高中数学必修二《空间直角坐标系》优秀教学设计
人教版高中必修2(B版)2.4空间直角坐标系课程设计 (2)

人教版高中必修2(B版)2.4空间直角坐标系课程设计一、课程背景《人教版高中必修2(B版)》是我国高中数学教材的必修部分,其中第四章是空间直角坐标系。
学生在学习此章节时,需要对三维空间直角坐标系的基本概念、性质、坐标变换等内容进行深入学习,对于直线、平面、空间图形等概念也需要进行掌握和理解。
二、课程设计目标1.学生能够掌握直线和平面的方程和直线、平面交点的求解方法。
2.学生能够熟练掌握空间坐标系的转化,能够用不同的坐标系表示同一空间点。
3.学生能够利用向量的方法求解空间图形的相关问题。
4.学生能够通过课程学习加深自己对直角坐标系的理解和认识,提升自己的数学素养。
三、课程设计内容1. 直线和平面的方程1.1 直线方程的一般式和点向式通过引入向量,介绍直线的一般式和点向式的求解方法。
直线的一般式:A*x + B*y + C*z + D = 0直线的点向式:r = a + λ*b1.2 平面方程的一般式和点法式通过引入向量,介绍平面的一般式和点法式的求解方法。
平面的一般式:A*x + B*y + C*z + D = 0平面的点法式:r·n + d = 02. 直线和平面的交点介绍直线和平面求交点的方法,以及交点坐标的计算方法。
3. 空间坐标系的转化介绍同一空间点在不同坐标系下的表示方法,以及坐标系转化的方法。
4. 向量运算介绍空间向量的各种运算,包括向量加减、数量积、叉积等。
5. 空间图形的相关问题介绍利用向量的方法求解空间图形的相关问题,包括距离、角度、重心等问题。
四、课程设计实施方案1. 课前准备1.教师准备教案,并将课件和必要的习题提前准备好。
2.学生预习教材,预先了解本节课的基本概念和属性。
2. 课堂教学1.由教师介绍本堂课的主要内容和目标,并进行知识点讲解。
2.教师将知识点贯穿在实例教学中,并让学生跟随教师完成题目。
3.教师组织学生小组互助练习,加强学生的互动和合作。
4.教师进行课后作业布置和解答,巩固学生的课堂学习成果。
《空间直角坐标系》示范课教学设计【高中数学】

环节一空间直角坐标系【引入新课】思考:在平面向量中,我们通过平面直角坐标系建立了向量的坐标与点的坐标的一一对应关系,从而把平面向量的运算化归为数的运算.类似地,为了把空间向量的运算化归为数的运算,能否利用空间向量基本定理和空间的单位正交基底,建立空间直角坐标系,进而建立空间向量的坐标与空间点的坐标的一一对应呢?【探究新知】为了研究这个问题,我们需要弄清楚:问题1:类比平面直角坐标系,你能猜想如何构建空间直角坐标系吗?追问1:平面直角坐标系包含哪些要素?类比到空间直角坐标系应该有哪些要素?它们需要满足什么条件?答案:追问2:利用单位正交基底概念,我们可以如下这样理解平面直角坐标系. 类比到空间,你能否给出空间直角坐标系的定义呢?答案:空间直角坐标系定义:在空间选定一点O和一个单位正交基底{i, j, }k. 以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴. 这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面,它们把空间分成八个部分.追问3:空间直角坐标系如何画呢?答案:先回想平面直角坐标系Oxy 的画法:在平面内画两条与单位正交基底向量i ,j 方向相同的数轴x 轴和y 轴,它们互相垂直、原点重合.与画平面直角坐标系相比,画空间直角坐标系只是多画一个与x 轴、y 轴都垂直的z 轴而已,所以我们不妨借鉴在立体几何中学习的斜二测画法,在画空间直角坐标系Oxyz 时,让x 轴与y 轴所成的角为135︒(或45︒),即135xOy ︒∠=(或45︒),画z 轴与y 轴垂直,即90yOz ︒∠=.在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.问题2: 在平面直角坐标系中,每一个点和向量都可以用一对有序实数(即它的坐标)表示,对空间直角坐标系中的每一个点和向量,是否也有类似的表示呢?追问1:空间中任意一点A 与哪个向量的坐标相同?答案:在平面直角坐标系中,点A 的位置由向量OA 唯一确定,类比到空间直角坐标系中,我们可知点A 的坐标与从原点出发的OA 坐标相同. 由此,确定空间直角坐标系中点的坐标,可以从确定与之对应的,以原点为起点,该点为终点的向量的坐标入手.追问2:在空间直角坐标系中如何定义OA 的坐标呢? 答案:平面直角坐标系内空间直角坐标系内取与x 轴、y 轴方向相同的两个单位向量,i ,j 为基底,由平面向量基本定理,有且只有一对实数x ,y 使得取与x 轴、y 轴、z 轴方向相同的两个单位向量,i ,j ,k 为基底,由空间向量基本定理,存在唯一的有序实数组使得OA x y =+i j k +z ,我们把有序实数组x y =+a i j .我们把有序数对(),x y 叫做a 的坐标,记作(),x y =a .(),,x y z 叫做OA 的坐标,记作(),,OA x y z =.所以,在单位正交基底{i ,j ,}k 下与向量OA 对应的有序实数组(x ,y ,)z ,叫做点A 在空间直角坐标系中的坐标,记做A (x ,y ,)z ,其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.追问3:那么对于给定的向量a 又该如何定义它的坐标呢? 答案:因为空间向量是自由的,我们在空间直角坐标系Oxyz 中可以作OA =a . 由空间向量基本定理,存在唯一的有序实数组(x ,y ,)z ,使x y z =++a i j k ,有序实数组(x ,y ,)z 叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记为(x =a ,y ,)z这样,在空间直角坐标系中,空间中的点和向量都可以用三个有序实数表示. 问题3: 在空间直角坐标系Oxyz 中,对空间任意一点A ,或任意一个向量OA ,你能借助几何直观确定它们的坐标(),,x y z 吗?答案:过点A 分别作垂直于x 轴、y 轴和z 轴的平面,依次交x 轴、y 轴和z 轴于点B ,C 和D . 可以证明OA 在x 轴、y 轴、z 轴上的投影向量分别为OB ,OC ,OD ,由向量加法的意义可知,OE OB OC +=,OA OE EA OE OD ++==,即OA OB OC OD ++=. 设点B C D ,和在x 轴、y 轴和z 轴上的坐标分别是x ,y 和z ,那么OA x y z =++i j k ,即点A 或者向量OA 的坐标就是(x ,y ,)z .k yzxoi A (x ,y ,z )a思路小结:目前,我们有哪些方法可以用于确定空间中一个点A 或任意一个向量a 的坐标呢?【知识应用】例1 如图,在长方体OABC D A B C ''''-中,3OA =,4OC =,2OD '=,以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为单位正交基底,建立如图所示的空间直角坐标系Oxyz . (1)写出D ',C ,A ',B '四点的坐标; (2)写出向量A B '',BB ',A C '',AC '的坐标.追问1:题目条件中的13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为什么是单位正交基底?答案:由图可知,OA 在x 轴上,且3OA =,所以1=13OA .同理,OC 在y 轴上,OD '在z 轴上,由4OC =,2OD '=知,1=14OC ,1=12OD ',所以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭是单位正交基底,等同于我们前面用到的{i ,j ,}k .追问2:求空间点的坐标我们有哪些基本解题思路?答案:有两种选择,一种是转化为求与该点对应的,从原点出发,指向该点的空间向量的坐标. 而后依据空间向量基本定理,把空间向量用单位正交基底分解,从而求出坐标;另一种是应用几何直观,找出空间点在x 轴、y 轴、z 轴上的射影,进而得到坐标.思路小结:由几何直观可知,确定空间中一个点的坐标,我们需要先找出该点在各个坐标轴上的射影,再根据空间向量基本定理,得到点的坐标. 所以可以总结步骤如下:(1)过空间点分别作x 轴、y 轴和z 轴的垂面;点A 的坐标给定的向量a 的坐标OA 的坐标应用空间向量基本定理确定坐标根据几何直观确定OA 在各坐标轴上的投影向量,从而求得坐标(2)确定空间点在坐标轴上的射影的坐标; (3)得到空间点的坐标. 解:(1)()()()()0,0,2,0,4,0,3,0,2,3,4,2D C A B '''.(2)()0400,4,0,A B OC ''=++=i j k=()0020,0,2,B B OD ''-=+-=-=i j k()3403,4,0,A C A D D C OA+OC =''''''=+=-=-++-i j k()3423,4,2AC AC CC OA OC CC OA OC OD =''''=+=-++=-++=-++-i j k .问题4:回顾本节课的学习过程,我们是如何得到空间点和空间向量的坐标的? 答案:(1)类比平面直角坐标系,构建了空间直角坐标系.(2)根据空间向量基本定理,在单位正交基底下,得到空间直角坐标系中的每一个点和向量都存在唯一的有序实数组(x ,y ,)z 与之对应,从而引出空间点和空间向量的坐标表示.问题5:如何求空间点或向量的坐标呢?答案:(1)根据空间向量基本定理,将点或向量用单位正交基底{i ,j ,}k 来表示,它们的系数就是点或向量的坐标.(2)由几何直观,过点作垂直于x 轴、y 轴和z 轴的平面,依次确定点对应的向量在各个轴上的投影向量,根据投影向量的坐标得到点或向量的坐标.第二课时 空间向量运算的坐标表示环节一:引入新课本章前半部分的主要内容: 我国著名数学家吴文俊先生曾指出:“数学是研究现实世界中数量关系和空间形式的科学.简单地说,就是研究数和形的科学.”中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”.在前面的学习中,我们已经掌握了空间直角坐标系的概念,进一步通过正交分解的方法将空间向量用唯一的有序实组表示出来,引入坐标后可使向量中形的运算转化成数的运算.今天我们就循着数学家的足迹,大胆类比、猜想,把向量坐标运算从平面拓展到空间,完成一次从二维到三维,从形到数的跨越.环节二:探究新知为了研究这个问题,我们需要弄清楚:问题1: 有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示并给出证明吗?追问1: 平面向量的运算都有哪些?如何对平面向量进行坐标运算? 答案:加法,减法,数乘,数量积.