初中毕业升学考试(广西贺州卷)数学(解析版)(初三)中考真卷.doc
初中数学广西贺州市中考模拟数学考试卷及答案word版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:在﹣1、0、1、2这四个数中,最小的数是()A. 0 B.﹣1 C. 1 D. 1试题2:分式有意义,则x的取值范围是()A. x≠1 B. x=1 C. x≠﹣1 D. x=﹣1试题3:如图,OA⊥OB,若∠1=55°,则∠2的度数是()A. 35°B. 40°C. 45°D. 60°试题4:未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A. 0.845×104亿元B. 8.45×103亿元C. 8.45×104亿元D. 84.5×102亿元评卷人得分试题5:A、B、C、D 四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A 抽到1号跑道的概率是()A. 1B.C.D.试题6:下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形试题7:不等式的解集在数轴上表示正确的是()A.B.C.D.试题8:如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.试题9:如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()A.12B.15C. 12 D. 15试题10:已知二次函数y=ax2+bx+c(a,b,c 是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.试题11:如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.试题12:张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A. 2 B. 1 C. 6 D. 10试题13:分解因式:a3﹣4a=试题14:已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).试题15:近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x=试题16:已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是试题17:如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.试题18:网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .试题19:计算:(﹣2)0+(﹣1)2014+﹣sin45°;试题20:先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.试题21:已知关于x、y的方程组的解为,求m、n的值.试题22:如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.试题23:学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?试题24:马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.试题25:如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)试题26:如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.试题27:二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.试题1答案:B试题2答案:A试题3答案:A试题4答案:B试题5答案:D试题6答案:C试题7答案:A试题8答案:C试题9答案:D试题10答案:B试题11答案:B试题12答案:C试题13答案:a(a+2)(a﹣2).试题14答案:<试题15答案:22 .试题16答案:0 .试题17答案:50°试题18答案:/2试题19答案:原式=1+1+﹣=2;试题20答案:原式=ab(a+1)•=ab,当a=+1,b=﹣1时,原式=3﹣1=2.试题21答案:解:将x=2,y=3代入方程组得:,②﹣①得: n=,即n=1,将n=1代入②得:m=1,则m=1,n=1.试题22答案:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.试题23答案:解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如图所示:(3)根据题意得:×100%×28000=10500(人次),则估计其中约有10500人次读者是职工.故答案为:(1)16;12.5%试题24答案:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得 x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.试题25答案:解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.试题26答案:(1)证明:∵AB∥CD∴∠ABC+∠BCD=180°∵AB、BC、CD分别与⊙O相切于E、F、G,∴BO平分∠ABC,CO平分∠DCB,∴∠OBC=,∠OCB=,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=90°,∴BO⊥CO.(2)解:连接OF,则OF⊥BC,∴RT△BOF∽RT△BCO,∴=,∵在RT△BOF中,BO=6cm,CO=8cm,∴BC==10cm,∴=,∴BF=3.6cm,∵AB、BC、CD分别与⊙O相切,∴BE=BF=3.6cm,CG=CF,∵CF=BC﹣BF=10﹣3.6=6.4cm.∴CG=CF=6.4cm.试题27答案:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,)代入y=ax2得:a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x, x2),过点P作PB⊥y轴于点B,则BF=x2﹣1,PB=x,∴Rt△BPF中,PF==x2+1,∵PM⊥直线y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).。
【精校】2013年广西贺州市中考数学试卷(含答案)

广西贺州市2013年中考数学试卷一、选择题(共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣3的相反数是()A.﹣B.C.3D.32.(3分)下面各图中∠1和∠2是对顶角的是()A.B.C.D.3.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.(3分)(2013•贺州)下列图形是中心对称图形而不是轴对称图形的是()A.B.C.D.5.(3分)为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A.500名B.600名C.700名D.800名6.(3分)下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x47.(3分)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm38.(3分)把a3﹣2a2+a分解因式的结果是()A.a2(a﹣2)+a B.a(a2﹣2a)C.a(a+1)(a﹣1) D.a(a﹣1)29.(3分)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm10.(3分)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.11.(3分)(2013•贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O 上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是()A.25°或155°B.50°或155°C.25°或130°D.50°或130°12.(3分)2615个位上的数字是()A.2B.4C.6D.8二、填空题(共6小题,每小题3分,满分18分)13.(3分)函数的自变量x的取值范围是x≤2.14.(3分)地球距月球表面约为383900千米,那么这个距离用科学记数法应表示为3.84×105千米.(结果保留三个有效数字)15.(3分)调查市场上某种食品的色素含量是否符合国家标准,这种调查适用抽样调查.(填全面调查或者抽样调查)16.(3分)如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是6π.17.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是①②⑤.(填正确结论的序号)18.(3分)如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积7 .三、解答题(共8小题,满分66分。
2020年中考数学参考答案和试题解析-广西贺州市

故答案为0. 点 本题考查了一元二次方程ax2+bx+c=0(a 0)的根的判别式△=b2﹣4ac:当△>0,方 评: 程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有
实数根. 17.(3分)(2020•贺州)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分 线MN交AC于点D,则∠A的度数是 50° .
评: 3.(3分)(2020•贺州)如图,OA⊥OB,若∠1=55°,则∠2的度数是( )
A.35°
B.40°
C.45°
D.60°
考 余角和补角
点:
分 根据两个角的和为90°,可得两角互余,可得答案.
析: 解 解:∵OA⊥OB,若∠1=55°,
答: ∴∠AO∠=90°, 即∠2+∠1=90°,
=
.
点 本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.
评: 12.(3分)(2020•贺州)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的 周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的 矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形 时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小
评:
二、填空题(每小题3分,共18分) 13.(3分)(2020•贺州)分解因式:a3﹣4a= a(a+2)(a﹣2) .
考 提公因式法与公式法的综合运用. 点: 分 首先提取公因式a,进而利用平方差公式分解因式得出即可. 析: 解 解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2). 答: 故答案为:a(a+2)(a﹣2). 点 此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关
2021年广西贺州市中考数学真题(原卷+解析版)

A.
B.
C.
D.
【答案】A 【解析】 【分析】根据三视图的法则可得出答案.
9
2021年广西贺州市中考数学试卷(原卷+解析)
【详解】解:左视图为从左往右看得到的视图,
A.球的左视图是圆,
B.圆柱的左视图是长方形,
C.圆锥的左视图是等腰三角形, D.圆台的左视图是等腰梯形,
故符合题意的选项是 A.
【点睛】错因分析 较容易题.失分原因是不会判断常见几何体的三视图.
【答案】B
【解析】
【分析】根据同旁内角的概念求解即可.
【详解】解:由图可知,∠1 与∠3 是同旁内角,
∠1 与∠2 是内错角,
∠4 与∠2 是同位角,
故选:B.
【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本
题的关键.
