要证明BD⊥平面PAC,只需证BD垂直于平面PAC两条相交直线即可,由ABCD为正方形,可得BD⊥AC,易得PA⊥平面ABCD,可得BD⊥PA ,结论得证.(2)由PA⊥面ABCD可得AD为PD在平面ABCD的射影,又CD⊥AD,由三垂线定理的逆定理可得 CD⊥PD,可得∠PDA为二面角P—CD—B的平面角.易得∠PDA=450.(3)由,求得点C到平面PBD的距离试题解析:(1)在Rt△BAD中,AD=2,BD=,∴AB=2,ABCD为正方形,因此BD⊥AC.∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA .又∵PA∩AC=A∴BD⊥平面PAC.(2)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CD⊥AD,∴CD⊥PD,知∠PDA为二面角P—CD—B的平面角.又∵PA=AD,∴∠PDA=450.(3)∵PA=AB=AD=2,∴PB=PD=BD=,设C到面PBD的距离为d,由,有,即,得【考点】线面垂直,二面角及点到平面的距离.【方法点睛】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求.两种方法各有利弊,在解题中可根据情况灵活选用.14.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)详见其解析;(2)存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据线面垂直的判定定理和性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标,再由三点共线即可求出点坐标,最后计算并验证其是否为0即可得出所证的答案;(2)首先设出面的法向量为,然后由即可得出,又因为面的法向量,再由公式即可得出的值,进而得出点的坐标,即可得出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;…6分(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、线线垂直的判定定理;2、空间向量法求解立体几何问题.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______________.【答案】【解析】设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.【考点】1、圆锥侧面展开图面积;2、圆锥轴截面性质.16.已知一个高度不限的直三棱柱,,点是侧棱上一点,过作平面截三棱柱得截面,给出下列结论:①是直角三角形;②是等边三角形;③四面体为在一个顶点处的三条棱两两垂直的四面体.其中有不可能成立的结论的个数是()A.0B.1C.2D.3【答案】B【解析】本题考察在空间点线面的位置关系,在直三棱柱中,数形结合,作图求解,①和②找出一个例子即可证明其存在性,③需分类讨论,利用直三棱柱的性质以及底面三边长AB=4,BC=5,CA=6条件判断.如图,做直三棱柱ABC-A1B1C1,AB=4,BC=5,CA=6,(1)不妨取AD=6,AE=10,DE=8,则△ADE是直角三角形,①可能成立;(2)不妨令AD=AE=DE=a(a>6),则△ADE是等边三角形,②可能成立;(3)假设四面体APDE为在一个顶点处的三条棱两两垂直的四面体,当A为直角顶点时,在直三棱柱ABC-A1B1C1中,PA⊥底面ABC,则 E,D分别与C,B重合,此时,∠EAD不是直角,与假设矛盾,假设不成立,当P为直角顶点时,可得PD∥AB,PE∥AC,由等角定理知则∠EPD不可能是直角,与假设矛盾,假设不成立,当E或D点为直角顶点时,不妨选E为直角顶点,则DE⊥EP,DE⊥EA,EP∩EA═A,EP⊂平面,EA⊂平面,则平面与平面垂直,则直三棱柱中,可证∠ACB为二面角的平面角,∠ACB═90°,与题意矛盾,假设不成立.综上③错误.故选:C.【考点】命题的真假判断17.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.18.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.19.在直三棱柱中,,,则直线与平面所成角的正弦值为()A.B.C.D.【答案】C【解析】在直三棱柱中,,可以证得,因此直线与平面所成角为,在中,,因此【考点】直线与平面所成的角;20.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱锥组成的,其直观图如下:所以该几何体的体积为:.故选A.【考点】1.三视图;2.几何体的体积.21.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线()A.垂直B.异面C.平行D.相交【答案】A【解析】由题意得可以分两种情况讨论:①当直尺所在直线与地面垂直时,则地面上的所有直线都与直尺垂直,则底面上存在直线与直尺所在直线垂直;②当直尺所在直线若与地面不垂直时,则直尺所在的直线必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,则得到地面上总有直线与直尺所在的直线垂直.