追问2: 你能否类比平面向量运算的坐标表示给出空间向量运算坐标表示的猜想? 答案:设空间向量 123123(,,),(,,),a a a b b b ==a b 猜()112233,,,a b a b a b +=+++a b()112233,,,a b a b a b -=a b ---()123,,,a a a =a 112233.a b a b a b ⋅=++a b追问3:你能否对空间向量运算的坐标表示进行证明呢?答案: 结合空间向量坐标的定义,我们以数量积运算的坐标表示为例进行证明: 第一步:由空间向量基本定理,设{},,i j k 为空间的一个单位正交基底,由向量a 的坐标为123(,,)a a a ,则可将向量a 唯一分解为123a a a =++a i j k , 同理可将向量b 表示为123b b b =++b i j k . 第二步: ()()123123a a a b b b ⋅=++⋅++a b i j k i j k111213212223313233a b a b a b a b a b a b a b a b a b =⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅i i i j i k j i j j j k k i k j k k利用向量数量积的分配律以及======⋅⋅⋅1,⋅⋅⋅0,i i j j k k i j j k k i 得112233.a b a b a b ⋅=++a b其他运算的坐标表示可以类似证明,请同学们课下自主完成.由上述结论可知,空间向量运算的坐标表示与平面向量运算的坐标表示是完全一致的. 类似地,我们还可以得到:一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.即:设 123123(,,),(,,),A a a a B b b b 则向量()112233,,AB b a b a b a =---.问题2: 在学习平面向量运算的过程中,我们了解到向量可以帮助我们解决平面几何中的特殊位置关系与几何度量等问题,这些重要的性质和结论在空间向量中仍然成立吗?追问1: 如何用平面向量的坐标运算刻画平面向量的平行和垂直? 答案:设 1212(,),(,),a a b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ属于全体实数,用坐标表示为1212(,)(,),a a b b = 得到方程组1122,,a b a b =⎧⎨=⎩ 消去λ,得到平面向量平行充要条件的坐标表示:a 1b 2−a 2b 1=0.类比平面向量平行的坐标表示,我们可以得到:设空间向量123123(,,),(,,),a a a b b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ 属于全体实数.可以用坐标表示为123123(,,)(,,)a a a b b b =,得到方程组()112233,,.a b a b a b =⎧⎪=∈⎨⎪=⎩R ,这就是空间向量平行的充要条件的坐标表示.追问2: 这个充要条件能否表示为312123a a ab b b ==? 答案: 显然,空间向量平行的充要条件不等价于312123a a ab b b ==,因为≠0b 的含义是b 的坐标分量123,,b b b 至少有一个不为零,而非每一个坐标分量都不为零.例如,当b 与坐标平面Oxy 平行时,30b =此时33a b 无意义.因此只有在b 与三个坐标平面均不平行,即123,,b b b 均不为零时才能有312123a a ab b b ==⇔∥a b .特殊地,当=0b 时,(0,0,0)=b .此时b 与任意向量都平行.追问3: 除了上述对空间向量位置关系的研究,类比平面向量运算的应用,能否总结出空间向量的度量关系,如空间向量长度和夹角的坐标表示?答案: 设 123123(,,),(,,),a a a b b b ==a b222123a a a =⋅=++a a a . 112233222222123123cos ,a b a b a b a a a b b b ++⋅==++++a ba b a b.设1111()P x ,y ,z , 2222()Px ,y ,z ,则()()()2221212212121=PP PP x x +y y +z z ---=追问4:得到上面的猜想后,同学们能利用空间向量运算的坐标表示证明空间两点间的距离公式吗?答案:首先,建立空间直角坐标系Oxyz ,设1P , 2P 是空间中任意两点,则向量()1221212121.PP OP OP x x ,y y ,z z ---=-= 于是121212PP PP PP ⋅=,带入坐标,()()()22212212121PP x x +y y +z z ---=.所以()()()2221212212121=PP PP x x +y y +z z ---=.这就是空间两点间的距离公式.因此,空间向量123(,,)a a a =a 的模可以理解为点123(,,)a a a 到原点的距离,这是空间两点间距离公式的特殊化.环节三:知识应用例1 如图,在空间直角坐标系Oxyz 中,正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB , 11D B 的中点.(1)求证1EF DA ⊥;(2)求AE 与1CD 所成角的余弦值.追问1: 两条直线的垂直关系可以用向量刻画吗?答案:要证明1EF DA ⊥,只需证明1EF DA ⊥,在前面的学习中,我们已经得到了两个向量垂直的充要条件为数量积为零,即10.EF DA =通过本节课学习的内容,可以将空间向量垂直的充要条件用坐标形式表达,因此在应用向量法求解本题时,我们需要利用题目中的空间直角坐标系,从而建立立体图形与空间向量的联系.追问2: 向量EF 的坐标怎么求?答案: 因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1).EF =-=--分析:因为空间向量的数量积和夹角有关,此我们经常以空间向量的数量积为工具,解决立体几何中与夹角相关的问题,把空间两条直线所成角问题转化为两条直线对应向量的夹角问题.追问3: 两条直线夹角与两向量夹角有区别吗?答案:这二者是有区别的,它们的取值范围不同.具体来说, 两条直线夹角的范围是0,2π⎡⎤⎢⎥⎣⎦,而向量夹角的范围是[]0,π.当AE 与1CD 所成的角为锐角或直角时,直线AE 与1CD 所成的角和向量的夹角相等. 当AE 与1CD 所成的角为钝角时,直线AE 与1CD 所成的角为向量夹角的补角.解:(1)因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1)EF =-=--. 得到向量EF 的坐标后,同理,又因为点()()12,0,2,0,0,0A D ,所以()12,0,2DA =. 所以()()11,1,12,0,22020.EF DA =--=-++= 所以1EF DA ⊥,即1EF DA ⊥. (2)因为()()()()12,0,0,0,2,0,2,2,1,0,0,2A C E D ,所以()()()2,2,12,0,00,2,1AE =-=,()()()10,0,20,2,00,2,2CD =-=-, 15,=22AE DF =.所以()10022122AE CD =⨯+⨯-+⨯=-.所以111cos ,AE CD AE CD AE CD ===所以, AE 与1CD 所成角为向量AE ,向量1CD 夹角的补角.所以, AE 与1CD 方法提炼:在空间直角坐标系中,先写出相关点、相关向量的坐标,把几何问题代数化,然后再利用向量的坐标运算解决位置关系与几何度量等问题,其中要关注空间两条直线所成角与对应向量夹角的取值范围是不同的.需要注意的是,有些问题往往需要我们观察几何体的结构特征,找寻三条两两垂直的线段,先建立空间直角坐标系,再应用向量运算解决几何问题.问题3:回顾本节课对于空间向量坐标运算的探究过程,你都学到了什么?答案:1. 类比平面向量研究空间向量运算的坐标表示 (1)空间向量运算的坐标表示空间向量加法减法的坐标运算只需将其相应的坐标相加或相减; 空间向量数乘的坐标运算等于用这个实数λ乘原来向量的相应坐标; 空间向量数量积的坐标运算是其对应坐标乘积的和. (2)空间向量运算坐标表示的应用我们得到了空间向量平行和垂直这两种特殊位置关系的坐标表示同时,我们证明了空间向量长度和夹角的公式,这些公式可以帮助我们解决立体几何中的度量问题2.关注空间向量与立体几何知识间的联系空间向量体系的建立需要立体几何的基本知识,反过来,立体几何中的问题可以用向量方法解决. 因此,我们说空间向量与立体几何有着天然的联系.空间向量为我们解决立体几何问题提供了新的工具.一般地,利用空间向量解决立体几何问题,有如下的“三步曲”,步骤一:建立恰当的空间直角坐标系,求出相关点、相关向量的坐标;步骤二:进行空间向量的运算,研究空间图形之间的平行、垂直等位置关系以及距离、夹角等度量问题;步骤三:求出答案后,翻译成相应的几何结论,得到相应立体几何问题的解决.课时检测1. (3,2,5),(1,5,1),--a =b =求: (1)+a b ; (2)6a ; (3)ab .2. (2,1,3),(4,2,),x --a =b =且⊥a b .求x 的值.3. 如图,在棱长为1的正方体1111ABCD A B C D -中,M 为1BC 的中点, 1E ,1F 分别在棱11A B ,11C D 上,111114B E A B =,111114D F C D =. (1)求AM 的长.(2)求1BE 与1DF 所成角的余弦值.答案:1. (1) ()2,7,4+-a b =;(2)()618,12,30-a =;(3)2a b =;2. 因为a ⊥b ,所以a ·b =0,即-8-2+3x =0,解得x =103;3. (1)AM =(2) 1517.。
人教A版高中数学必修二新课标优秀教案示范教案空间直角坐标系

