角的平分线PPT教学课件

合集下载

角的平分线的性质 教学课件(共27张PPT)初中数学人教版八年级上册

角的平分线的性质 教学课件(共27张PPT)初中数学人教版八年级上册
第三步:分析找出由已知推出要证的结论的途 径,写出证明过程.
如图,已知∠AOC = ∠BOC,点 P在OC上,PD⊥OA, PE⊥OB, 垂足分别为D,E.求证:PD =PE.
证明:∵ PD⊥OA,PE⊥OB,
A
由 18此0°”,的你思又路能∴在吗受△?到∠P什DPDO么O和启=△发∠P?EPEO你O中能=,发90现°.证明“三角形内D角和P 等于C
PD⊥OA,PE⊥OB,垂足分别是D、E
P
∴PD = PE
O
E
B
例题练习
如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路 与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?
O
S 实际问题
A
B
几何问题
在∠AOB 内是否存在点 P ,过点 P 作 OA、OB 的垂线并交 OA、 OB 于点 D、E,使得 DP = EP ?
例题练习
如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路
与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?
解:作∠AOB的角平分线OC, 截取OP=2.5cm ,P即为所求.
O
D
E
A
P
B
【猜想】角的内部到角的两边距离相等的点在角的平分线上.
已知:如图,PD⊥OA,PE⊥OB,垂足分别是 D、E,PD = PE.
12.3角的平分线的性质
第十二章——全等三角形
学习目标 01 会用尺规作一个角的平分线;
02 探索并证明角的平分线的性质,掌握角的 平分线的判定;
03 会用角的平分线的性质和判定解决相关问题.
回顾旧知
我们之前学习了三角形的角平分线,什么是三角形的角平分线?

角平分线的性质教学课件

角平分线的性质教学课件

三角形中的角平分线与相对边 成比例,这是三角形中一个重 要的性质。
利用这个性质,可以解决与三 角形相关的问题,例如求边长 、角度等。
此外,三角形中的角平分线还 是三角形内切圆和外接圆的半 径的角平分线。
在日常生活中的应用
角平分线在日常生活中也有广泛的应用,例如在建筑设计、机械制造等领域。
在建筑设计方面,可以利用角平分线来设计建筑物的外观和结构,使其更加美观和 稳固。
THANK YOU
角平分线的性质教学课件
• 角平分线的定义 • 角平分线的性质定理 • 角平分线的应用 • 角平分线的相关定理 • 习题与解答
01
角平分线的定义
什么是角平分线
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分的 一条射线。
02
角平分线将相对边分为两等份, 形成的两个小角相等。
角平分线的作法
通过角的顶点,作一条射线,使得该 射线和角的两边相交形成的两个小角 相等。
使用量角器或三角板等工具辅助作图 。
角平分线的性质
角平分线上的点到角的两边距离 相等。
角平分线将相对边分为两等份。
角平分线上的任意一点到角的两 边的距离之和等于从角的顶点到
该点的距离。
02
角平分线的性质定理
定理内容
01
02
答案: $AB = AC$
解析:由于$AD$是$angle BAC$的角平分线,且$BD = CD$,根据等 腰三角形的性质,我们可以得出$triangle ABD cong triangle ACD$( SAS),所以$AB = AC$。
习题答案与解析
01
答案与解析3:
02
答案: AC是$angle BCD$的角平分线。

沪科版数学八年级上册15.4.2角的平分线的判定课件(共26张PPT)

沪科版数学八年级上册15.4.2角的平分线的判定课件(共26张PPT)
例题示范
证明: ∵ QD⊥OA,QE⊥OB(已知), ∴ ∠QDO=∠QEO=90°(垂直定义) 在Rt△QDO和Rt△QEO中 QO=QO(公共边)
QD=QE (已知) ∴ Rt△QDO ≌ Rt△QEO(HL) ∴ ∠QOD=∠QOE(全等三角形对应角相等) ∴点Q在∠AOB的平分线上(角平分线定义)
解:(1)
∵ EP = EQ , EP⊥AM ,EQ⊥AN ,(已知)∴ 点 E 在∠NAM 的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
(2)
归纳小结
知识点1 角平分线的判定定理
定理:角的内部到角两边距离相等的点在角的平分线上.
知识点2 三角形的三条内角平分线交点的性质
定理:三角形三条内角平分线相交于一点, 这点到三角形三边的距离相等.
证明:∵ DE ⊥ AB,DF ⊥ AC, ∴△ BDE 和△ CDF 是直角三角形. ∵ BD=DC, BE=CF, ∴ Rt △ BDE ≌ Rt △ CDF,(HL) ∴ DE = DF. ∵ DE ⊥ AB,DF ⊥ AC,DE = DF, ∴点 D 在∠BAC 的平分线上, 即AD 是△ABC 的角平分线.
Q
M
N
新知引入
知识点2 三角形的三条内角平分线交点的性质
定理:三角形三条内角平分线相交于一点, 这点到三角形三边的距离相等.
如图,在△ ABC 中,AD,BM,CN分别是∠BAC,∠ABC,∠ACB 的平分线,AD,BM,CN 交于一点O,且点O 到三边 BC,AB,AC 的距离 (OE,OG,OF 的长) 相等,即 OE = OG = OF.
第十五章 轴对称图形与等腰三角形
15.4 角的平分线15.4.2 角的平分线的判定