3. 下列事件中属于必然事件的是( )
6. 直线 y ax b ( a 0 )过点 A0,1 , B 2, 0 ,则关于 x 的方程 ax b 0 的解为( )
A. x 0
【答案】C
B. x 1
C. x 2
D. x 3
【解析】
【 分 析 】 关 于 x 的 方 程 ax b 0 的 解 为 函 数 y ax b 的 图 象 与 x 轴 的 交 点 的 横 坐 标 , 由 于 直 线
A. 任意画一个三角形,其内角和是 180°
B. 打开电视机,正在播放新闻联播
8
2021年广西贺州市中考数学试卷(原卷+解析)
C. 随机买一张电影票,座位号是奇数号 D. 掷一枚质地均匀的硬币,正面朝上 【答案】A 【解析】 【分析】根据必然事件的意义,结合具体的问题情境逐项进行判断即可. 【详解】解:A、任意画一个三角形,其内角和是 180°;属于必然事件,故此选项符合题意; B、打开电视机,正 在播放新闻联播;属于随机事件,故此选项不符合题意; C、随机买一张电影票,座位号 是奇数号;属于随机事件,故此选项不符合题意; D、掷一枚质地均匀的硬币,正面朝上;属于随机事件,故此选项不符合题意; 故选:A. 【点睛】本题考查了随机事件、必然事件,理解必然事件的意义是正确判断的前提,结合问题情境判断事 件发生的可能性是正确解答的关键.
广西省贺州市2021年中考数学真题含答案解析

广西省贺州市2021年中考数学真题含答案解析一、选择题(共12题)1、数的倒数是()A .B .C .D .2、如图,下列两个角是同旁内角的是()A .与B .与C .与D .与3、下列事件中属于必然事件的是()A .任意画一个三角形,其内角和是180°B .打开电视机,正在播放新闻联播C .随机买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上4、在平面直角坐标系中,点关于原点对称的点的坐标是()A .(-3 , 2 )B .( 3 ,- 2 )C .(- 2 ,- 3 )D .(- 3 ,- 2 )5、下列四个几何体中,左视图为圆的是()A .B .C .D .6、直线()过点,,则关于的方程的解为()A .B .C .D .7、多项式因式分解为()A .B .C .D .8、若关于的分式方程有增根,则的值为()A . 2B . 3C . 4D . 59、如图,在边长为 2 的等边中,是边上的中点,以点为圆心,为半径作圆与,分别交于,两点,则图中阴影部分的面积为()A .B .C .D .10、如图,在中,,,点在上,,以为半径的与相切于点,交于点,则的长为()A .B .C .D . 111、如图,已知抛物线与直线交于,两点,则关于的不等式的解集是()A .或B .或C .D .12、如,我们叫集合,其中 1 , 2 ,叫做集合的元素.集合中的元素具有确定性(如必然存在),互异性(如,),无序性(即改变元素的顺序,集合不变).若集合,我们说.已知集合,集合,A .- 1B .0C . 1D . 2二、解答题(共8题)1、计算:.2、解不等式组:.3、如图,某大学农学院的学生为了解试验田杂交水稻秧苗的长势,从中随机抽取样本对苗高进行了测量,根据统计结果(数据四舍五入取整),绘制统计图.( 1 )本次抽取的样本水稻秧苗为________ 株;( 2 )求出样本中苗高为的秧苗的株数,并完成折线统计图;( 3 )根据统计数据,若苗高大于或等于视为优良秧苗,请你估算该试验田 90000 株水稻秧苗中达到优良等级的株数.4、如图,一艘轮船离开港沿着东北方向直线航行海里到达处,然后改变航向,向正东方向航行 20 海里到达处,求的距离.5、为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过时,按一级单价收费;当每户每月用水量超过时,超过部分按二级单价收费.已知李阿姨家五月份用水量为,缴纳水费 32 元.七月份因孩子放假在家,用水量为,缴纳水费 51.4元.( 1 )问该市一级水费,二级大费的单价分别是多少?( 2 )某户某月缴纳水费为64.4 元时,用水量为多少?6、如图,在四边形中,,,,交于点,过点作,垂足为,且.( 1 )求证:四边形是菱形;7、如图,在中,,是上的一点,以为直径的与相切于点,连接,.( 1 )求证:平分;( 2 )若,求的值.8、如图,抛物线与轴交于、两点,且,对称轴为直线.( 1 )求该抛物线的函数达式;( 2 )直线过点且在第一象限与抛物线交于点.当时,求点的坐标;( 3 )点在抛物线上与点关于对称轴对称,点是抛物线上一动点,令,当,时,求面积的最大值(可含表示).三、填空题(共6题)1、要使二次根式在实数范围内有意义,的取值范围是 ________ .2、数据 0.000000407 用科学记数法表示为________ .3、盒子里有 4 张形状、大小、质地完全相同的卡片,上面分别标着数字 2 ,3 ,4 ,5 ,从中随机抽出 1 张后不放回,再随机抽出 1 张,则两次抽出的卡片上的数字之和为偶数的概率是________ .4、如图,在矩形中,,分别为,的中点,以为斜边作,,连接,.若,则________ .5、如图,一次函数与坐标轴分别交于,两点,点,分别是线段,6、如图.在边长为 6 的正方形中,点,分别在,上,且,,垂足为,是对角线的中点,连接、则的长为________ .============参考答案============一、选择题1、 D【分析】直接利用倒数的定义求 2 的倒数是;【详解】解: 2 的倒数是;故选: D .【点睛】本题考查倒数;熟练掌握倒数的求法是解题的关键.2、 B【分析】根据同旁内角的概念求解即可.【详解】解:由图可知,∠1 与∠3 是同旁内角,∠1 与∠2 是内错角,∠4 与∠2 是同位角,故选: B .【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本题的关键.3、 A【分析】根据必然事件的意义,结合具体的问题情境逐项进行判断即可.【详解】B 、打开电视机,正在播放新闻联播;属于随机事件,故此选项不符合题意;C 、随机买一张电影票,座位号是奇数号;属于随机事件,故此选项不符合题意;D 、掷一枚质地均匀的硬币,正面朝上;属于随机事件,故此选项不符合题意;故选: A .【点睛】本题考查了随机事件、必然事件,理解必然事件的意义是正确判断的前提,结合问题情境判断事件发生的可能性是正确解答的关键.4、 D【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解.【详解】∵ 两个点关于原点对称时,它们的坐标符号相反,∴ 点关于原点对称的点的坐标是( -3 ,-2 ).故选: D .【点睛】考查了关于原点对称的点的坐标,解题关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5、 A【分析】根据三视图的法则可得出答案 .【详解】解:左视图为从左往右看得到的视图,A. 球的左视图是圆,B. 圆柱的左视图是长方形,C. 圆锥的左视图是等腰三角形,D. 圆台的左视图是等腰梯形,故符合题意的选项是 A.【点睛】错因分析较容易题 . 失分原因是不会判断常见几何体的三视图.6、 C【分析】关于的方程的解为函数的图象与x 轴的交点的横坐标,由于直线过点A (2,0) ,即当x =2 时,函数的函数值为 0 ,从而可得结论.【详解】直线()过点,表明当x =2 时,函数的函数值为 0 ,即方程的解为x =2 .故选: C .【点睛】本题考查了一次函数与一元一次方程的关系,即一元一次方程的解是一次函数的图象与x 轴交点的横坐标,要从数与形两个方面来理解这种关系.先提取公因式,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:故答案选: A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.8、 D【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可 .【详解】解:∵ 分式方程有增根,∴ ,去分母,得,将代入,得,解得.故选: D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.9、 C【分析】由等边中,是边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】是等边三角形,是边上的中点,扇形故选 C .【点睛】本题考查了等边三角形的性质,勾股定理,扇形面积公式,熟练等边三角形性质和扇形面积公式 , 求出等边三角形的高是解题的关键.10、 B【分析】连接OD ,EF ,可得OD ∥ BC ,EF ∥ AC ,从而得,,进而即可解:连接OD ,EF ,∵ 与相切于点,BF 是的直径,∴ OD ⊥ AC ,FE ⊥ BC ,∵ ,∴ OD ∥ BC ,EF ∥ AC ,∴ ,,∵ ,,∴ OD = OB =2 ,AO =5-2=3 ,BF =2×2=4 ,∴ ,,∴ BC = ,BE = ,∴ CE = - = .