∴教室内有一直尺,无论怎样放置,在地面总有这样的直线与直尺所在直线垂直. 【考点】空间中直线与直线之间的位置关系22. (2015秋•淮南期末)已知正方体的棱长为1,则正方体的外接球的体积为 . 【答案】.【解析】正方体的外接球的直径是正方体的体对角线,由此能求出正方体的外接球的体积. 解:∵正方体棱长为1, ∴正方体的外接球的半径R=, ∴正方体的外接球的体积V=()3=.故答案为:.【考点】球的体积和表面积.23. 在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于 ( ) A .B .C .D .【答案】B 【解析】取的中点,连接,,那么异面直线所成角就是,根据勾股定理,,,所以,故选B .【考点】异面直线所成角24. 如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1. 【答案】见解析【解析】(1)利用ABC ﹣A 1B 1C 1为直三棱柱,证明CC 1⊥AC ,利用AB 2=AC 2+BC 2,说明AC ⊥CB ,证明AC ⊥平面C 1CB 1B ,推出AC ⊥BC 1.(2)设CB 1∩BC 1=E ,说明E 为C 1B 的中点,说明AC 1∥DE ,然后证明AC 1∥平面CDB 1. 解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱, ∴CC 1⊥平面ABC ,AC ⊂平面ABC , ∴CC 1⊥AC∵AC=3,BC=4,AB=5, ∴AB 2=AC 2+BC 2,∴AC ⊥CB 又C 1C∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B , ∴AC ⊥BC 1(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点又D为AB中点,∴AC1∥DEDE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.25.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.26.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.【答案】,【解析】由两两垂直,分别以所在的直线为轴建立如图所示的空间直角坐标系,设,则,所以,其中平面的一个法向量为,所以与平面所成角的正弦值为,所以;又向量与所成角的余弦值为,又,所以异面直线与所成角的余弦值是.【考点】空间向量的运算及空间角的求解.27.平行六面体中,底面是边长为1的正方形,侧棱的长为2,且,则的长为 .【答案】【解析】由题意得,在平行六面体中,因为,,,且,所以,所以.【考点】空间向量的运算.28.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A.B.C.D.【答案】A【解析】试题分析:设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可.解:设长方体的高为1,连接B1A、B1C、AC∵B1C和C1D与底面所成的角分别为600和450,∴∠B1CB=60°,∠C1DC=45°∴C1D=,B1C=,BC=,CD=1则AC=∵C1D∥B1A∴∠AB1C为异面直线B1C和DC1所成角由余弦定理可得cos∠AB1C=故选A【考点】异面直线及其所成的角.29.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 .【答案】【解析】设圆锥的底面半径为,,解得,根据勾股定理,圆锥的高等于,所以圆锥的体积.【考点】旋转体的体积30.已知A、B、C三点不共线,若点M与A、B、C四点共面, 对平面ABC外一点O,给出下列表达式:其中x,y是实数,则【答案】【解析】A、B、C三点不共线,点M与A、B、C四点共面,则对平面ABC外一点O,满足,所以,所以【考点】空间向量的基本定理及其意义31.在正方体中,、分别是、的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建立空间直角坐标系,解立体几何高考题立体几何重点、热点:求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等.常用公式: 1、求线段的长度:222z y x AB ++==()()()212212212z z y y x x -+-+-=2、求P 点到平面α的距离:||n PN =,(N 为垂足,M 为斜足,n 为平面α的法向量)3、求直线l 与平面α所成的角:|||||sin |n PM ⋅=θ,(l PM ⊂,α∈M ,n 为α的法向量)4、求两异面直线AB 与CD 的夹角:||||cos CD AB CD AB ⋅=θ5、求二面角的平面角θ:|||||cos |2121n n n n ⋅=θ,( 1n ,2n 为二面角的两个面的法向量)6、求二面角的平面角θ:SS 射影=θcos ,(射影面积法)7、求法向量:①找;②求:设b a , 为平面α内的任意两个向量,)1,,(y x n =为α的法向量,则由方程组⎪⎩⎪⎨⎧=⋅=⋅0n b n a ,可求得法向量n .高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。