角的平分线课件(共16张PPT)

角的平分线课件(共16张PPT)

6.3.2.2 角的平分线
思考 如何能得到角平分线呢? 量角器度量、折叠.
在一张半透明的纸上通过折纸作角的平分线.
6.3.2.2 角的平分线
例1 把一个周角 7 等分,每一份是多少度的角 (精确到分)?
解:360°÷7 = 51° + 3°÷7 = 51° + 180'÷7 ≈ 51°26'.
精确到分,要先取到 小数点后 1 位,然后 再四舍五入.
6.3.2.2 角的平分线
2.如图,O 是直线AB 上一点,OC 是∠AOB 的平分线,若∠COD = 31°28',求∠AOD 的度数.
解:∵OC 是∠AOB 的平分线,∠AOB是平角. C
∴∠AOC = ∠AOB = × 180°=90°.
∴∠AOD = 12∠AOB - ∠COD.
D
=90°- 31°28' =89°60' - 31°28'
2
1
O
A
6.3.2.2 角的平分线
新知学习
思考
如图,如果∠1 =∠2,那么射线 OB 把∠AOC分成两个相等的角.你可
以写出∠AOC 和∠1 、∠2的关系式吗?
C B
∠AOC = 2∠1 = 2∠2, ∠1 = ∠2 = 1 ∠AOC
2
2
1
O
A
6.3.2.2 角的平分线
一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线, 叫作这个角的平分线.
注意:度、分、秒是60进制的,要把剩余的度数化成分.
6.3.2.2 角的平分线
随堂练习
1.如图,把一个蛋糕等分成8份,每份中的角是多少度?如果 要使每份中的角是15°,这个蛋糕应等分成多少份?

角平分线的性质和判定(共张PPT)-图文

角平分线的性质和判定(共张PPT)-图文

E
C
D
B
变式 已知AB =15cm, 求△DBE的周长
1、直线表示三条相互交叉的公路,现要建一个货物 中转站,要求它到三条公路的距离相等,则可供选择 的地址有( )
A.一处 B. 两处 C.三处 D.四处
2、已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE交点
F,CF=BF, 求证:点F在∠A的平分线上.
画法:
1.以O为圆心,适当
A
长为半径作弧,交OA于M

,交OB于N.

2.分别以M,N为
圆心.大于 1/2 MN的长
为半径作弧.两弧在∠A
OB的内部交于C.
3.作射线OC.



射线OC即为所求.
想为什一么想O:C是角平分线呢?
已知:OM=ON,MC=NC。
求证:OC平分∠AOB。
A
M 证明:在△OMC和△ONC中, C

又两∵边距点离F相在等∠)C. BD的平分线上,
FH⊥AD, FM⊥BC
M H
∴FM=FH (角平分线上的点到这个角的两边距离相等). ∴FG=FH(等量代换)∴点F在∠DAE的平分线上
例题选析
例1:如图,D在AB上,E在AC上,且∠B =∠C, 那么补充下列一具条件后,仍无法判定 △ABE≌△ACD的是( B )
2 如图,在△ABC中,∠C=90°,DE⊥AB, ∠1=∠2,且AC=6cm,那么线段BE是△ABC 的 角的平分线 ,AE+DE= 6cm 。
3.已知△ABC中, ∠C=900,AD平分∠ CAB,且 BC=8,BD=5,求点D到AB的距离是多少?
你会吗?
C D
A

角平分线的性质ppt课件

角平分线的性质ppt课件
这个角的平分线上吗?A l1 M
P
l2
O
NB
如果将∠AOB沿直线OP对折.你发现∠AOP与∠BOP重合
吗?由此你能得到什么结论?
归纳:角平分线的性质2
角的内部到角的两边的距离相等的点在角的平分线上.
几何语言:
B
M
∵ PM⊥AB, PN⊥AC且PM=PN
∴AP是∠ BAC的平分线
P
特别强调
A
NC
(1)应用判定应具备的条件 (2)性质的作用
等,你能确定中转站的位置吗?
任 务 一 探究角的轴对称性
在卡纸上把∠ AOB沿经过点O的某条直线对折,使角的两 边OA与OB重合,然后把纸展开后铺平,记折痕为OC 你发现 ∠ AOB是轴对称图形吗?如果是,它的对称轴是哪条直线?
A