故选: B .【点睛】本题主要考查圆的基本性质,平行线分线段成比例定理,掌握圆周角定理的推论,添加辅助线,是解题的关键.11、 D【分析】将要求的不等式抽象成两个函数的函数关系问题,根据二次函数图象的对称性,以及两一次函数图象的关系,求出新的一次函数与二次函数的交点,从而写出抛物线在直线上方部分的 x 的取值范围即可.【详解】与关于y 轴对称抛物线的对称轴为y 轴,因此抛物线与直线的交点和与直线的交点也关于y 轴对称设与交点为,则,的解集为:故选 D .【点睛】本题考查了轴对称,二次函数与不等式,数形结合是数学中的重要思想之一,解决函数问题更是如此.理解与关于y 轴对称是解题的关键.12、 C【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可.【详解】解:∵ 集合B 的元素,,可得,∴ ,∴ ,,∴ ,当时,,,,不满足互异性,情况不存在,当时,,(舍),时,,,满足题意,此时,.故选:C【点睛】本题考查集合的互异性、确定性、无序性。
初中毕业升学考试(广西贵港卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西贵港卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣2的绝对值是A. 2B. ﹣2C. 0D. 1【答案】A【解析】试题分析:根据负数的绝对值是它的相反数,可得﹣2的绝对值是2.故选A.考点:绝对值.【题文】下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab6【答案】B.【解析】试题分析:选项A,不是同类项不能合并,错误;选项B,根据单项式乘以单项式的法则可得3a•2b=6ab,正确;选项C,根据幂的乘方运算法则可得(a3)2=a6,错误;选项D,根据积的乘方运算法则可得(ab2)3=a3b6,错误;故选B.考点:单项式乘单项式;幂的乘方与积的乘方.【题文】用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.169000【答案】D.【解析】试题分析:1.69×105=169000,则原来的数是169000,故选D.考点:科学记数法.【题文】在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°【答案】C.【解析】试题分析:在△ABC中,∠A=95°,∠B=40°,根据三角形内角和是180度可得∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.考点:三角形内角和定理.【题文】式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【答案】C.【解析】试题分析:根据二次根式有意义的条件:被开方数是非负数,且分母不为零,可得到x﹣1>0,解得x>1.故选C.考点:二次根式有意义的条件.【题文】在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A. (﹣1,1)B. (﹣1,﹣2)C. (﹣1,2)D. (1,2)【答案】A【解析】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.考点:坐标与图形变化-平移.【题文】从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A. B. C. D.【答案】B.【解析】试题分析:题目中的五个数中,无理数有2个,所以随机抽取一个,则抽到无理数的概率是,故选B.考点:无理数;概率公式.【题文】下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【答案】C.【解析】试题分析:选项A,两组对角分别相等的四边形是平行四边形,命题正确,不合题意;选项B,矩形的对角线相等,命题正确,不合题意;选项C,对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;选项D,对角线互相垂直平分且相等的四边形是正方形,命题正确,不合题意.故选C.考点:命题与定理.【题文】若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【答案】D.【解析】试题分析:已知a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,根据根与系数的关系可得a+b=3,ab=p,再由a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,可得p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,所以p=﹣3符合题意.所以,故选D.考点:根与系数的关系.【题文】如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC ,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A. B. C. D.【答案】B.【解析】试题分析:如图,连接AO,∠BAC=120°,BC=2,∠OAC=60°,可得OC=,即可求得AC=2,设圆锥的底面半径为r,则2πr==π,解得:r=,故选B.考点:圆锥的计算.【题文】如图,抛物线y=与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3) B.(5,) C.(4,) D.(5,3)【答案】B.【解析】试题分析:连接PC、PO、PA,设点P坐标(m,)令x=0,则y=,点C坐标(0,),令y=0则=0,解得x=﹣2或10,∴点A坐标(10,0),点B坐标(﹣2,0),∴S△PAC=S△PCO+S△POA﹣S△AOC=××m+×10×()﹣××10=﹣(m﹣5)2+,∴x=5时,△PA C面积最大值为,此时点P坐标(5,).故选B.考点:抛物线与x轴的交点;二次函数的最值.【题文】如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个 B.2个 C.3个 D.4个【答案】D.【解析】试题分析:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③正确;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=,∴S△OCF:S△OEF==,∴S△OCF=2S△OEF;故④正确;故选D.考点:相似三角形的判定与性质;平行四边形的性质.【题文】8的立方根是.【答案】2.【解析】试题分析:根据立方根的定义可得8的立方根为2.考点:立方根.【题文】分解因式:a2b﹣b=.【答案】b(a+1)(a﹣1).【解析】试题分析:先提取公因式b,再利用平方差公式分解因式即可,即a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.【题文】如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是.【答案】54°.【解析】试题分析:过点C作CF∥a,由平行线的性质可得∠1=∠ACF=36°.再由余角的定义求出∠BCF=90°﹣36°=54°.再由平行线的性质可得CF∥b,即可得∠2=∠BCF=54°..考点:平行线的性质.【题文】如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.【答案】.【解析】试题分析:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,由勾股定理可得BD=,∵弦AD平分∠BAC,∴,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED×AD,∴()2=ED×5,解得DE=.考点:相似三角形的判定与性质;勾股定理;圆周角定理.【题文】如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).【答案】.【解析】试题分析:由∠C=90°,∠BAC=60°,AC=1,可得AB=2,所以扇形BAD的面积是: =,在直角△ABC中,BC=AB•sin60°=2×=,AC=1,所以S△ABC=S△ADE=AC•BC=×1×=.