4.3 空间直角坐标系4.3.1 空间直角坐标系整体设计教学分析学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习《空间直角坐标系》有了一定的基础.这对于本节内容的学习是很有帮助的.但部分同学仍然会在空间思维与数形结合方面存在困惑.本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础.通过激发学生学习的求知欲望,使学生主动参与教学实践活动.创设学习情境,营造氛围,精心设计问题,让学生在整个学习过程中经常有自我展示的机会,并有经常性的成功体验,增强学生的学习信心,从学生已有的知识和生活经验出发,让学生经历知识的形成过程.通过阅读教材,并结合空间坐标系模型,模仿例题,解决实际问题.三维目标1.掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力.2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.重点难点教学重点:在空间直角坐标系中确定点的坐标.教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用.课时安排1课时教学过程导入新课思路1.大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度是如此的快,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车,汽车要低得多,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度,还要指出航线距离地面的高度.为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系.思路2.我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数(x,y)表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系.推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O—xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx平面.由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图1图1表示的空间直角坐标系也可以用右手来确定.用右手握住z轴,当右手的四个手指从x轴正向以90°的角度转向y轴的正向时,大拇指的指向就是z轴的正向.我们称这种坐标系为右手直角坐标系.如无特别说明,我们课本上建立的坐标系都是右手直角坐标系.注意:在平面上画空间直角坐标系O—xyz时,一般使∠xOy=135°,∠xOy=90°.即用斜二测画法画立体图,这里显然要注意在y轴和z轴上的都取原来的长度,而在x轴上的长度取原来长度的一半.同学们往往把在x轴上的长度取原来的长度,这就不符和斜二测画法的约定,直观性差.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M就可以用坐标来表示了.已知M为空间一点.过点M作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴和z轴的交点分别为P、Q、R,这三点在x轴、y轴和z轴上的坐标分别为x,y,z.于是空间的一点M就唯一确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y,z为点M的横坐标.纵坐标和竖坐标.坐标为x,y,z的点M通常记为M(x,y,z).图2反过来,一个有序数组x,y,z,我们在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴、y轴和z轴的垂直平面.这三个垂直平面的交点M即为以有序数组x,y,z为坐标的点.数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标、纵坐标和竖坐标.(如图2所示)坐标为x,y,z的点M通常记为M(x,y,z).我们通过这样的方法在空间直角坐标系内建立了空间的点M和有序数组x,y,z之间的一一对应关系.注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;xOy面上的点,z=0;如果点M在x轴上,则y=z=0;如果点M在y轴上,则x=z=0;如果点M在z轴上,则x=y=0;如果M是原点,则x=y=z=0.空间点的位置可以由空间直角坐标系中的三个坐标唯一确定,因此,常称我们生活的空间为“三度空间或三维空间”.事实上,我们的生活空间应该是四度空间,应加上时间变量t.即(x,y,z,t),它表示在时刻t所处的空间位置是(x,y,z).应用示例思路1例1 如图3,长方体OABC—D′A′B′C′中,|OA|=3,|OC|=4,|OD′|=2,写出D′,C,A′,B′四点的坐标.图3活动:学生阅读题目,对照刚学的知识,先思考,再讨论交流,教师适时指导,要写出点的坐标,首先要确定点的位置,再根据各自坐标的含义和特点写出.D′在z轴上,因此它的横纵坐标都为0,C在y轴上,因此它的横竖坐标都为0,A′为在zOx面上的点,y=0;B′不在坐标面上,三个坐标都要求.解:D′在z轴上,而|OD′|=2,因此它的竖坐标为2,横纵坐标都为0,因此D′的坐标是(0,0,2).同理C 的坐标为(0,4,0).A′在xOz平面上,纵坐标为0,A′的横坐标就是|OA|=3,A′的竖坐标就是|OD′|=2,所以A′的坐标就是(3,0,2).点B′在xOy平面上的射影是点B,因此它的横坐标x与纵坐标y同点B的横坐标x与纵坐标y相同,在xOy平面上,点B的横坐标x=3,纵坐标y=4;点B′在z轴上的射影是点D′,它的竖坐标与D′的竖坐标相同,点D′的竖坐标z=2,所以点B′的坐标是(3,4,2). 点评:能准确地确定空间任意一点的直角坐标是利用空间直角坐标系的基础,一定掌握如下方法,过点M作三个平面分别垂直于x轴、y轴和z轴,确定x,y和z,同时掌握一些特殊点的坐标的表示特征.例2 讲解课本例2.活动:学生阅读,思考与例1的不同,教师引导学生考虑解题的方法,图中没有坐标系,这就给我们解题带来了难度,同时也给我们的思维提供了空间,如何建立空间直角坐标系才能使问题变得更简单?一般来说,以特殊点为原点,我们所求的点在坐标轴上或在坐标平面上的多为基本原则建立空间直角坐标系,这里我们以上底面为xOy 平面,其他不变,来看这15个点的坐标. 解:把图中的钠原子分成上、中、下三层,下层的钠原子全部在xOy 平面上,因此其竖坐标全部是0,所以这五个钠原子所在位置的坐标分别为(0,0,0)、(1,0,0)、(1,1,0)、(0,1,0)、(21,21,0);中层的钠原子全部在与xOy 平行的平面上,与z 轴交点的竖坐标是21,所以这四个钠原子所在位置的坐标分别为(21,0,21)、(1,21,21)、(21,1,21)、(0,21,21);上层的钠原子全部在与xOy 平行的平面上,与z 轴交点的竖坐标是1,所以这五个钠原子所在位置的坐标分别为(0,0,1)、(1,0,1)、(1,1,1)、(0,1,1)、(21,21,1). 思考:如果把原点取在中间的点(上述两点的中点氯原子)上,以中层面作为xOy 平面,结果会怎样呢?解:把图中的钠原子分成上、中、下三层,中层的钠原子全部在xOy 平面上,因此其竖坐标全部是0,所以这四个钠原子所在位置的坐标分别为(21,0,0)、(1,21,0)、(21,1,0)、(0,21,0);上层的钠原子全部在与xOy 平行的平面上,与轴交点的竖坐标是21,所以这五个钠原子所在位置的坐标分别为(0,0, 21)、(0,1, 21)、(1,0, 21)、(1,1, 21)、(21,21,21);下层的钠原子全部在与xOy 平行的平面上,与轴交点的竖坐标是-21,所以这五个钠原子所在位置的坐标分别为(0,0,-21)、(1,0,-21)、(1,1,-21)、(0,1,-21)、(21,21,-21). 点评:建立坐标系是解题的关键,坐标系建立的不同,点的坐标也不同,但点的相对位置是不变的,坐标系的不同也会引起解题过程的难易程度不同.因此解题时要慎重建立空间直角坐标系.思路2例1 如图4,已知点P′在x 轴正半轴上,|OP′|=2,PP′在xOz 平面上,且垂直于x 轴,|PP′|=1,求点P′和P 的坐标.图4解:显然,P′在x 轴上,它的坐标为(2,0,0).若点P 在xOy 平面上方,则点P 的坐标为(2,0,1).若点P 在xOy 平面下方,则点P 的坐标为(2,0,-1).点评:注意点P 有两种可能的位置情况,不要漏解.例2 如图5,在正方体ABCD —A 1B 1C 1D 1中,E,F 分别是BB 1和D 1B 1的中点,棱长为1,求E,F 点的坐标.图5解:方法一:从图中可以看出E 点在xOy 平面上的射影为B,而B 点的坐标为(1,1,0),E 点的竖坐标为21,所以E 点的坐标为(1,1,21);F 点在xOy 平面上的射影为G ,而G 点的坐标为(21,21,0),F 点的竖坐标为1,所以F 点的坐标为(21,21,1). 方法二:从图中条件可以得到B 1(1,1,1),D 1(0,0,1),B(1,1,0).E 为BB 1的中点,F 为D 1B 1的中点,由中点坐标公式得E 点的坐标为(201,211,211+++)=(1,1,21),F 点的坐标为(211,201,201+++)=(21,21,1). 点评:(1)平面上的中点坐标公式可以推广到空间,即设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则AB 的中点P(221x x +,221y y +,221z z +); (2)熟记坐标轴上的点的坐标和坐标平面上的点的坐标表示的特征.变式训练1.在上题中求B 1(1,1,1)点关于平面xoy 对称的点的坐标.解:设所求的点为B 0(x 0,y 0,z 0),由于B 为B 0B 1的中点,所以⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=210,211,211000z y x 解之,得⎪⎩⎪⎨⎧-===1,1,1000z y x .所以B 0(1,1,-1).2.在上题中求B 1(1,1,1)点关于z 轴对称的点的坐标.解:设所求的点为P(x 0,y 0,z 0),由于D 1为PB 1的中点,因为D 1(0,0,1),所以⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=.211,210,210000z y x 解之,得⎪⎩⎪⎨⎧=-=-=.1,1,1000z y x 所以P(-1,-1,1).3.在上题中求B 1(1,1,1)点关于原点D 对称的点的坐标.解:设所求的点为M(x 0,y 0,z 0),由于D 为MB 1的中点,因为D(0,0,0),所以⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=210,210,210000z y x .解之,得⎪⎩⎪⎨⎧-=-=-=.1,1,1000z y x 所以M(-1,-1,-1).知能训练课本本节练习1、2、3.拓展提升1.在空间直角坐标系中的点P(x,y,z)关于①坐标原点;②横轴(x 轴);③纵轴(y 轴);④竖轴(z 轴);⑤xOy 坐标平面;⑥yOz 坐标平面;⑦zOx 坐标平面的对称点的坐标是什么?