超声波治疗仪应用及原理共24页
超声波疗法ppt课件

禁忌证 注意事项
2
概述
❖ 超声波是指频率在20kHz(千赫兹)以上,不能引 起正常人听觉反应的机械振动波。
❖ 超声波疗法(ultrasound therapy)是应用超声波 作用于人体以达到治疗疾病目的的一种物理治疗方 法,一般常用频率为800kHz~1000kHz。
精品课件
3
概述
❖ 超声波的性质 ❖ 超声波的产生 ❖ 超声波的吸收与穿透
宜小。 ④治疗时间:5min~10min,可酌情延长。 ⑤治疗结束时,将输出调回“0”位,关闭电源,取出声头。 ⑥6~10次为一疗程,可酌情调整。
精品课件
25
治疗方法:固定法
❖ 操作方法: ①涂耦合剂,声头轻压治疗部位。 ②常用剂量:0.1 W/cm2~0.5W/cm2,最大量约为
1/3移动法。 ③每次治疗时间3min~5min。 ④开通、关闭电源顺序及治疗疗程与移动法相同。 ⑤治疗时注意观察,避免过热。
精品课件
31
超声综合治疗法:超声雾化吸入法
❖ 操作方法:
①雾化器水槽内加水,检查各部位连接情况。 ②配制雾化液放入雾化罐中。开启电源,调节雾化量。 ③接上面罩或口含管,嘱患者做慢而深的呼吸。 ④每次治疗10 min~20min,治疗中应密切观察患者反应 ⑤治疗结束,先关雾化开关,再关电源开关,拔除电源。 ⑥每日工作结束后,消毒面具和螺纹管,清洁雾化罐及水槽。
精品课件
4
超声波的性质
❖ 波的概念 ❖ 超声波的传播 ❖ 超声波的声场
精品课件
5
概述:超声波的性质
❖ 波的概念:
❖ 振动的传播称为波
电磁波 机械波
❖ 声波属于机械波
次声( <16Hz ) 声 音 ( 16Hz~20kHz )
第四章 医用超声诊断与治疗仪器PPT课件

回
特点:只能反映声线方向上局
波 强
部组织的回波信息,不能获得临床 度
解剖图,已基本淘汰。
深度(时间)
第四章 医用超. 声诊断与治疗仪器
47
3.3 超声诊断仪的显示型式
二、B型超声(Brightness Mode) 回声以辉度显示
在A型超声诊断仪的工作基础上,加上换能器的平面扫描, 当换能器的位置逐渐改变时(或采用多元换能器),使显示 器上每一条时基线方向也相应地改变,则每条显示线代表了 产生回波的每一个界面的空间位置,从而构成一幅二维图象。 是一种辉度调制仪器。
第四章 医用超. 声诊断与治疗仪器
8
人 能 听 到 声 音 的 频 率 为 20Hz ~ 20000Hz , 其 中 最 敏 感 的 频 率 2000Hz~3000Hz。老年人的听觉随 着年龄而衰退,能听到的频率约为 50Hz~12000Hz。
第四章 医用超. 声诊断与治疗仪器
9
3、医学超声
频 率 200kHz至40MHz之间(常用在1MHz到 范 10MHz,波长在1.5mm至0.15mm) 围
理论上:频率越高,波长越短,超声 诊断的分辨率越好。
第四章 医用超. 声诊断与治疗仪器
10
二、超声波的物理特性
(1)频率:声源在一秒中内振动的次数,记作f。单位为Hz。
(3)波长:沿声波传播方向,振动一个周 期所传播的距离,或在波形上相位相同的相 邻两点间距离,记为λ,单位为m
第四章 医用超. 声诊断与治疗仪器
号并转换成电信号,送入回波信息处理系统。 回波信息处理系统:由射频信号接收放大器、检波器和
视频放大器等组成,处理超声回波信息。 显示器:显示图象信息。 扫描发生器:在振荡器产生的同步脉冲控制下,输出扫
美容仪器超声波原理图