再由扇形CAE的面积是: =,则阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=.考点:扇形面积的计算;旋转的性质.【题文】已知a1=,a2=,a3=,…,an+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).【答案】.【解析】试题分析:把a1代入确定出a2,把a2代入确定出a3,依此类推,得到一般性规律,由题意得a1=,a2=,a3=,…,由此可知,3个一循环,因2016÷3=672,所以a2016的值为.考点:数字规律探究题.【题文】(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程:.【答案】(1)原式=1;(2)x=4.【解析】试题分析:(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:(1)原式=2﹣3﹣1+9×=2﹣3﹣1+3=1;(2)去分母得:x﹣3+x﹣2=3,解得:x=4,经检验x=4是分式方程的解.考点:零指数幂;负整数指数幂;特殊角的三角函数值;实数的运算;解分式方程.【题文】如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.【答案】(1)详见解析;(2)6.【解析】试题分析:(1)连接BD,BD与AE交于点F,连接CF并延长到AB,与AB交于点H,则CH为△ABC的高;(2)根据等腰三角形三线合一的性质可求得AH的长,再由勾股定理求得CH的长,继而求得△ABC的面积,又由AE是△ABC的中线,求得△ACE的面积.试题解析:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,由勾股定理可得CH=4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE=S△ABC=6.考点:作图题;平行四边形的性质.【题文】如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.【答案】(1)点C的坐标为(0,);(2)当x+<﹣时,x的取值范围为x<﹣4或﹣1<x<0.【解析】试题分析:(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系l∴2=﹣+b,解得:b=,∴一次函数解析式为y=x+.联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y=x+.令y=x+中x=0,则y=,∴点C的坐标为(0,).(2)观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当x+<﹣时,x的取值范围为x<﹣4或﹣1<x<0.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;轴对称-最短路线问题.【题文】在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【答案】(1)120;(2)30°,25;(3)375.【解析】试题分析:(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.试题解析:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);(2)“了解”所对应扇形的圆心角的度数为:360°×=30°;×100%=25%,则m的值是25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.考点:折线统计图;用样本估计总体;扇形统计图.【题文】为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.【答案】(1)20%;(2)720<a≤828.【解析】试题分析:(1)题目中的等量关系为:2014年投入科研经费×(1+增长率)2=2016年投入科研经费,设2014至2016年该市投入科研经费的年平均增长率为x,列出方程求解即可;(2)根据题目中的不等关系×100%≤15%,列出不等式,解不等式求解即可.试题解析:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.考点:一元二次方程的应用;一元一次不等式组的应用.【题文】如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.【答案】(1)详见解析;(2).【解析】试题分析:(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据锐角三角函数,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE的长.试题解析:(1)证明:如图1,作OD⊥AC于D,OE⊥AB于E,∵AB=AC,O为BC的中点,∴∠CAO=∠BAO.∵OD⊥AC于D,OE⊥AB于E,∴OD=OE,∵AB经过圆O半径的外端,∴AB是半圆O所在圆的切线;(2)cos∠ABC=,AB=12,得OB=8.由勾股定理,得AO=4.由三角形的面积,得S△AOB=AB•OE=OB•AO,∴OE==,即半圆O所在圆的半径是.考点:切线的判定与性质.【题文】如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C .(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【答案】(1)y=x2+x﹣5;(2)E点坐标为(﹣2,﹣5);(3)存在满足条件的点P,其横坐标为或.【解析】试题分析:(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC 时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED 和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P点坐标的方程,可求得P点坐标.试题解析:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m,m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.考点:二次函数综合题.【题文】如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF ,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.【答案】(1)①详见解析;②6;(2)MN2=ND2+BM2,,理由见解析.【解析】试题分析:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS 证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,在Rt△EFC 中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明NM′2=ND2+DM′2,接下来证明△AMN≌△ANM′,于的得到MN=NM′,最后再由BM=DM′证明即可.试题解析:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.考点:四边形综合题.。
2021年广西贺州市中考数学试卷(附答案详解)