解:根据平面直角坐标系的点的对称方法结合中点坐标公式可知:点P(x,y,z)关于坐标原点的对称点为P 1(-x,-y,-z);点P(x,y,z)关于横轴(x 轴)的对称点为P 2(x,-y,-z);点P(x,y,z)关于纵轴(y 轴)的对称点为P 3(-x,y,-z);点P(x,y,z)关于竖轴(z 轴)的对称点为P 4(-x,-y,z);点P(x,y,z)关于xOy 坐标平面的对称点为P 5(x,y,-z);点P(x,y,z)关于yOz 坐标平面的对称点为P 6(-x,y,z);点P(x,y,z)关于zOx 坐标平面的对称点为P 7(x,-y,z).点评:其中记忆的方法为:关于谁谁不变,其余的相反.如关于横轴(x 轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标相反.变式训练在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x 轴)的对称点是P 1(a,-b,c);②点P(a,b,c)关于yOz 坐标平面的对称点为P 2(a,-b,-c);③点P(a,b,c)关于纵轴(y 轴)的对称点是P 3(a,-b,c);④点P(a,b,c)关于坐标原点的对称点为P 4(-a,-b,-c).其中正确叙述的个数为( )A.3B.2C.1D.0 分析:①②③错,④对.答案:C课堂小结1.空间直角坐标系的建立.2.空间直角坐标系中点的坐标的确定.3.空间直角坐标系中点的位置的确定.4.中点公式:P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则P 1P 2中点M 的坐标为(221x x +,221y y +,221z z +).5.空间直角坐标系中点的对称点的坐标.作业习题4.3 A组1、2.设计感想通过复习相关内容,为新课的引入和讲解做好铺垫.设置问题,创设情境,引导学生用类比的方法探索新知.由于学生的空间观念还比较薄弱,教学中宜多采用教具演示,尽量使学生能够形象直观地掌握知识内容.本课时可自制空间直角坐标系模型演示,帮助学生理解空间直角坐标系的概念.如果学生先前的学习不是主动的、不是入脑的,那么老师的血汗与成绩就不成比例,更谈不上学生的创新意识.鉴于此,在教学中积极挖掘教学资源,努力创设出一定的教学情景,设计例题思路,与高考联系,吸引学生,引起学生学习的意向,即激发学生的学习动机,达到学生“想学”的目的.为能增强学生学习的目的性,在教学中指明学生所要达到的目标和所学的内容,即让学生知道学到什么程度以及学什么.同时调整教学语言,使之简明、清楚、易听明白,注重一些技巧,如重复、深入浅出、抑扬顿挫等.。
北师大版高中高一数学必修2《空间直角坐标系》教案及教学反思

北师大版高中高一数学必修2《空间直角坐标系》教案及教学反思教案设计教学目标•能够理解一般空间直角坐标系的概念。
•能够掌握三维直角坐标系的表示方法。
•能够在三维直角坐标系中进行点、向量及直线的表示,并理解它们之间的关系。
•能够应用直角坐标系求解在空间中的几何问题。
教学重点•理解三维直角坐标系的表示方法。
•掌握点、向量及直线在三维直角坐标系中的表示方法。
•应用直角坐标系求解空间中的几何问题。
教学难点•向量与点的坐标化。
•空间直线的表示及其性质。
教学过程第一步:导入为了让学生更好地理解三维空间直角坐标系,我将引导学生回顾二维空间直角坐标系,并鼓励学生回忆二维空间中点、向量、直线和平面的定义及相关性质。
随着学生的回忆,我会巧妙引导学生理解三维空间坐标系。
第二步:讲解在此步骤中,我将详细解释三维空间坐标系的定义和相关概念。
让学生理解三维空间坐标系由三个相互垂直的坐标轴构成,学生应该能够掌握三维空间中点、向量及直线的表示方法,并理解它们之间的关系。
第三步:练习为了让学生更好地掌握三维空间坐标系的相关概念和求解能力,我会打出一些简单的练习题,让学生掌握三维空间中的点、向量及直线的表示方法,并熟悉它们之间的关系。
此处我会通过练习题,加深学生的印象,让学生更快地运用到实际中去。
第四步:课堂交流在此步骤之中,我将要求学生根据自己的认知和实际经验,来分享一些解题思路、技巧和心得。
此时我将提供充足的时间给学生进行交流和讨论。
这样能让学生相互交流,发现共同点和不同之处,锻炼学生的思维能力和语言表达能力。
第五步:总结在这一步骤中,我会对本节课所讲授的知识进行总结,并强调课程重点,确保学生掌握了本节课程所讲的内容。
同时,我会在总结中提到经常出现的错误或盲点,帮助学生加深印象,从而提高学习效果。
教学反思教学收获首先,本节课程所讲授的知识比较抽象,但是由于是空间三维坐标表示,便可以采取类似于平面几何的手段,通过练习题目,让学生更好地掌握相关知识点。
必修二4.3.空间直角坐标系(教案设计)

实用文案标准文档4.3 空间直角坐标系教案 A教学目标一、知识与技能1. 理解空间直角坐标系的建立,掌握空间中点的坐标表示;2. 掌握空间两点间的距离公式.二、过程与方法1. 建立空间直角坐标系的方法与空间点的坐标表示;2. 经历由平面上两点间距离公式推导出空间中两点间的距离公式的过程.三、情感、态度与价值观1. 通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,体会类比和数形结合的思想.2. 通过空间两点间距离公式的推导,经历从易到难,从特殊到一般的认识过程. 教学重点、难点教学重点:空间直角坐标系中点的坐标表示,空间两点间的距离公式.教学难点:一般情况下,空间两点间的距离公式的推导.教学关键:用类比的方法写出空间的点的坐标,记忆并应用空间两点间的距离公式求空间的两点间距离,提高学生的空间想象能力.教学突破方法:借助正方体,发挥学生的空间想象能力,写出空间点的坐标.教法与学法导航教学方法:问题教学法,类比教学法.学习方法:探究讨论、练习法.教学准备教师准备:多媒体课件,正方体模型.学生准备:平面直角坐标系中点的坐标的写法.教学过程教学环节教学内容师生互动设计意图创设情境导入新课1.我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数(x,y)表示.那么假设我们对立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?师:启发学生联想思考.生:感觉可以.师:我们不能仅凭感觉,我们要对它的认识从感性化提升到理性化.让学生体会到点与数(有序数组)的对应关系.教师备课系统──多媒体教案2续上表概念形成2.空间直角坐标系该如何建立呢?图1师:引导学生看图1,单位正方体OABC – D ′A ′B ′C ′,让学生认识该空间直角系O –xyz 中,什么是坐标原点,坐标轴以及坐标平面.师:该空间直角坐标系我们称为右手直角坐标系.体会空间直角坐标系的建立过程.3.建立了空间直角坐标系以后,空间中任意一点M 如何用坐标表示呢? 图 2 师:引导学生观察图2. 生:点M 对应着唯一确定的有序实数组(x ,y ,z ),x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标. 师:如果给定了有序实数组(x ,y ,z ),它是否对应着空间直角坐标系中的一点呢?生:(思考)是的.师:由上我们知道了空间中任意点M 的坐标都可以用有序实数组(x ,y ,z )来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M (x ,y ,z ),x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.师:大家观察一下图1,你能说出点O ,A ,B ,C 的坐标吗? 学生从(1)中感性向理性过渡.实用文案标准文档续上表应用 举例 4. 例1 如图,在长方体OABC – D ′A ′B ′C ′中,|OA | = 3,|OC | = 4,|OD ′| = 2.写出D ′、C 、A ′、B ′四点的坐标. 【解析】D ′在z 轴上,且O D ′ = 2,它的竖坐标是2;它的横坐标x 与纵坐标y 都是零,所以点D ′的坐标是(0,0,2). 点C 在y 轴上,且O C = 4,它的纵坐标是4;它的横坐标x 与竖坐标z 都是零,所以点C 的坐标是(0,4, 0). 同理,点A ′的坐标是(3,0,0). 点B ′在xOy 平面上的射影是B ,因此它的横坐标x 与纵坐标y 同点B 的横坐标x 与纵坐标y 相同.在xOy 平面上,点B 横坐标x = 3,纵坐标y = 4;点B ′在z 轴上的射影是D ′,它的竖坐标与点D ′的竖坐标相同,点D ′ 的竖坐标z = 2. 所点B ′的坐标是(3,4,2). 例2结晶体的基本单位称为晶胞,图是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子.如图,建立空间直师:让学生思考例1一会,学生作答,师讲评. 师:对于例2的讲解,主要是引导学生先要学会建立合适的空间直角坐标系,然后才涉及到点的坐标的求法.生:思考例1、例2的一些特点.总结如何求出空间中的点坐标的方法.例2【解析】把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的坐标分别是(0,0,0),(1,0,0),(1,1,0),(0,1,0),11(,,0)22; 中层的原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为12,所以,这四个钠原子所在位置的坐标分别是 1111(,0,),(1,,)2222,1111(,1,),(0,,)2222;学生在教师的指导下完成,加深对点的坐标的理解,例2更能体现出建立一个合适的空间直角系的重要性.教师备课系统──多媒体教案4 角坐标系O–xyz后,试写出全部钠原子所在位置的坐标.续上表实用文案标准文档上层的原子所在的平面平行于xOy平面,与z轴交点的竖坐标为1,所以,这五个钠原子所在位置的坐标分别是(0,0,1),(1,0,1),(1,1,1),(0,1,1),11(,,1)22.5. 练习 2 如图,长方体OABC–D′A′B′C′中,|OA| = 3,|OC| =4,|OD′| = 3,A′C′于B′D′相交于点P.分别写出点C、B′、P的坐标.师:大家拿笔完成练习2然后上黑板来讲解.生:完成.【解析】C、B′、P各点的坐标分别是(0,4,0),(3,4,3),3(,2,3)2.学生在原有小结的经验的基础上,动手操作,并且锻炼学生的口才.提出新概念6. 在平面上任意两点A(x1,y1),B(x2,y2)之间的距离的公式为|AB|=221212()()x x y y-+-,那么对于空间中任意两点A(x1,y1,z1),B (x2,y2,z2)之间的距离的公式会是怎样呢?你猜猜?师:只需引导学生大胆猜测,是否正确无关紧要.生:踊跃回答.通过类比,充分发挥学生的联想能力.概念形成7. 