美容仪器超声波原理图
超声波是一种机械波,由能量相对较小的高频声波组成。
在美容仪器中,超声波的原理被广泛应用于皮肤护理和美容治疗。
超声波通过发射装置的震动产生,然后传播到皮肤表面。
该波长较短且能量较高,可以通过皮肤的外层,直达皮肤的深层组织。
超声波的频率通常为1-5兆赫(MHz),这样的频率刚好可以穿透皮肤,但对人体没有任何伤害。
当超声波穿过皮肤时,它会引起皮肤的微小振动。
这种振动刺激皮肤细胞和组织,促进血液循环和新陈代谢。
此外,超声波也可以加速与皮肤细胞之间的相互作用,促进胶原蛋白的生成和修复受损的组织。
超声波美容仪器通常有一个手持式设备和一个超声波探头。
用户可以将探头放在需要治疗的皮肤区域上,然后打开设备开始治疗。
超声波会以较低的频率和较大的能量穿透皮肤,达到深层组织。
超声波技术在美容领域中有多种应用。
它可以用于护肤,帮助皮肤吸收护肤品中的活性成分。
此外,它还可以紧致皮肤、改善皮肤弹性,减少皱纹和细纹的出现。
超声波也可以通过将脂肪细胞震碎来帮助减肥和塑形。
总之,超声波美容仪器利用了超声波的原理,通过刺激皮肤组织和细胞,达到多种美容效果。
这一技术在美容行业中被广泛应用,并受到了许多人的喜爱。
超声波的应用及对应原理

超声波的应用及对应原理1. 超声波技术的基本原理超声波是一种频率高于人耳可听到的声波,通常定义为频率大于20kHz的声波。
超声波技术利用超声波的特性,可以实现诸多应用。
超声波的基本原理包括传播特性、反射特性以及吸收特性。
2. 超声波在医学领域的应用超声波在医学领域有着广泛的应用。
主要应用包括超声波成像、超声检测和超声治疗等。
2.1 超声波成像超声波成像是一种利用超声波的特性来对人体内部器官和病变进行成像的技术。
其原理是利用超声波在介质中传播时的声束会发生折射、反射、散射和衰减的特性,通过探头发射超声波并接收反射回来的波束,然后将这些信号转换成图像。
超声波成像的优点是非侵入性、无辐射,对人体无害。
它在妇产科、肿瘤学、心脏病学等领域有着重要的应用。
2.2 超声检测超声检测是利用超声波的特性对物体进行检测和测量的技术。
通过检测超声波的传播速度、强度和反射程度等参数,可以获取物体的结构信息、缺陷和异常情况。
超声检测广泛应用于材料工程、无损检测和物体测量等领域。
例如,超声波检测可以用于检测金属结构的腐蚀情况、管道的泄漏等。
2.3 超声治疗超声治疗是利用超声波的能量对人体进行治疗的技术。
超声波的能量可以直接作用于生物组织,产生热效应,从而加速组织的新陈代谢和修复。
超声治疗常用于物理治疗、疼痛管理和肿瘤治疗等领域。
例如,超声波可以用于改善关节炎患者的疼痛症状、加速创面愈合等。
3. 超声波在工业领域的应用除了医学领域,超声波技术在工业领域也有广泛的应用。
3.1 超声波清洗超声波清洗利用了超声波的高频振动和微小气泡爆破的特性,可以有效去除物体表面的污垢和油渍。
超声波清洗通常应用于精密零件、光学器件和电子元器件等的清洗过程。
3.2 超声波焊接超声波焊接是利用超声波的高频振动将两个工件粘合在一起的技术。
超声波焊接可以实现无需外加热源、快速高效、无污染的焊接过程,常用于塑料制品、电子元器件等的组装过程。
3.3 超声波测厚超声波测厚是利用超声波的传播速度和反射特性来测量物体的厚度的技术。
超声波的应用与原理