C
B
〖结论〗角是轴对称图形, 角的平分线所在的直线 是它 的对称轴。
①点P在∠BAC的内部 ②PM⊥AB PN⊥AC ③ PM=PN
判断点是否在角平分线上
测试二
如图,P是∠AOB 内部的一点,PE⊥OA,PF⊥OB,垂足分别
为点 E,F,且PE =PF . Q是OP 上的任意一点,QM⊥OA,
ቤተ መጻሕፍቲ ባይዱ
QN⊥OB,垂足分别为点 M 和N . QM与QN相等吗?为什么? A
M
∠AMP= ∠ANP
∠1= ∠2
AP=AP ∴ △ AMP ≌ △ANP(AAS) ∴PM=PN
归纳:角平分线的性质1
角的平分线上的点到这个角的两边的距离相等.
B
几何语言:
∵AD是∠ BAC的平分线,
M
1
2
P
D
PM⊥AB, PN⊥AC(已知)

《角平分线的性质》课件

《角平分线的性质》课件

在解决பைடு நூலகம்际问题中的应用
实际应用
在建筑设计、工程绘图等领域, 角平分线性质可以帮助确定物体 的位置和方向,从而保证设计的 准确性和施工的顺利进行。
案例分析
在设计桥梁、建筑或管道时,可 以利用角平分线性质来确定结构 的支撑点或固定点,以确保结构 的稳定性和安全性。
在数学竞赛中的应用
竞赛题特点
数学竞赛中常常出现与角平分线性质相关的题目,这类题目 通常涉及多个知识点,需要学生具备较高的逻辑思维和推理 能力。
角平分线的表示方法
在几何图形中,通常用符号“∟”表 示角平分线。
例如,若射线OA是∠AOB的角平分线 ,则标记为“OA∟∠AOB”。
角平分线的性质
角平分线上的点到这个角的两边的距 离相等。
角平分线定理:对于三角形中的角平分线 ,它所对的边与该角的对边之比等于其他 两边之比。即,在△ABC中,若AD是 ∠BAC的角平分线,则BD/DC=AB/AC。
在其他领域的应用
农业灌溉
在农田灌溉中,可以利用 角平分线性质优化灌溉管 道和水渠的布局,提高灌 溉效率。
航空导航
在航空导航中,可以利用 角平分线性质确定航向和 飞行高度,确保航行安全 。
军事战略部署
在军事战略部署中,可以 利用角平分线性质优化部 队的驻扎和部署,提高作 战效率。
THANKS
感谢观看
在道路规划中的应用
01
02
03
道路交叉口设计
利用角平分线性质,合理 规划道路交叉口的位置和 形状,提高交通流畅度和 安全性。
道路指示牌设置
根据角平分线性质,合理 设置道路指示牌的位置, 确保驾驶员能够清晰地获 取指示信息。
道路排水设计
在道路规划中,可以利用 角平分线性质优化排水系 统的布局,提高道路的排 水性能。

角平分线的性质与判定通用课件

角平分线的性质与判定通用课件

角平分线定理
01
角平分线上的点到这个角的两边的距离相等。
利用角平分线定理证明线段比例
02
通过构造角平分线,利用角平分线定理证明线段之间的比例关
系。
利用角平分线定理证明等腰三角形
03
通过构造角平分线,证明三角形中的两个底角相等,从而证明
是等腰三角形。
在三角形中的实际应用
利用角平分线确定角的度数
通过构造角平分线,将一个较大的角分成两个较小的角,从而确定角的度数。
判定方法在多边形中的应用
在多边形中,可以通过作对角线来判定角平分线。如果一个 点到多边形两个相对顶点的距离相等,那么这个点就是角平 分线上的点。
在多边形中,也可以通过作角平分线上的点到对边的垂线来 判定角平分线。如果这条垂线与对边平行,那么这个点就是 角平分线上的点。
03
角平分线的应用
在几何证明题中的应用
角平分线的性质与 判定通用课件
目 录
• 角平分线的性质 • 角平分线的判定 • 角平分线的应用 • 角平分线的作法 • 角平分线的性质与判定的联系与
区别
01
角平分线的性质
定义与性质
角平分线定义
从一个角的顶点出发,将该角分 为两个相等的部分,这条线段被 称为该角的角平分线。
角平分线性质
角平分线将相对边分为两段相等 的线段。
04
角平分线的作法
通过给定角的两边作垂线
总结词
通过角的两边作垂线,可以确定角平 分线。
详细描述
在给定角上,通过角的两边作垂直于 对边的垂线,这两条垂线会在角的顶 点处相交,且交点到角的两边距离相 等,这个交点就是角平分线的交点。
通过给定角的顶点作对边的平行线
总结词
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档