空间中任间一点P (x,y,z)到原点之间的距离公式会是怎样呢?师:为了验证一下同学们的猜想,我们来看比较特殊的情况,引导学生用勾股定理来完成.学生:在教师的指导下作答得出|OP|=222x y z++.从特殊的情况入手,化解难度.续上表教师备课系统──多媒体教案6 概念深化8. 如果|OP| 是定长r,那么x2+ y2+ z2 = r2表示什么图形?师:注意引导类比平面直角坐标系中,方程x2+ y2=r2表示的图形中,方程x2+y2 = r2表示图形,让学生有种回归感.生:猜想说出理由.学会类比.9.如果是空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式是怎样呢?师生:一起推导,但是在推导的过程中要重视学生思路的引导.得出结论:|P1P2|=222121212()()()x x y y z z-+-+-人的认识是从特殊情况到一般情况的.10. 巩固练习(1)先在空间直角坐标系中标出A、B两点,再求它们之间的距离:A(2,3,5),B(3,1,4);A(6,0,1),B(3,5,7).(2)在z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.教师引导学生作答(1)【解析】6,图略;70,图略(2)【解析】设点M的坐标是(0,0,z).依题意,得22(01)0(2)z-++-=222(01)(03)(1)z-+++-培养学生直接利用公式解决问题能力,进一步加深理解.续上表实用文案标准文档(3)求证:以A(10,–1,6),B(4,1,9),C(2,4,3)三点为顶点的三角形是等腰三角形.4.如图,正方体OABD–D′A′B′C′的棱长为a,|AN| =2|CN|,|BM| = 2|MC′|.求MN的长.解得z = –3.所求点M的坐标是(0,0,–3).(3)【证明】根据空间两点间距离公式,得,︱AB︱=222(104)(11)(69)-+--+-=7,︱BC︱=222(42)(14)(93)-+-+-=7,︱AC︱=222(102)(14)(63)-+--+-=98.因为7+7>98,且|AB| =|BC|,所以△ABC是等腰三角形.4.【解析】由已知,得点N的坐标为2(,,0)33a a,点M的坐标为2(,,)33a aa,于是22222||()()(0)33335.3a a a aMN aa=-+-+-=小结今天通过这堂课的学习,你能有什么收获?(1)空间点的坐标表示,(2)空间两点间的距离公式及应用.生:谈收获.师:总结.知识整理.课堂作业1.已知点M到三个坐标平面的距离都是1,且点M的三个坐标同号,则点M的坐标为 ______.【解析】分别过点(1,0,0),(0,1,0),(0,0,1)作与yOz平面,xOz平面,xOy教师备课系统──多媒体教案8平面平行的平面,三个平面的交点即为M 点,其坐标为(1,1,1)或过点(-1,0,0),(0,-1,0),(0,0,-1)作与yOz 平面,xOz 平面,xOy 平面平行的平面,三个平面的交点即为M 点,其坐标为(-1,-1,-1).答案:(1,1,1)或(-1,-1,-1)2. 如图,正方体ABCD – A 1B 1C 1D 1,E 、F 分别是BB 1,D 1B 1的中点,棱长为1,求点E 、F 的坐标和B 1关于原点D 的对称点坐标.【解析】由B (1,1,0),B 1(1,1,1),则中点E 为1(1,1,)2,由B 1(1,1,1),D 1(0,0,1),则中点11(,,1)22F . 设B 1关于点D 的对称点M (x 0,y 0,z 0), 即D 为B 1M 的中点,因为D (0,0,0),所以,000000102110121102x x y y z z +==--==-=-+=⎧⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎩,,,得,., 所以M (–1,–1,–1 ).3. 已知点A 在y 轴 ,点B (0,1,2)且||5AB =,则点A 的坐标为 .【解析】由题意设A (0,y ,0),则2(1)45y -+=,解得:y = 0或y = 2,故点A 的坐标是(0,0,0)或(0,2,0) 4. 坐标平面yOz 上一点P 满足:(1)横、纵、竖坐标之和为2;(2)到点A (3,2,5),B (3,5,2)的距离相等,求点P 的坐标.【解析】由题意设P (0,y ,z ),则2222222(03)(2)(5)(03)(5)(2)y z y z y z +=⎧⎨-+-+-=-+-+-⎩,, 解得:11.y z =⎧⎨=⎩,故点P 的坐标为(0,1,1).实用文案标准文档教案 B第1课时教学内容:4.3.1 空间直角坐标系 教学目标1. 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置;2. 掌握空间直角坐标系、右手直角坐标系的概念,会画空间直角坐标系,会求空间直角坐标;3. 深刻感受空间直角坐标系的建立的背景以及理解空间中点的坐标表示;4. 通过数轴与数,平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性.教学重点、难点教学重点:求一个几何图形的空间直角坐标. 教学难点:空间直角坐标系的理解. 教学过程一、情景设计1. 我们知道数轴上的任意一点M 都可用对应一个实数x 表示,建立了平面直角坐标系后,平面上任意一点M 都可用对应一对有序实数),(y x 表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组()z y x ,,表示出来呢?2.空间直角坐标系该如何建立呢? 二、新课教学如图,OABC -D ′A ′B ′C ′是单位正方体,以O 为原点,分别以射线OA ,OC ,OD ′的方向为正方向,以线段OA ,OC ,OD ′的长为单位长,建立三条数轴:x 轴、y 轴、z 轴,∠xpy =135°,∠yoz =45°,这时我们说建立了一个空间直角坐标系Oxyz ,其中点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,通过每两个坐标轴的平面叫坐标平面,分别称为xoy 平面,yoz 平面,zox 平面.在空间坐标系中,让右手拇指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.空间直角坐标系有序实数组(x ,y ,z )一一对应.(x ,y ,z )称为空间直角坐标系的坐标,x 称为横坐标,y 称为纵坐标,z 为竖坐标.O 、A 、B 、C 四点坐标分别为:O (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0).教师备课系统──多媒体教案10例1 在长方体OABC -D ’A ’B ’C ’中,∣OA ∣=3,∣OC ∣=4,∣OD ′∣=2,写出D ′、C 、 A ′、B ′四点的坐标.【解析】因为D ′在z 轴上,且∣OD ′∣=2,它的竖坐标为2,它的横坐标与纵坐标都是零,所以D ′点的坐标是(0,0,2);点C 在y 轴上,且∣OC ∣=4,所以点C 的坐标为(0,4,0);点A ′的坐标为(3,0,2),B ′的坐标为(3,4,2).例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标.【解析】把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层原子全在xOy 平面,它们所在位置的竖坐标全是0,所以下层的五个钠原子所在位置的坐标分别为:(0,0,0),(1,0,0),(1,1,0),(0,1,0),(21,21,0);中层的四个钠原子所在位置的坐标分别为:(21,0,21),(1,21,21),(21,1, 21),(0,21, 21);上层的五个钠原子所在位置的坐标分别为:(0,0,1),(1,0,1),(1,1,1),(0,1,1),(21,21,1).三、典型例题解析例3 在空间直角坐标系中,作出点M (6,-2, 4).点拨:点M 的位置可按如下步骤作出:先在x 轴上作出横坐标是6的点1M ,再将1M 沿与y 轴平行的方向向左移动2个单位得到点2M ,然后将2M 沿与z 轴平行的方向向上移动4个单位即得点M .答案:M 点的位置如图所示.总结:对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力.变式题演练1M2M M (6,-2,4) Oxyz624实用文案标准文档在空间直角坐标系中,作出下列各点:A (-2,3,3);B (3,-4,2);C (4,0,-3).答案:略.例4 已知正四棱锥P -ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.点拨:先由条件求出正四棱锥的高,再根据正四棱锥的对称性,建立适当的空间直角坐标系.【解析】 正四棱锥P -ABCD 的底面边长为4,侧棱长为10,∴正四棱锥的高为232.以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A (2,-2,0)、B (2,2,0)、C (-2,2,0)、D (-2,-2,0)、P (0,0,223).总结:在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标.变式题演练 在长方体1111ABCD A B C D -中,AB =12,AD =8,AA 1=5,试建立适当的空间直角坐标系,写出各顶点的坐标.【解析】以A 为原点,射线AB 、AD 、AA 1分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A (0,0,0)、B (12,0,0)、C (12,8,0)、D (0,8,0)、A 1(0,0,5)、B 1(12,0,5)、C 1(12,8,5)、D 1(0,8,5).例5 在空间直角坐标系中,求出经过A (2,3,1)且平行于坐标平面yOz 的平面α的方程.点拨:求与坐标平面yOz 平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解.【解析】 坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行, ∴平面α也与x 轴垂直,∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等. 平面α过点A (2,3,1),∴平面α内的所有点的横坐标都是2, ∴平面α的方程为x =2.总结:对于空间直角坐标系中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题.