超声波的应用与原理1. 引言超声波是一种具有高频率的机械波,其频率高于人类听觉范围的声波频率。
由于其能够在空气、液体和固体中传播,并且能够通过不同介质的介电常数和密度的变化产生反射、折射和散射现象,因此超声波在许多领域中有着广泛的应用。
2. 超声波的原理超声波的生成是通过压电效应实现的。
当施加电场时,压电晶体会发生压电效应,从而使晶体内部的正负电荷分离产生机械变形,进而产生超声波。
超声波的传播速度与介质的物理性质有关,通常在空气中的传播速度为340m/s,而在水中则为1498m/s。
超声波在传播过程中会发生干涉、衍射、散射等现象,从而可以用来进行物体的探测和成像。
3. 超声波的应用3.1 医疗领域超声波在医疗领域中广泛应用于诊断和治疗。
通过超声波可以观察人体内部器官的情况,如心脏、肝脏、肾脏等,以及胎儿的发育情况。
此外,超声波还可以用于碎石治疗,通过超声波的聚焦作用将激光或超声波能量集中在结石上,从而实现结石的碎裂。
3.2 工业领域超声波在工业领域中也有着重要的应用。
例如在无损测试中,通过发送超声波信号并监测其返回情况,可以检测材料中的缺陷或裂纹,从而判断其质量。
此外,超声波还可以用于液体的清洗、切割和焊接等工艺。
3.3 测量与检测领域超声波在测量与检测领域中也有着广泛的应用。
例如在流体测量中,通过测量超声波在流体中的传播时间和速度,可以计算流量。
此外,超声波还可以用于测量距离、速度、密度、厚度等物理量。
3.4 家电与消费电子产品超声波在家电与消费电子产品中也有一些应用。
例如在清洁设备中,超声波可以产生强烈的物理震荡和高频振动,从而帮助去除污渍。
此外,超声波还可以用于空气湿度的测量和距离传感器等领域。
4. 总结超声波作为一种机械波,具有广泛的应用范围。
其应用领域涵盖了医疗、工业、测量与检测、家电与消费电子产品等多个领域。
通过深入研究超声波的原理,可以不断拓展其应用,实现更多的创新和发展。
超声波原理及作用

超声波原理及作用超声波是指频率高于人耳听觉范围(20Hz - 20kHz)的声波。
在物理学和医学等领域中,超声波被广泛应用于不同的实验和诊断工作中,如探测、成像、清洁等方面。
本文将详细介绍超声波的原理和作用。
一、超声波的原理超声波的产生是通过压电效应实现的。
在压电材料中施加电压会使其发生机械变形,而当施加的电压频率达到压电材料的固有频率时,会产生共振效应,形成超声波。
超声波是由高频振动产生的机械波,其在传播过程中以纵波的形式存在。
相比于其他声波,超声波具有高频率、短波长和高能量的特点,能够在介质中穿透和传播。
二、超声波的作用1. 检测与成像超声波在医学领域中广泛用于人体内部的检测与成像。
通过向人体不同部位发射超声波,并记录其回波情况,可以获得部位的形状、结构和功能信息。
超声波成像技术可以用于检测器官、肿瘤、疾病等,成为非侵入性、安全可靠的检测手段。
2. 清洁与除垢超声波在工业领域中被广泛用于清洗、除垢等工作。
利用超声波的高频振动和局部高压力的变化,可以在液体中产生大量微小气泡,并在气泡瞬间坍缩时释放出巨大能量,达到清洁物体表面和微孔中的目的。
3. 材料加工超声波在材料加工领域也有重要应用。
通过超声波的集中能量和高频振动,可以实现对材料的切割、焊接、拼接等加工工艺。
与传统加工方法相比,超声波加工具有操作简单、速度快、精度高等优点。
4. 医疗治疗超声波在医疗治疗中被用于物理疗法。
通过超声波的声压、热量和微震动等效应,可以促进组织血液循环、淋巴循环和细胞代谢,并有助于舒缓疼痛、消肿、促进伤口愈合等。
5. 其他应用超声波还有许多其他应用领域,如测量、无损检测、测速、材料分析等等。
不同行业根据实际需求可以发展出更多特定应用。
总结:超声波作为一种高频振动的机械波,具有广泛的应用前景。
在医学、工业、科学研究等领域中,超声波的原理和作用对于开展相关工作起着重要的支持作用。
随着科技的发展,超声波技术也将不断创新和进步,为各个领域的发展带来更多机遇和挑战。
超声波治疗仪—搜狗百科