而用向量坐标运算的关键是建立一个适当的空间直角坐标系。

一﹑直接建系。

当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。

例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<<a )。

(1)求MN 的长; (2)当a 为何值时,MN 的长最小;(3)当MN 最小时,求面MNA 与面MNB 所成二面角α的大小。

解:(1)以B 为坐标原点,分别以BA ﹑BE ﹑BC 为x ﹑y ﹑z 轴建立如图所示的空间直角坐标系B-xyz ,由CM=BN=a ,M(a 22,0,a 221-),N (a 22,a 22,0) ∴ MN =(0,a 22,122-a ) ∴ MN =22)22()122(a a +- =21)22(2+-a (20<<a )(2)由(1)MN =21)22(2+-a所以,当a=22时,minMN =22, 即M ﹑N 分别移动到AC ﹑BF 的中点时,MN 的长最小,最小值为22。

(3)取MN 的中点P ,连结AP ﹑BP ,因为AM=AN ,BM=BN ,所以AP ⊥MN ,BP ⊥MN ,∠APB 即为二面角α的平面角。

MN 的长最小时M(21,0,21),N (21,21,0)由中点坐标公式P(21,41,41),又A (1,0,0),B (0,0,0) ∴ PA =(21,-41,-41),PB =(-21,-41,-41)∴ cos ∠APB=PB PA =838316116141⋅++-=-31∴ 面MNA 与面MNB 所成二面角α的大小为π-arccos 31例2.(1991年全国高考题)如图,已知ABCD 是边长为4的正方形,E ﹑F 分别是AB ﹑AD 的中点,GC ⊥面ABCD ,且GC=2,求点B 到平面EFG 的距离。

解:建立如图所示的空间直角坐标系C-xyz , 由题意 C (0,0,0),G (0,0,2),E (2,4,0),F (4,2,0),B (0,4,0)∴ GE =(2,4,-2),GF =(4,2,-2),BE =(2,0,0) 设平面EFG 的法向量为n =(x ,y ,z )得{02420224=-+=-+z y x z y x ,令z=1,得x=31,y=31,即n =(31,31,1),GC 在n 方向上的射影的长度为d =BE =1919132++11例3. (2000年二省一市高考题) 在直三棱柱ABC- A 1B 1C 1中CA=CB=1, ∠BCA=900,棱A A 1=2,M ﹑N 分别是A 1B 1﹑A 1 A 的中点。

(1)求BN 的长; (2) 求cos ><11,CB BA ;(3)求证:A 1B ⊥C 1M 解:建立如图所示的空间直角坐标系C-xyz ,则C (0,0,0),B (0,1,0),N (1,0,1),A 1(1,0,2),B 1(0,1,2),C 1(0,0,2),M (21,21,2)(1)BN =(1,-1,1),=3;(2)1CB =(0,1,2),1BA =(1,-1,2) ∴ cos ><11,CB BA=CB BA=5641⋅+-=1030(3)B A 1=(-1, 1,-2),M C 1=(21,21,0)∴ B A 1•M C 1= -1×21+1×21+(-2)×0=0∴ A 1B ⊥C 1M二﹑利用图形中的对称关系建系。

有些图形虽然没有互相垂直且相交于一点的三条直线,但是图形中有一定的对称关系(如:正三棱锥﹑正四棱锥﹑正六棱锥等),我们可以利用图形的对称性建立空间直角坐标系来解题。

例4. (2001年二省一市高考题)如图,以底面边长为2a 的正四棱锥V-ABCD 底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,高OV 为h 。