本题类似于平面直角坐标系中,求过某一定点且与x 轴(或y 轴)平行的直线的方程.OA B CDPx yz教师备课系统──多媒体教案12变式题演练在空间直角坐标系中,求出经过B (2,3,0)且垂直于坐标平面xOy 的直线方程. 答案:所求直线的方程为x =2,y =3. 四、课堂小结(1)空间直角坐标系的建立. (2)空间中点的坐标的确定. 五、布置作业P138习题4.3 A 组:1,2.第2课时教学内容:4.3.2 空间两点间的距离公式 教学目标1. 通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式;2. 通过推导和应用空间两点间的距离公式,进一步培养学生的空间想象能力;3. 通过探索空间两点间的距离公式,体会转化(降维)的数学思想. 教学重点、难点探索和推导空间两点间的距离公式. 教学过程一、问题引入问题:求粉笔盒(长方体)的对角线的长度. 解决方案: ①直接测量取两个或三个一样的粉笔盒如图放置,用尺子测量其对角线的长度.②公式计算量出粉笔盒的长、宽、高,用勾股定理计算.一般地,如果长方体的长、宽、高分别为c b a ,,,那么对角线长222c b ad ++=.实用文案标准文档③坐标计算建立空间直角坐标系,使得长方体的一个顶点为坐标原点,所有棱分别与坐标轴平行,求出对角线顶点的坐标,用平面内两点间的距离公式和勾股定理计算.一般地,空间任意一点),,(z y x P 与原点间的距离222z y x OP ++=.探究:如果OP 是定长r ,那么2222r z y x =++表示什么图形?思考:上面推导了空间任意一点与原点间的距离公式,你能否猜想空间任意两点间的距离公式?如何证明?类比空间任意一点与原点间的距离公式,猜想空间任意两点间的距离公式.用平面内两点间的距离公式和勾股定理推导. 由此可得空间中任意两点),,(),,,(22221111z y x P z y x P 之间的距离公式22122122121)()()(z z y y x x P P -+-+-=.二、例题精讲例1 已知A (x ,2,3)、B (5,4,7),且|AB |=6,求x 的值. 【解析】|AB |=6,∴6)73()42()5(222=-+-+-x ,即(x -5)2=16,解得x =1或x =9.例2 求点P (1,2,3)关于坐标平面xOy 的对称点的坐标.【解析】设点P 关于坐标平面xOy 的对称点为P ′,连 P P ′交坐标平面xOy 于Q , 则P P ′⊥坐标平面xOy ,且|PQ |=|P ′Q|,∴P ′在x 轴、y 轴上的射影分别与P 在x 轴、y 轴上的射影重合,P ′在z 轴上的射影与P 在z 轴上的射影关于原点对称,∴P ′与P 的横坐标、纵坐标分别相同,竖坐标互为相反数,∴ 点P (1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,-3).点评:通过巧设动点坐标,得到关于两点间距离的目标函数,由函数思想得到几何最值. 注意这里对目标函数最值的研究,实质就是非负数最小为0. 三、课堂小结1. 空间中两点间距离的坐标计算.2. 类比思想:维度的升高,距离公式如何改变? 四、布置作业P138 习题4.3A 组:3.P139习题4.3B 组:1,2,3.教师备课系统──多媒体教案14第四章测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点(1,4,2)M -,那么点M 关于y 轴对称点的坐标是( ). A .(1,4,2)-- B .(1,4,2)- C .(1,4,2)- D .(1,4,2)2.若直线3x +4y +c =0与圆(x +1)2+y 2=4相切,则c 的值为( ). A .17或-23 B .23或-17 C .7或-13 D .-7或133.过圆x 2+y 2-2x +4y -4=0内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( ).A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=04.经过(1,1),(2,2),(3,1)A B C --三点的圆的标准方程是( ). A .22(1)4x y ++= B.22(1)5x y ++= C .22(1)4x y -+=D.22(1)5x y -+=5.一束光线从点A (-1, 1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路程是( ).A .32-1B .26C .5D .46.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( ).A .5B .5C .25D .107.已知两点(1,0)A -、(0,2)B ,若点P 是圆22(1)1x y -+=上的动点,则ABP ∆面积的最大值和最小值分别为( ).A .11(45),(51)22+- B .11(45),(45)22+- C .11(35),(35)22+-D .11(25),(52)22+-8.已知圆224x y +=与圆2266140x y x y +-++=关于直线l 对称,则直线l 的方程是( ).实用文案标准文档A. 210x y -+=B. 210x y --=C. 30x y -+=D. 30x y --=9.直角坐标平面内,过点(2,1)P 且与圆224x y +=相切的直线( ). A.有两条 B.有且仅有一条C.不存在D. 不能确定10.若曲线222610x y x y ++-+=上相异两点P 、Q 关于直线240kx y +-=对称,则k 的值为( ).A. 1B. -1C.12D. 2 11.已知圆221:460C x y x y +-+=和圆222:60C x y x +-=相交于A 、B 两点, 则AB 的垂直平分线方程为( ).A.30x y ++=B.250x y --=C.390x y --=D. 4370x y -+= 12. 直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若︱MN ︱≥23,则k 的取值范围是( ).A .3,04⎡⎤-⎢⎥⎣⎦B .[)3,0,4⎛⎤-∞-+∞ ⎥⎝⎦C .33,33⎡⎤-⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦ 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.圆22:2440C x y x y +--+=的圆心到直线l :3440x y ++=的距离d = .14.直线250x y -+=与圆228x y +=相交于A 、B 两点,则AB ∣∣= . 15.过点A (4,1)的圆C 与直线10x y --=相切于点 B (2,1),则圆C 的方程为 .16.在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x -5y +c=0的距离为1,则实数c 的取值范围是______ .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分) 已知圆经过(3,0)A ,18(,)55B -两点,且截x 轴所得的弦长为2,求教师备课系统──多媒体教案16此圆的方程.18.(12分)已知线段AB 的端点B 的坐标为 (1,3),端点A 在圆C:4)1(22=++y x 上运动.(1)求线段AB 的中点M 的轨迹;(2)过B 点的直线L 与圆C 有两个交点P ,Q .当CP ⊥CQ 时,求L 的斜率.19.(12分)设定点M (-2,2),动点N 在圆222=+y x 上运动,以OM 、0N 为两边作平行四边形MONP ,求点P 的轨迹方程.20.(12分)已知圆C 的半径为10,圆心在直线2y x =上,且被直线0x y -=截得的弦长为42,求圆C 的方程.21.(12分)已知圆C :222430x y x y ++-+=.(1)若不经过坐标原点的直线l 与圆C 相切,且直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)设点P 在圆C 上,求点P 到直线50x y --=距离的最大值与最小值.22.(12分)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它实用文案标准文档们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.教师备课系统──多媒体教案18参考答案一、选择题1. 选B.纵坐标不变,其他的变为相反数.2. 选D.圆心到切线的距离等于半径.3. 选 A.直线l 为过点M , 且垂直于过点M 的直径的直线.4. 选D.把三点的坐标代入四个选项验证即可.5. 选D.因为点A (-1, 1)关于x 轴的对称点坐标为(-1,-1),圆心坐标为(2,3),所以点.A (-1, 1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路程为22(12)(13)1 4.--+---=6.选B.由题意知,圆心坐标为(-2,-1),210.a b ∴--+=22(2)(2)a b -+-表示点(a,b )与(2,2)的距离,2242122541a b +--+-=+所以()()的最小值为,所以22(2)(2)a b -++的最小值为5.7.选B.过圆心C 作CM AB ⊥于点M ,设CM 交圆于P 、Q 两点,分析可知ABP ∆和ABQ ∆分别为最大值和最小值,可以求得||5AB =,45d =,所以最大值和最小值分别为1415(1)(45)225±=±. 8.选D.两圆关于直线l 对称,则直线l 为两圆圆心连线的垂直平分线.9.选A.可以判断点P 在圆外,因此,过点P 与圆相切的直线有两条. 10.选D.曲线方程可化为22(1)(3)9x y ++-=,由题设知直线过圆心,即(1)2340,2k k ⨯-+⨯-=∴=.故选D.11.选C.由平面几何知识,知AB 的垂直平分线即为两圆心的连线,把两圆分别化为标准式可得两圆心,分别为C 1(2,-3)、C 2(3,0),因为C 1C 2斜率为3,所以直 线方程为y-0=3(x-3),化为一般式可得3x-y-9=0.12.选A .(方法1)由题意,若使︱MN ︱≥23,则圆心到直线的距离d ≤1,即实用文案标准文档113232≤++-k k ≤1,解得34-≤k ≤0.