2021年广西贺州市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.(2021·广西壮族自治区贺州市·历年真题)2的倒数是()A. −2B. −12C. 12D. 22.(2021·广西壮族自治区贺州市·历年真题)如图,下列两个角是同旁内角的是()A. ∠1与∠2B. ∠1与∠3C. ∠1与∠4D. ∠2与∠43.(2021·广西壮族自治区贺州市·历年真题)下列事件中属于必然事件的是()A. 任意画一个三角形,其内角和是180°B. 打开电视机,正在播放新闻联播C. 随机买一张电影票,座位号是奇数号D. 掷一枚质地均匀的硬币,正面朝上4.(2021·广西壮族自治区贺州市·历年真题)在平面直角坐标系中,点A(3,2)关于原点对称的点的坐标是()A. (−3,2)B. (3,−2)C. (−2,−3)D. (−3,−2)5.(2021·广西壮族自治区贺州市·历年真题)下列几何体中,左视图是圆的是()A. B. C. D.6.(2021·广西壮族自治区贺州市·历年真题)直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为()A. x=0B. x=1C. x=2D. x=37.(2021·广西壮族自治区贺州市·历年真题)多项式2x3−4x2+2x因式分解为()A. 2x(x−1)2B. 2x(x+1) 2C. x(2x−1) 2D. x(2x+1) 28.(2021·广西壮族自治区贺州市·历年真题)若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A. 2B. 3C. 4D. 59.(2021·广西壮族自治区贺州市·历年真题)如图,在边长为2的等边△ABC中,D是BC边上的中点,以点A为圆心,AD为半径作圆与AB,AC分别交于E,F两点,则图中阴影部分的面积为()A. π6B. π3C. π2D. 2π310.(2021·广西壮族自治区贺州市·历年真题)如图,在Rt△ABC中,∠C=90°,AB=5,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,则CE的长为()A. 12B. 23C. √22D. 111.(2021·广西壮族自治区贺州市·历年真题)如图,已知抛物线y=ax2+c与直线y=kx+m交于A(−3,y1),B(1,y2)两点,则关于x的不等式ax2+c≥−kx+m的解集是()A. x≤−3或x≥1B. x≤−1或x≥3C. −3≤x≤1D. −1≤x≤312.(2021·广西壮族自治区贺州市·历年真题)如M={1,2,x},我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N={x,1,2},我们说M=N.已知集合A={1,0,a},集合B={1a ,|a|,ba},若A=B,则b−a的值是()A. −1B. 0C. 1D. 2二、填空题(本大题共6小题,共18.0分)13.(2021·北京市市辖区·模拟题)若二次根式√x+1在实数范围内有意义,则x的取值范围是______.14.(2021·广西壮族自治区贺州市·历年真题)数据0.000000407用科学记数法表示为______ .15.(2021·广西壮族自治区贺州市·历年真题)盒子里有4张形状、大小、质地完全相同的卡片,上面分别标着数字2,3,4,5.从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为偶数的概率是______ .16.(2021·广西壮族自治区贺州市·历年真题)如图,在矩形ABCD中,E,F分别为BC,DA的中点,以CD为斜边作Rt△GCD,GD=GC,连接GE,GF.若BC=2GC,则∠EGF=______ .17.(2021·广西壮族自治区贺州市·历年真题)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的标为______ .18.(2021·广西壮族自治区贺州市·历年真题)如图.在边长为6的正方形ABCD中,点E,F分别在BC,CD上,BC=3BE且BE=CF,AE⊥BF,垂足为G,O是对角线BD的中点,连接OG、则OG的长为______ .三、解答题(本大题共8小题,共66.0分)19. (2021·广西壮族自治区贺州市·历年真题)计算:√4+(−1)0+|π−2|−√3tan30°.20. (2021·广西壮族自治区贺州市·历年真题)解不等式组:{2x +5>5x +2①3(x −1)<4x②.21. (2021·广西壮族自治区贺州市·历年真题)如图,某大学农学院的学生为了解试验田杂交水稻秧苗的长势,从中随机抽取样本对苗高进行了测量,根据统计结果(数据四舍五入取整),绘制统计图.(1)本次抽取的样本水稻秧苗为______ 株;(2)求出样本中苗高为17cm 的秧苗的株数,并完成折线统计图;(3)根据统计数据,若苗高大于或等于15cm 视为优良秧苗,请你估算该试验田90000株水稻秧苗中达到优良等级的株数.22.(2021·广西壮族自治区贺州市·历年真题)如图,一艘轮船离开A港沿着东北方向直线航行60√2海里到达B处,然后改变航向,向正东方向航行20海里到达C处,求AC的距离.23.(2021·广西壮族自治区贺州市·历年真题)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过12m3时,按一级单价收费;当每户每月用水量超过12m3时,超过部分按二级单价收费.已知李阿姨家五月份用水量为10m3,缴纳水费32元.七月份因孩子放假在家,用水量为14m3,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?24.(2021·广西壮族自治区贺州市·历年真题)如图,在四边形ABCD中,AD//BC,∠C=90°,∠ADB=∠BDC,DE交BC于点E,过点E作EF⊥∠ABD=12BD,垂足为F,且EF=EC.(1)求证:四边形ABED是菱形;(2)若AD=4,求△BED的面积.25.(2021·广西壮族自治区贺州市·历年真题)如图,在Rt△ABC中,∠C=90°,D是AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE,DE.(1)求证:AE平分∠BAC;(2)若∠B=30°,求CE的值.DE26.(2021·广西壮族自治区贺州市·历年真题)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(−1,0),对称轴为直线x=2.(1)求该抛物线的函数达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).答案和解析1.【答案】C【知识点】倒数【解析】解:2的倒数1,2故选:C.求一个数的倒数就是把这个数的分子分母交换位置即可,互为倒数的两个数的乘积为1.本题考查实数的性质,做此类型的题目关键在于对实数相关概念(如倒数等)的理解.2.【答案】B【知识点】同位角、内错角、同旁内角【解析】解:A、∠1与∠2是内错角,不是同旁内角,故本选项不符合题意;B、∠1与∠3是同旁内角,故本选项符合题意;C、∠1与∠4是对顶角,不是同旁内角,故本选项不符合题意;D、∠2与∠4是同位角,不是同旁内角,故本选项不符合题意;故选:B.根据同位角、内错角、同旁内角的定义逐个判断即可.本题考查了对顶角,同位角、内错角、同旁内角的定义,能熟记同位角、内错角、同旁内角的定义的内容是解此题的关键.3.【答案】A【知识点】三角形内角和定理、随机事件【解析】解:A.任意画一个三角形,其内角和是180°,是必然事件,因此选项A符合题意;B.打开电视机,有可能播放新闻联播,也有可能不是,是个随机事件,因此选项B不符合题意;C.随机买一张电影票,座位号有可能是奇数号,也有可能是偶数号,是随机事件,因此选项C不符合题意;D.掷一枚质地均匀的硬币,可能正面朝上,也可能正面朝下,是随机事件,因此选项D 不符合题意;故选:A.根据必然事件的意义,结合具体的问题情境逐项进行判断即可.本题考查随机事件、必然事件,理解必然事件的意义是正确判断的前提,结合问题情境判断事件发生的可能性是正确解答的关键.4.【答案】D【知识点】中心对称中的坐标变化【解析】解:点(3,2)关于原点对称的点的坐标是:(−3,−2).故选:D.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.5.【答案】A【知识点】作图-三视图【解析】解:A.球的左视图是圆,故本选项符号题意;B.圆柱的左视图是矩形,故本选项不合题意;C.圆锥的左视图是等腰三角形,故本选项不合题意;D.圆台的左视图是等腰梯形,故本选项不合题意;故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.【答案】C【知识点】一次函数与一元一次方程的关系【解析】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(2,0),∴方程ax+b=0的解是x=2,故选:C.所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.此题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0(a,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.7.【答案】A【知识点】提公因式法与公式法的综合运用【解析】解:原式=2x(x2−2x+1)=2x(x−1)2.故选:A.先提取公因式2x,再利用完全平方公式分解因式得出答案.此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.8.