(1)求cos ><DE BE ,; (2)记面α-VC-β的平面角,求∠BED 。

解:(1)由题意B (a ,a ,0),D (-a ,-a ,0),E (-2a ,2a ,2h)∴ BE =(-23a ,-2a ,2h),DE =(2a ,23a ,2h)cos ><DE BE ,=DE BE=425425443432222222ha h a h a a +⋅++-- =2222106ha h a ++- (2) ∵ V (0,0,h ),C (-a ,a ,0)∴VC =(-a ,a ,- h )又 ∠BED 是二面角α-VC-β的平面角 ∴ BE ⊥VC ,DE ⊥VC即 BE ·VC =232a -22a -22h = a 2-22h =0, a 2=22h代入 cos ><DE BE ,=2222106h a h a ++-=-31即∠BED=π-arccos 31三﹑利用面面垂直的性质建系。

有些图形没有互相垂直且相交于一点的三条直线,但是有两个互相垂直的平面,我们可以利用面面垂直的性质定理,作出互相垂直且相交于一点的三条直线,建立空间直角坐标系。

例5. (2000年全国高考题) 如图,正三棱柱ABC- A 1B 1C 1的底面边长为a ,侧棱长为2a 。

(1) 建立适当的坐标系,并写出A ﹑B ﹑A 1﹑C 1的坐标; (2) 求 AC 1与侧面AB B 1A 1所成的角。

解:(1)如图,以点A 为坐标原点,以AB 所在直线为y 轴,以AA 1所在直线为z 轴,以经过原点且与ABB 1A 1垂直的直线为x 轴,建立如图所示的空间直角坐标系。

由已知得:A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-a 23,2a,2a )(2)取A 1B 1的中点M ,于是有M (0,2a,2a ),连AM ﹑M C 1有 1MC =(-a 23,0,0),且AB =(0,a ,0),1AA =(0,0,2a ) 由于1MC ·AB =0,1MC ·1AA =0,故M C 1⊥平面AB B 1A 1 。

∴ A C 1与AM 所成的角就是AC 1与侧面AB B 1A 1所成的角。

∵ 1AC =(-a 23,2a ,2a ),AM =(0,2a ,2a ), ∴ 1AC ·AM =0+42a +2a 2=492a ,1AC =2222443a a a ++=3a ,AM =2224a a +=23a∴ cos ><AM AC ,1=aa a 233492⋅=23 ∴ 1AC 与AM 所成的角,即AC 1与侧面AB B 1A 1所成的角为30o 。

例6. (2002年上海高考题) 如图,三棱柱OAB- O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1O B=600, ∠AOB=900,且OB= OO 1=2,OA=3。

求:(1)二面角O 1–AB –O 的大小;(2)异面直线A 1B 与A O 1所成角的大小。

(结果用反三角函数值表示) 解:(1)如图,取OB 的中点D ,连接O 1D ,则O 1D ⊥OB∵ 平面OBB 1O 1⊥平面OAB , ∴ O 1D ⊥面OAB ,过D 作AB 的垂线,垂足为E ,连结∠DE O 1为二面角O 1–AB-O 的平面角。

由题设得O 1D=3sin ∠OBA=22OB OA OA +=721 ∴ DE=DBsin ∠OBA=721 ∵ 在Rt ΔO 1DE 中,tan ∠DE O 1=7∴ ∠DE O 1=arctan 7,即二面角O 1–AB –O 的大小为arctan 7。

(2)以O 为原点,分别以OA ﹑OB 所在直线为x ﹑y 轴,过点O 且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系。

则O (0,0,0),O 1(0,1,3), A (3,0,0), A 1(3,1,3), B (0,2,0),则B A 1=(-3,1,-3),A O 1=(3,-1,-3) cos 〈B A1,A O 1〉A O B A =77313+--=-71故异面直线A 1B 与A O 1所成角的大小arccos 71。

姓 名: 张传法地 址: 山东临沂市罗庄区一中 (276017) E-mail : ************************(注:本文发表于《数学通讯》2004年第6期)。

相关文档
最新文档