故选A. (方法2)设点M ,N 的坐标分别为),(),,2211y x y x (,将直线方程和圆的方程联立得方程组223(3)(2)4y kx x y =+⎧⎨-+-=⎩,,消去y ,得06)3(2)1(22=+-++x k x k ,由根与系数的关系,得16,1)3(2221221+=⋅+--=+k x x k k x x , 由弦长公式知2122122124)(1||1||x x x x k x x k MN -+⋅+=-⋅+==1122420164]1)3(2[1222222++--=+⋅-+--⋅+k k k k k k k ,︱MN ︱≥23,∴222024121k k k --++≥23,即8(43k k +)≤0,∴34-≤k ≤0,故选A.二、填空题13. 3. 由圆的方程可知圆心坐标为C (1,2),由点到直线的距离公式,可得3434241322=++⨯+⨯=d .14. 23(方法1) 设11,)A x y (,22(,)B x y ,由22250,8.x y x y -+=⎧⎨+=⎩消去y 得251070x x +-=,由根与系数的关系得121272,,5x x x x +=-=-2121212415()45x x x x x x -=+-=, ∴ 21215415123225ABx x ∣∣=+-=⨯=().教师备课系统──多媒体教案20(方法2)因为圆心到直线的距离555d ==, 所以22228523AB r d =-=-=.15. 22(3)2x y -+=. 由题意知,圆心既在过点B (2,1)且与直线10x y --=垂直的直线上,又在点,A B 的中垂线上.可求出过点B (2,1)且与直线10x y --=垂直的直线为30x y +-=,,A B 的中垂线为3x =,联立方程30,3,x y x +-==⎧⎨⎩,解得3,0,x y ==⎧⎨⎩,即圆心(3,0)C ,半径2r CA ==,所以,圆的方程为22(3)2x y -+=.16. 1313c -<<. 如图,圆422=+y x 的半径为2,圆上有且仅有四个点到直线12x-5y+c=0的距离为1,问题转化为坐标原点(0,0)到直线12x-5y+c=0的距离小于 1.221,13,1313.125c c c <<∴-<<+即三、解答题17.【解析】根据条件设标准方程222()()x a y b r -+-=,截x 轴所得的弦长为2,可以运用半径、半弦长、圆心到直线的距离构成的直角三角形;则:⎪⎪⎩⎪⎪⎨⎧+==-+--=+-,1,)58()51(,)3(222222222b r r b a r b a ∴⎪⎩⎪⎨⎧===5,2,2r b a 或⎪⎩⎪⎨⎧===.37,6,4r b a∴所求圆的方程为22(2)(2)5x y -+-=或22(4)(6)37x y -+-=.实用文案标准文档18.【解析】(1)设()()11,,,A x y M x y ,由中点公式得111112123232x x x x y y y y +==-⇔+=-=⎧⎪⎧⎪⎨⎨⎩⎪⎪⎩,, 因为A 在圆C 上,所以()()222232234,12x y x y ⎛⎫+-=+-= ⎪⎝⎭即 . 点M 的轨迹是以30,2⎛⎫ ⎪⎝⎭为圆心,1为半径的圆.(2)设L 的斜率为k ,则L 的方程为()31y k x -=-,即30kx y k --+=, 因为CP ⊥CQ ,△CPQ 为等腰直角三角形,圆心C (-1,0)到L 的距离为12CP =2, 由点到直线的距离公式得222324129221k k k k k k --+=∴-+=++, ∴2k 2-12k +7=0,解得k =3±112. 故直线PQ 必过定点 1003⎛⎫ ⎪⎝⎭,.19.【解析】 设P (x ,y ),N (x 0,y 0),∴22020=+y x , (*)∵平行四边形MONP , ∴ 00222222x x y y -=+=⎧⎪⎪⎨⎪⎪⎩,,有00+22x x y y ==-⎧⎨⎩,,教师备课系统──多媒体教案22代入(*)有2)2()2(22=-++y x ,又∵M 、O 、N 不能共线,∴将y 0=-x 0代入(*)有x 0≠±1,∴x ≠-1或x ≠-3,∴点P 的轨迹方程为2)2()2(22=-++y x (3x 1-≠-≠且x ).20.【解析】因为所求圆的圆心C 在直线2y x =上,所以设圆心为(),2C a a , 所以可设圆的方程为()()22210x a y a -+-=,因为圆被直线0x y -=截得的弦长为42,则圆心(),2C a a 到直线0x y -=的距离()22224210211a ad ⎛⎫-==- ⎪ ⎪⎝⎭+-,即22a d ==,解得2a =±. 所以圆的方程为()()222410x y -+-=或()()222410x y +++=.21.【解析】(1)圆C 的方程可化为22(1)(2)2x y ++-=,即圆心的坐标为(-1,2),半径为2 ,因为直线l 在两坐标轴上的截距相等且不经过坐标原点,所以可设直线l 的方程为 0x y m ++=; 于是有|12|112m -+++=,得1m =或3m =-,因此直线l 的方程为10x y ++=或30x y +-=.(2)因为圆心(-1,2)到直线50x y --=的距离为|125|1142---+=,所以点P到直线50x y --=距离的最大值与最小值依次分别为52和32.22.【解析】(1)设直线l 的方程为:(4)y k x =-,即40kx y k --=, 由垂径定理,得:圆心1C 到直线l 的距离22232()12d =-=, 结合点到直线距离公式,得:2|314|11k k k ---=+,实用文案标准文档 化简得:272470024k k k k +===-,解得或, 求直线l 的方程为:0y =或7(4)24y x =--, 即0y =或724280x y +-=. (2) 设点P 坐标为(,)m n ,直线1l 、2l 的方程分别为:1(),()y n k x m y n x m k-=--=--,即:110,0kx y n km x y n m k k-+-=--++=, 因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等. 由垂径定理,得圆心1C 到直线1l 与2C 直线2l 的距离相等. 故有:2241|5||31|111n m k n km k k k k --++--+-=++, 化简得:(2)3,(8)5m n k m n m n k m n --=---+=+-或,关于k 的方程有无穷多解,有:2030m n m n m n m n --=⎧⎧⎨⎨--=⎩⎩,-+8=0,或,+-5=0, 解之得:点P 坐标为)213,23(-或)21,25(.。
人教版高一数学必修二《空间直角坐标系》教案及教学反思

人教版高一数学必修二《空间直角坐标系》教案及教学反思一、课程背景本课程是高一数学必修二的一部分,主要讲解空间直角坐标系的基本知识和应用。
学生需要掌握三维空间中点、向量及其坐标表示、平面与直线的方程以及空间图形的分析方法等内容。
二、教学目标知识目标1.掌握三维空间直角坐标系的概念和基本性质;2.掌握点、向量和坐标表示;3.学习平面和直线的方程;4.了解空间图形的分析方法。
能力目标1.能够在三维空间中确定点、向量以及平面和直线的方程;2.能够对空间图形进行分析和判断。
情感目标1.提高学生的数学思维能力;2.培养学生的空间想象能力;3.培养学生的数学兴趣和探究精神。
三、教学重点和难点教学重点1.点、向量和坐标表示的概念和性质;2.平面和直线的方程的求法;3.空间图形的分析方法。
教学难点1.向量和坐标表示的转换;2.平面和直线的方程的求解;3.空间图形的分析和判断。
四、教学过程1. 导入环节本节课主要讲解空间直角坐标系的基本知识和应用。
教师可以通过提问学生空间直角坐标系的概念和应用,引导学生进入学习状态。
2. 知识讲解(1)点、向量和坐标表示在三维空间中,点和向量是基本的空间对象。
点代表一个位置,向量代表从一个位置移动到另一个位置的方向和长度。
点和向量都可以使用坐标进行表示。
在空间直角坐标系中,我们通常用三个互相垂直的坐标轴来表示一个点或一个向量。
这三个坐标轴分别为x轴、y轴和z轴,三个坐标轴上的数值分别为x、y和z。
因此,一个点或向量可以表示为一个三元组(x,y,z)。
(2)平面和直线的方程在三维空间中,平面和直线有各自的方程。
平面的方程一般有三种,分别为点法式、一般式和截距式。
1.点法式:平面上任意一点M(x0,y0,z0)到法向量$\\bold{n}(A,B,C)$ 的距离等于常数d。
平面的标准式为Ax+By+Cz+D=0,其中A,B,C分别为法向量$\\bold{n}$ 的三个元素,D=−d。
2.一般式:平面的一般式为Ax+By+Cz+D=0,其中A,B,C,D为常数,A,B,C不全为零。
高中数学必修2《空间直角坐标系》教案

高中数学必修2《空间直角坐标系》教案高中数学必修2《空间直角坐标系》教案【教学目标】1、知识与技能(1)了解空间直角坐标系,会用空间直角坐标系刻画点的位置。
(2)掌握利用坐标表示空间直角坐标系中点的方法。
2、过程与方法:经历空间直角坐标系的建立及刻画点的过程,进一步体会类比的思想,经历用代数方法刻画几何位置的过程,进一步培养学生的空间想象能力。
3、情感、态度与价值观在建立空间直角坐标系的过程中,体会数学在确定空间方位中的作用。
【教学重点】空间直角坐标系的建立;空间直角坐标系中点的坐标表示。
【教学难点】在空间直角坐标系中画出给定坐标的点的位置。
【教学过程】[导入课题]同学们,在初中大家已经学过平面直角坐标系,我们知道,如果研究平面上的问题,我们就可以建立平面直角坐标系。
那么,如果研究空间中的问题呢?(展示幻灯片),例如:如何确定飞机在空中的位置,又如,怎样确定某位同学的头在教室中的位置?显然,这些都是空间问题,建立平面直角坐标系不能解决这些问题,需要建立一种新的坐标系——空间直角坐标系(幻灯片展示课题)、(板书课题)。
这一节课我们就来学习空间直角直角坐标系。
首先,我们来学习第一部分:(一)、建立空间直角坐标系(板书:建立空间直角坐标系)(运用类比的思想方法)[新知探究]现在请大家类比建立平面直角坐标系的方法,思考怎样建立空间直角坐标系?启发:1、平面直角坐标系有几条坐标轴?两条坐标轴是否垂直?2、空间直角坐标系会有几条坐标轴?这三条坐标轴两两垂直(模型演示)。
运用模型介绍空间直角坐标系各部分的名称:原点、坐标轴、坐标平面,及右手螺旋法则。
空间直角坐标系的画法:怎样把空间直角坐标系画在平面上?这就要用到高一学习的直观图的知识,请同学们现在回忆:当把平面直角坐标系水平放置时,∠XOY=45°或135°。
下面我们演示一下空间直角坐标系的画法:一般的把X轴和Y轴放置在水平平面上,那么Z轴就垂直于水平平面。
空间直角坐标系教案

【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。
空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。