【答案】D【知识点】分式方程的增根【解析】解:方程两边同时乘(x−3)得:m+4=3x+2(x−3),m+2,解得:x=15∵方程有增根,∴x−3=0,∴x=3,m+2=3,∴15∴m=5,故选:D.方程两边同时乘(x−3),将分式方程转化为整式方程,求出方程的解,根据方程增根,得到x=3,从而列出方程求出m的值.本题考查了分式方程的增根,理解增根产生的原因是解题的关键.9.【答案】C【知识点】扇形面积的计算、等边三角形的性质【解析】解:连接AD,如图所示:∵D是BC边上的中点,∴AD⊥BC,∵△ABC是等边三角形,∴∠B=60°,BC=AB=2,∴AD=AB⋅sin60°=2×√32=√3,∴阴影部分的面积=60π×(√3)2360=12π.故选:C.首先求得圆的半径,然后根据扇形的面积公式即可求解.本题主要考查了扇形的面积的计算、三角函数、切线的性质、等边三角形的性质;由三角函数求出AD是解决问题的关键.10.【答案】B【知识点】切线的性质【解析】解:连接OD,过点O作OF⊥BC于F,则BF=EF,∵AC是⊙O的切线,∴OD⊥AC,∵∠C=90°,OF⊥BC,∴OD//BC,四边形ODCF为矩形,∴△AOD∽△ABC,CF=OD=2,∴ODBC =AOAB,即2BC=5−25,解得:BC=103,∴BF=BC−CF=103−2=43,∴BE=2BF=83,∴CE=BC−BE=103−83=23,故选:B.连接OD,过点O作OF⊥BC于F,根据垂径定理得到BF=EF,根据矩形的性质得到CF=OD=2,证明△AOD∽△ABC,根据相似三角形的性质求出BC,计算即可.本题考查的是切线的性质、垂径定理、相似三角形的判定和性质,解题的关键是能够利用切线的性质构造矩形.11.【答案】D【知识点】二次函数与不等式(组)【解析】解:∵y=kx+m与y=−kx+m的图象关于y轴对称,∴直线y=−kx+m与抛物线y=ax2+c的交点A′、B′与点A、B也关于y轴对称,如图所示:∵A(−3,y1),B(1,y2),∴A′(3,y1),B(−1,y2),根据函数图象得:不等式ax2+c≥−kx+m的解集是−1≤x≤3,故选:D.y=kx+m与y=−kx+m的图象关于y轴对称,利用数形结合思想,把不等式的解集转化为图象的交点问题求解.本题考查了二次函数与不等式的关系,关键是利用数形结合的思想,把不等式解集转化为图象的交点问题.12.【答案】C【知识点】绝对值、代数式求值【解析】解:∵A=B,a≠0,1a≠0,∴ba =0,1a=1,|a|=a或ba=0,1a=a,|a|=1,∴b=0,a=1(舍去)或b=0,a=−1,∴b−a=0−(−1)=1,故选:C.根据集合的定义和集合相等的条件即可判断.本题以集合为背景考查了代数式求值,关键是根据集合的定义和性质求出a,b的值.13.【答案】x≥−1【知识点】二次根式的概念【解析】解:若二次根式√x+1在实数范围内有意义,则:x+1≥0,解得x≥−1.故答案为:x≥−1.根据二次根式的性质可求出x的取值范围.主要考查了二次根式的意义和性质:概念:式子√a(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.【答案】4.07×10−7【知识点】科学记数法-绝对值较小的数【解析】解:0.000000407=4.07×10−7.故答案为:4.07×10−7.绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.【答案】13【知识点】用列举法求概率(列表法与树状图法)【解析】解:画树状图如图:共有12种等可能的结果,两次抽出的卡片上的数字之和为偶数的结果有4种,∴两次抽出的卡片上的数字之和为偶数的概率为412=13,故答案为:13.画树状图,共有12种等可能的结果,两次抽出的卡片上的数字之和为偶数的结果有4种,再由概率公式求解即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】45°【知识点】等腰直角三角形、矩形的性质【解析】解:∵CD为斜边作Rt△GCD,GD=GC,∴∠GDC=∠GCD=45°,∠DGC=90°,∴∠FDG=∠FDC+∠CDG=90°+45°=135°,∵E,F分别为BC,DA的中点,BC=2GC,∴DF=DG,CE=CG,∴∠DGF=∠∠DFG=12(180°−∠FDG)=12×45°=22.5°,同理,可得∠CEG=∠CGE=12(180°−∠ECG)=12×45°=22.5°,∴∠EGF=∠DGC−∠DGF−EGC=90°−22.5°−22.5°=45°.故答案为:45°.由CD为斜边作Rt△GCD,GD=GC,得△CDG是等腰三角形,∠GDC=∠GCD=45°,∠DGC=90°,再由E,F分别为BC,DA的中点,BC=2GC,得DF=DG,CE=CG,得∠DGF和∠CEG的度数,∠EGF=∠DGC−∠DGF−EGC,即可求解.本题考查了等腰直角三角形和矩形的性质,熟练掌握等腰直角三角形两腰相等两底角都是45°的性质是解题的关键.17.【答案】(−2√2,4−2√2)【知识点】一次函数图象上点的坐标特征、一次函数的性质【解析】解:∵一次函数y=x+4与坐标轴交于A、B两点,y=x+4中,令x=0,则y=4;令y=0,则x=−4,∴AO=BO=4,∴△AOB是等腰直角三角形,∴∠ABO=45°,过P作PD⊥OC于D,则△BDP是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,在△PCB和△OPA中,{∠PBC =∠OAP ∠PCB =∠OPA OP =PC,∴△PCB≌△OPA(AAS),∴AO =BP =4,∴Rt △BDP 中,BD =PD =BP √2=2√2,∴OD =OB −BD =4−2√2,∵PD =BD =2√2,∴P(−2√2,4−2√2),故答案为(−2√2,4−2√2).先根据一次函数的解析式,可以求得点A 和点B 的坐标,依据等腰三角形的性质以及全等三角形的判定和性质,即可得到点P 的坐标.本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.18.【答案】【知识点】全等三角形的判定与性质、正方形的性质【解析】解:以B 为原点,BC 所在直线为x 轴,建立直角坐标系,如图:∵四边形ABCD 是正方形,边长为6,∴AB =BC =6,∠ABE =∠BCF =90°,∵BC =3BE ,BE =CF ,∴BE =CF =2,∴E(2,0),F(6,2),A(0,6),D(6,6),设直线AE 解析式为y =ax +b ,则{0=2a +b 6=b, 解得{a =−3b =6,∴直线AE 解析式为y =−3x +6,设直线BF 解析式为y =cx ,则2=6c ,解得c =13,∴直线BF 解析式为y =13x ,由{y =−3x +6y =13x 得{x =95y =35, ∴G(95,35),∵O 为BD 中点,∴O(3,3),∴OG =√(3−95)2+(3−35)2=6√55, 故答案为:6√55. 以B 为原点,BC 所在直线为x 轴,建立直角坐标系,根据已知求出A 、E 、F 、D 、O 的坐标,从而得AE 、BF 解析式,可求G 坐标,即可得到OG 的长度.本题考查正方形的性质及应用,解题的关键是以B 为原点,BC 所在直线为x 轴,建立直角坐标系,求出O 和G 的坐标.19.【答案】解:原式=2+1+π−2−√3×√33=2+1+π−2−1=π.【知识点】特殊角的三角函数值、零指数幂、实数的运算【解析】直接利用零指数幂的性质以及绝对值的性质和二次根式的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了零指数幂的性质以及绝对值的性质和二次根式的性质、特殊角的三角函数值,正确化简各数是解题关键.20.【答案】解:解不等式①,得:x <1,解不等式②,得:x >−3,则不等式组的解集为−3<x <1.【知识点】一元一次不等式组的解法【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】500【知识点】扇形统计图、用样本估计总体、近似数、折线统计图【解析】解:(1)本次抽取的样本水稻秧苗为:80÷16%=500(株);故答案为:500;(2)苗高为14cm的秧苗的株数有500×20%=100(株),苗高为17cm的秧苗的株数有500−40−100−80−160=120(株),补全统计图如下:=64800(株),(3)90000×500−(40+100)500答:估算该试验田90000株水稻秧苗中达到优良等级的株数有64800株.(1)根据苗高为15cm的秧苗的株数和所占的百分比求出总株数即可;(2)分别求出苗高为14cm、17cm的秧苗的株数,从而补全统计图;(3)用总株数乘以苗高大于或等于15cm的株数所占的百分比即可.