超声波治疗仪—搜狗百科机械超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。
温热人体组织对超声能量有比较大的吸收能力,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。
即内生热。
超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。
一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。
理化超声的机械效应和温热效应均可促发若干物理化学变化。
a.弥散作用:超声波可以提高生物膜的通透性,对钾,钙离子的通透性发生较强的改变。
从而增强生物膜弥散过程,促进物质交换,改善组织营养。
b.触变作用:超声作用下,可使凝胶转化为溶胶状态。
对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。
如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。
c.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。
成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。
d.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。
大分子解聚,是将大分子的化学物变成小分子的过程。
可使关节内增加水解酶和原酶活性增加。
e.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。
缓解炎症所伴有的局部酸中毒。
超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。
使白细胞移动,促进血管生成。
从而达到对受损细胞组织进行清理、激活、修复的过程。
超声波的应用和原理

超声波的应用和原理引言超声波是指频率超过20kHz的声波,不可见但可听到。
超声波因其非常特殊的性质,被广泛应用于各种领域。
本文将介绍超声波的应用和原理。
超声波的应用以下是一些超声波应用的领域:1.医学领域–超声波成像:超声波可以用于医学成像,例如产前检查中的胎儿超声波成像。
它可以提供医生详细的解剖结构信息,帮助诊断疾病。
–超声波治疗:超声波可以用于治疗一些疾病,例如物理治疗中的超声波疗法,可用于缓解肌肉酸痛和关节炎等疼痛症状。
2.工业领域–超声波清洗:超声波在工业领域常用于清洗物体,通过超声波的震动作用可以有效地去除污垢。
–超声波焊接:超声波可以用于塑料零件的焊接,比传统焊接方法更快且效果更好。
3.测量和检测领域–超声波距离测量:超声波传感器可以用于测量物体与传感器之间的距离,被广泛应用于测距仪和自动驾驶汽车中。
–缺陷检测:超声波检测可以用于检测材料中的缺陷,例如金属材料中的裂纹。
4.娱乐领域–声纳:超声波可用于一些游戏、刺激和娱乐项目中。
例如,激活超声波传感器会触发某些反应或声音效果。
超声波的原理超声波是由机械振动产生的纵波,传播速度快于空气中的声速。
其原理基于以下两个重要概念:1.压电效应压电效应是指特定晶体在受到机械应力时会产生电荷分离。
这些晶体被称为压电材料,如石英晶体。
当压电材料被外界施加压力时,材料中的正负电荷会分离,产生电位差。
这个电位差的变化可以转化为超声波信号。
2.声学传感器超声波的探测和发射需要使用声学传感器。
这些传感器一般由压电材料构成,当外界施加压力或电压时,传感器产生超声波信号或接收到超声波信号。
超声波在传播过程中会受到材料的吸收、散射和反射等影响,这些特性可以用于应用领域中的功能。
结论超声波因其特殊的应用和原理,成为许多领域中必不可少的工具。
在医疗、工业、测量和娱乐等领域中,超声波为我们提供了各种各样的技术和便利。
了解超声波的应用和原理,有助于更好地理解和利用这项重要技术的潜力。