其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。
二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。
✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。
情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3空间直角坐标系4.3.1空间直角坐标系教材分析本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。
课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。
本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。
结合图形、联系长方体和正方体是学好本小节的关键。
课时分配本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。
教学目标重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。
难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。
知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。
能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。
教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。
自主探究点:如何由空间中点的坐标确定点的位置。
考试点:空间中点的确定及坐标表示。
易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。
拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。
教具准备多媒体课件和三角板课堂模式师生互动、小组评分以及兵带兵的课堂模式。
一、引入新课由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。
,x y 数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面内的点M可以用一对有序实数()表示。
类似于数轴和平面直角坐标系(一维坐标系和二维坐标系),当我们建立空间直角坐标系(三维坐标x y z表示。
系)后,空间中任意一点可用有序实数组(,,)二、探究新知(一)空间直角坐标系及相关概念如图所示,''''OABC D A B C -是单位正方体.以O 为原点,分别以射线 'OD OC OA 、、的长为单位长,建立三条数轴:x 轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系Oxyz ,其中点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xoy 平面yoz 、平面、zox 平面。
【师生活动】由空间直角坐标系的定义,结合正方体直观图的画法,总结在平面上画空间直角坐标系需要注意的问题:1.空间直角坐标系的三要素:原点、坐标轴方向、单位长。
2.在平面上画空间直角坐标系Oxyz 时,一般使135,90xOy yOz ∠=︒∠=︒。
3.在y 轴、z 轴上的长度都取原来的长度,而在x 轴上的长度取原来长度的一半,即x 轴上的单位长度在平面内表现出来时是y 轴、z 轴上的单位长度的一半。
【设计意图】加强学生对空间直角坐标系的认识,避免坐标轴上的单位长度选取不当造成的图形直观性差。
(二)右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方形,则称这个坐标系为右手直角坐标系。
【引申拓展】右手直角坐标系的其它解释方法:先把大拇指指向z 轴正方向,把其余四指指向x 轴正方向,然后握成拳头,这时四指扫过原平面直角坐标系的第一象限从x 轴正方向到y 轴正方向。
【设计意图】上面补充的右手直角坐标系的其它解释方法,与物理中的右手定则联系起来,动态的解释,使学生更容易理解什么是右手直角坐标系。
(三)空间中点的坐标以及空间中坐标表示的点如图所示,设M 为空间的一个定点,过点M 分别作垂直于x 轴、y 轴和z 轴的平面,依次交x 轴、y 轴和z 轴于点P 、Q 和R ,设点P 、Q 和R 在x 轴、y 轴和z 轴上的坐标分别为z y x 、、,那么点M就对应唯一确定的有序实数组(z y x ,,)。
反过来,给定有序实数组(z y x ,,),我们可以在x 轴、y 轴和z 轴上分别取坐标为实数x y 、和z 的点P 、Q 和R ,分别过P 、Q 和R 各作一个平面,分别垂直于x 轴、y 轴和z 轴,这三个平面的唯一交点就是有序实数组(z y x ,,)确定的点M 。
这样,空间一点M 的坐标y可以用有序实数组(z y x ,,)来表示,有序实数组(z y x ,,)叫做点M 在此空间直角坐标系中的坐标,记作M (z y x ,,).其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。
【师生活动】1.师:任意给定空间中的一点M ,它的坐标是不是唯一确定的? 生:是2.师:任意给定空间中的一个有序实数组(z y x ,,),它所表示的点是不是唯一确定的?生:是【设计意图】通过这两个问题的设计,让学生认识到空间直角坐标系中的点与坐标的一一对应。
【设计说明】教师可以结合下面的空间中的结论,说明在空间直角坐标系中点与坐标的一一对应。
过空间任意一点有且只有一个平面与已知直线垂直.三、空间直角坐标系的划分四、运用新知例1 如图,在长方体OABC D A B C ''''-中,3,4,2OA OC OD '===.写出,,,D C A B '''四点的坐标。
解:点D '在z 轴上,且2OD '=,它的竖坐标是2;它的横坐标x 与纵坐标y 都是零,所以点D '的坐标是()0,0,2。
点C 在y 轴上,且4,OC =它的纵坐标是4;它的横坐标x 与竖坐标z 都是零,所以点C 的坐标是y()0,4,0。
同理,点A '的坐标是()3,0,2。
点B '在xoy 平面上的射影是B ,因此它的横坐标x 与纵坐标y 同点B 的横坐标x 与纵坐标y 相同。
在xoy 平面上,点B 的横坐标3x =,纵坐标4y =;点B '在z 轴上的射影是D ',它的竖坐标与点D '的竖坐标相同,点D '的竖坐标2z =。
所以点B '的坐标是()3,4,2。
【设计意图】通过本例让学生体验空间直角坐标系中点的坐标的确定方法,加深学生对空间直角坐标系的认识,也有利于培养学生的空间想象能力。
采取小组评分的学习模式,让更多的学生参与课堂。
思考1:如图,长方体OABC D A B C ''''-中,3,4,3OA OC OD '===,A C ''与B D ''相交于点P 。
分别写出,,C B P '的坐标。
答案:()30,4,0,(3,4,3),(,2,3)2C B P '。
【设计意图】本思考在例题的基础上增加了求长方体面对角线交点的坐标,除进一步加深学生对空间直角坐标系的认识和培养学生的空间想象能力外,还可以让学生初步体会空间中线段的中点的坐标与端点坐标之间的联系。
采取小组加分让课堂气氛很活跃。
思考2:例1是由具体的点写出它在空间直角坐标系中的坐标,反过来,由点的坐标如何确定它在空间直角坐标系中的位置?yy以点()3,4,2为例,如例一图形,在x 轴、y 轴和z 轴上依次找点()3,0,0,(0,4,0),(0,0,2)A C D ', 过这三点依次作x 轴、y 轴和z 轴的垂面,这三个平面唯一的交点即为点()3,4,2。
【设计意图】通过本问题的设计进一步明确空间直角坐标系中点的坐标的含义,进一步理解空间的点与坐标的一一对应。
例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方体),其中色点(浅色点)代表钠原子,黑点(深色点)代表氯原子。
如图,建立空间直角坐标系O xyz -后,试写出全部钠原子所在位置的坐标。
解:把图中的钠原子分成下、中、上三层来写它们所在位置的坐标下层的原子全部在xoy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的坐标分别是11(0,0,0),(1,0,0),(1,1,0),(0,1,0),(,,0)22; 中层的原子所在的平面平行于xoy 平面,与z 轴交点的竖坐标为12,所以,这四个钠原子所在位置的坐标分别是11111111(,0,),(1,,),(,1,),(0,,)22222222;上层的原子所在的平面平行于xoy 平面,与z 轴交点的竖坐标为1,所以,这五个钠原子所在位置的坐标分别是11(0,0,1),(1,0,1),(1,1,1),(0,1,1),(,,1)22;思考:如图,棱长为a 的正方体OABC D A B C ''''-中,对角线OB '与BD '相交于点Q 。
顶点O 为坐标原点,,OA OC 分别在x 轴、y 轴的正半轴上。
试写出点Q 的坐标。
答案:(,,)222a a a Q 。
y【延伸拓展】特殊位置点的坐标及对称问题关于坐标轴和面对称,其规律:关于谁对称谁不变,其余的互为相反数。
五、课堂小结本节课的知识及思想方法:(提问学生归纳,老师适当点拨)1.空间直角坐标系及相关概念。
2.空间直角坐标系中点的坐标及相关概念。
3.给出具体的点写出它在空间直角坐标系中的坐标。
4.由具体的点的坐标找出它在空间直角坐标系中的位置。
5.本节课用到的思想方法:数形结合思想、转化与化归的思想。
(在空间直角坐标系及空间直角坐标系中点的坐标的定义中,结合正方体和长方体的图形,可以很好地理解概念;可以把空间中点的横坐标、纵坐标和竖坐标分别转化为此点对应的x轴、y轴和z轴上相应的点的坐标。
)教师总结: 要理解空间直角坐标系及空间直角坐标系中点的坐标的概念,一方面要结合正方体和长方体等空间图形,另一方面要认识到空间直角坐标系是数轴和平面直角坐标系的延伸和发展;在具体图形中,要会求点的坐标,对于给定的点的坐标,要会找出它在空间直角坐标系中的位置。
[设计意图]让学生进一步巩固所学知识,并提高一个层次认识所学知识,与前面的学习目标呼应,再次明确学习目标。
六、布置作业1.阅读教材P136—137,预习4.3.2空间两点间的距离公式.2.书面作业必做题:课本P136 练习1.P138 习题4.3 A组1,2.A B C D四点的坐标.(建选做题:对于各棱长都为1的三棱锥A BCD,建立空间直角坐标系,写出,,,立坐标系的方法不唯一,属开放型问题,让学生体会恰当选择坐标系的重要性。