此题考查了折线统计图和扇形统计图的综合,解题的关键是根据苗高为15cm的秧苗的株数和所占的百分比求出总株数.22.【答案】解:延长CB交AD于点D,则∠ADB=90°,由题意可知∠DAB=45°,∴∠ABD=90°−∠DAB=45°,∴∠ABD=∠DAB,∴AD=BD,在Rt△ABD中,∵AB =60√2海里,sin∠DAB =BD AB ,∴AD =BD =AB ⋅sin45°=60√2×√22=60(海里),∵BC =20海里,∴DC =60+20=80(海里),在Rt △ADC 中,由勾股定理得,AC =√AD 2+DC 2=√602+802=100(海里),答:AC 的距离为100海里.【知识点】解直角三角形的应用【解析】延长CB 交AD 于点D ,在Rt △ABD 中,根据三角函数的定义求出AD ,BD ,进而求出DC ,在Rt △ADC 中,由勾股定理得即可求出AC .本题主要考查了解直角三角形的应用,正确作出辅助线构造出直角三角形是解决问题的关键. 23.【答案】解:(1)设该市一级水费的单价为x 元,二级水费的单价为y 元,依题意得:{10x =3212x +(14−12)y =51.4, 解得:{x =3.2y =6.5. 答:该市一级水费的单价为3.2元,二级水费的单价为6.5元.(2)∵3.2×12=38.4(元),38.4<64.4,∴用水量超过12m 3.设用水量为am 3,依题意得:38.4+6.5(a −12)=64.4,解得:a =16.答:当缴纳水费为64.4元时,用水量为16m 3.【知识点】一元一次方程的应用、二元一次方程组的应用【解析】(1)设该市一级水费的单价为x 元,二级水费的单价为y 元,根据“李阿姨家五月份用水量为10m 3,缴纳水费32元.七月份用水量为14m 3,缴纳水费51.4元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)求出用水量为12m 3时的水费,由该值小于64.4元可得出用水量超过12m 3,设用水量为am 3,利用应缴纳水费=用水量为12m 3时的水费+6.5×超过12m 3的部分,即可得出关于a 的一元一次方程,解之即可得出结论.本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.24.【答案】(1)证明:∵∠C=90°,∴EC⊥DC,∵EF⊥BD,EF=EC,∴DE是∠BDC的平分线,∴∠EDB=∠EDC,∵∠ADB=12∠BDC,∴∠ADB=∠EDB,∵∠ADB=∠ABD,∴∠ABD=∠EDB,∴AB//DE,∵AD//BC,∴AD//BE,∴四边形ABED是平行四边形,∵∠ADB=∠ABD,∴AB=AD,∴四边形ABED是菱形;(2)解:由(1)知,四边形ABED是菱形,∴DE=BE=AD=4,∵AD//BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠EDB=∠EDC=∠ADB,∴∠EDC=30°,∴CD=DE⋅cos30°=4×√32=2√3,∴S△BED=12BE⋅CD=12×4×2√3=4√3.【知识点】特殊角的三角函数值、直角梯形*、菱形的判定与性质、三角形的面积【解析】(1)根据已知条件证得DE 是∠BDC 的平分线,得到∠EDB =∠EDC ,进而证得∠ABD =∠EDB ,得到AB//DE ,根据平行四边形的判定证得四边形ABED 是平行四边形,再证得AB =AD ,可得四边形ABED 是菱形;(2)根据平行线的性质证得∠ADC =90°,进而推出∠EDC =30°,由三角函数的定义求出CD ,根据三角形的面积公式即可求出△BED 的面积.本题主要考查了菱形的判定和性质,三角形的面积公式,角平分线的判定,由角平分线的性质结合已知条件推出∠ABD =∠EDB 是解决问题的关键.25.【答案】(1)证明:连接OE ,∵BC 是⊙O 的切线,∴OE ⊥BC ,即∠OEB =90°,∵∠C =90°,∴OE//AC ,∴∠OEA =∠EAC ,∵OE =OA ,∴∠OEA =∠OAE ,∴∠OAE =∠EAC ,即AE 平分∠BAC ;(2)解:∵AD 为⊙O 的直径,∴∠AED =90°,∵∠OAE =∠EAC ,∠C =90°,∴△DAE∽△EAC , ∴CE DE =AE AD , ∵∠C =90°,∠B =30°,∴∠BAC =90°−30°=60°,∴∠DAE =12∠BAC =30°,∵cos∠DAE =AE AD ,cos30°=√32, ∴CE DE =AE AD =√32. 【知识点】圆周角定理、切线的性质【解析】(1)连接OE ,根据切线的性质得到∠OEB =90°,进而得到OE//AC ,根据平行线的性质得到∠OEA =∠EAC ,根据等腰三角形的性质得到∠OEA =∠OAE ,根据角平分线的定义证明结论;(2)根据圆周角定理得到∠AED =90°,证明△DAE∽△EAC ,根据相似三角形的性质得到CE DE =AEAD ,根据余弦的定义计算,得到答案.本题考查的是切线的性质、圆周角定理、相似三角形的判定和性质、锐角三角函数的定义,根据圆的切线垂直于经过切点的半径得到OE ⊥BC 是解题的关键. 26.【答案】解:(1)抛物线过A(−1,0),对称轴为x =2,∴{0=(−1)2+b ×(−1)+c−b 2×1=2,解得{b =−4c =−5, ∴抛物线表达式为y =x 2−4x −5;(2)过点C 作CE ⊥x 轴于点E ,∵∠CAB =45°,∴AE =CE ,设点C 的横坐标为x c ,则纵坐标为y c =x c +1,∴C(x c ,x c +1),代入y =x 2−4x −5得,x c +1=x c 2−4x c −5,解得x c =−1(舍去),x c =6,∴y c =7,∴点C 的坐标是(6,7);(3)由(2)得C 的坐标是(6,7),∵对称轴x =2,∴点D 的坐标是(−2,7),∴CD =8,∵CD与x轴平行,点P在x轴下方,设△PCD以CD为底边的高为h,则ℎ=|y p|+7,∴当|y p|取最大值时,△PCD的面积最大,∵1≤x p≤a,1≤a≤5,①当1≤a≤2时,1≤x p<2,此时y=x2−4x−5在1≤x p≤a上y随x的增大而减小,∴|y p|max=|a2−4a−5|=5+4a−a2,∴ℎ=|y p|+7=12+4a−a2,∴△PCD的最大面积为:S max=12×CD×ℎ=12×8×(12+4a−a2)=48+16a−4a2;②当2≤a≤5时,此时y=x2−4x−5的对称轴x=2含于1≤x p≤a内,∴|y p|max=|22−4×2−5|=9,∴ℎ=9+7=16,∴△PCD的最大面积为S max=12×CD×ℎ=12×8×16=64,综上所述:当1≤a≤2时,△PCD的最大面积为48+16a−4a2;当2≤a≤5时,△PCD的最大面积为64.【知识点】二次函数综合【解析】(1)把A点代入抛物线,再由对称轴公式可得解析式.(2)过点C作CE⊥x轴于点E,得AE=CE,设点C的横坐标为x c,则纵坐标为y c=x c+1,把点C代入抛物线得C的坐标.(3)有对称可得D的坐标,即可求出CD=8,设△PCD以CD为底边的高为h,则ℎ=|y p|+ 7,当|y p|取最大值时,△PCD的面积最大,分情况讨论,①当1≤a≤2时,1≤x p<2,此时y=x2−4x−5在1≤x p≤a上y随x的增大而减小,|y p|max=|a2−4a−5|=5+4a−a2,△PCD的最大面积为S max=12×CD×ℎ=48+16a−4a2,②当2≤a≤5时,此时y=x2−4x−5的对称轴x=2含于1≤x p≤a内,|y p|max=|22−4×2−5|=9,△PCD的最大面积为S max=12×CD×ℎ=64,本题考查二次函数的综合运用,涉及到的相关知识点有代入法求解析式,抛物线与直线的相交求交点坐标,二次函数的性质,解本题的关键是掌握数形结合思想和二次函数的性质.。
初中毕业升学考试(广西桂林卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(广西桂林卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列实数中小于0的数是()A.2016 B.﹣2016 C. D.【答案】B.【解析】试题分析:已知﹣2016是负数,根据正数大于负数0,0大于负数可得﹣2016<0,故答案选B.考点:实数大小比较.【题文】如图,直线a∥b,c是截线,∠1的度数是()A.55° B.75° C.110° D.125°【答案】A.【解析】试题分析:已知直线a∥b,根据平行线的性质可得∠1=55°,故答案选A.考点:平行线的性质.【题文】一组数据7,8,10,12,13的平均数是()A.7 B.9 C.10 D.12【答案】C.【解析】试题分析:平均数是指在一组数据中所有数据之和再除以数据的个数,根据平均数的定义可得这组数据的平均数为(7+8+10+12+13)÷5=50÷5=10,故答案选C.考点:算术平均数.【题文】下列几何体的三视图相同的是()评卷人得分A.圆柱 B.球 C.圆锥 D.长方体【答案】B.【解析】试题分析:选项A、圆柱的三视图,如图所示,不合题意;选项B、球的三视图,如图所示,符合题意;选项C、圆锥的三视图,如图所示,不合题意;选项D、长方体的三视图,如图所示,不合题意;.故答案选B.考点:简单几何体的三视图.【题文】下列图形一定是轴对称图形的是()A.直角三角形 B.平行四边形 C.直角梯形 D.正方形【答案】D.试题分析:根据轴对称图形的概念可得选项A直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;选项B平行四边形不是轴对称图形,本选项错误;选项C、直角梯形不是轴对称图形,本选项错误;选项D、正方形是轴对称图形,本选项正确.故答案选D.考点:轴对称图形.【题文】计算3﹣2的结果是()A. B.2 C.3 D.6【答案】A.【解析】试题分析:根据二次根式的加减运算法则可得原式=(3﹣2)=.故答案选A.考点:二次根式的加减法.【题文】下列计算正确的是()A.(xy)3=xy3 B.x5÷x5=x C.3x2•5x3=15x5 D.5x2y3+2x2y3=10x4y9【答案】C.【解析】试题分析:选项A、根据积的乘方运算法则可得原式=x3y3,错误;选项B、根据同底数幂的乘法法则可得原式=1,错误;选项C、根据单项式乘单项式法则可得原式=15x5,正确;选项D、根据合并同类项可得原式=7x2y3,错误,故答案选C.考点:整式的运算.【题文】如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【答案】D.【解析】试题分析:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,已知直线y=ax+b过B(﹣3,0),所以方程ax+b=0的解是x=﹣3,故答案选D.考点:一次函数与一元一次方程.【题文】当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.9【答案】C.试题分析:()•==,当x=6,y=3时,原式=,故答案选C .考点:分式的化简求值.【题文】若关于x的一元二次方程(k-1)x₂+4x+1=0有两个不相等的实数根,则k的取值范围是( )A. k<5B. k<5且k≠1C. k≤5且k≠1D. k>5【答案】B【解析】∵关于x的一元二次方程方程(k−1)x2+4x+1=0有实数根,∴解得:且k≠1.故选C.【题文】如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE ,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.π B. C.3+π D.8﹣π【答案】D.【解析】试题分析:作DH⊥A E于H,已知∠AOB=90°,OA=3,OB=2,根据勾股定理求出AB=,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,所以DH=OB=2,所以阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故答案选D.考点:扇形面积的计算;旋转的性质.【题文】已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP 为等腰三角形的点P的个数有()A.3个 B.4个 C.5个 D.6个【答案】A.【解析】试题分析:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故答案选A.考点:二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【题文】分解因式: x2﹣36=.【答案】(x+6)(x﹣6).【解析】试题分析:利用平方差公式分解即可,即原式=(x+6)(x﹣6).考点:分解因式.【题文】若式子在实数范围内有意义,则x的取值范围是.【答案】:x≥1.【解析】试题分析:已知式子在实数范围内有意义,根据二次根式有意义的条件可得x﹣1≥0,解得x≥1.考点:二次根式有意义的条件.【题文】把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是.【答案】.【解析】试题分析:已知数字为3的倍数的扑克牌一共有3张,且共有9张扑克牌,根据概率公式可得抽出的牌上的数恰为3的倍数的概率P==.考点:概率公式.【题文】正六边形的每个外角是度.【答案】60.【解析】试题分析:正多边形的外角和是360度,且每个外角都相等,据此可得正六边形的一个外角度数是360÷6=60°.考点:多边形内角与外角.【题文】如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.【答案】.【解析】试题分析:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【题文】如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P ,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是.【答案】π.【解析】试题分析:如图点P运动的路径是以G为圆心的弧,在⊙G上取一点H,连接EH、FH.∵四边形AOCB是正方形,∴∠AOC=90°,∴∠AFP=∠AOC=45°,∵EF是⊙O直径,∴∠EAF=90°,∴∠APF=∠AFP=45°,∴∠H=∠APF=45°,∴∠EGF=2∠H=90°,∵EF=4,GE=GF,∴EG=GF=2,∴的长==π.考点:轨迹;正方形的性质;旋转的性质.【题文】计算:﹣(﹣4)+|﹣5|+﹣4tan45°.【答案】6.【解析】试题分析:先去括号、计算绝对值、零指数幂、三角函数值,再计算乘法、减法即可.试题解析:原式=4+5+1﹣4×1=6.考点:实数的运算.【题文】解不等式组:.【答案】2<x≤5.【解析】试题分析:先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.试题解析:解①得:x>2,解②得x≤5.则不等式组的解集是:2<x≤5.考点:解一元一次不等式组.【题文】如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.【答案】(1)图见解析;(2)详见解析.【解析】试题分析:(1)根据题意,画出图形即可;(2)利用SAS证得△BEO≌△DFO,根据全等三角形的对应边相等即可得结论.试题解析:(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,∴OB=OD,OA=OC.又∵E,F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF.∵在△BEO与△DFO中,,∴△BEO≌△DFO(SAS),∴BE=DF.考点:平行四边形的性质;全等三角形的判定与性质.【题文】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统汁图,请根据图中信息解答下列问题:(l)本次抽取样本容量为____,扇形统计图中A类所对的圆心角是____度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?【答案】(1)50,72;(2)详见解析;(3)90名.【解析】试题分析:(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.试题解析:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.考点:条形统计图;用样本估计总体;扇形统计图.【题文】已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.【答案】(1)10;(2)r=.【解析】试题分析:(1)先根据BC、AC、AB的长求出P,再代入到公式S=即可求得S的值;(2)根据公式S=r(AC+BC+AB),代入可得关于r的方程,解方程得r的值.试题解析:(1)∵BC=5,AC=6,AB=9,∴p===10,∴S===10;故△ABC的面积10;(2)∵S=r(AC+BC+AB),∴10=r(5+6+9),解得:r=,故△ABC的内切圆半径r=.考点:三角形的内切圆与内心;二次根式的应用.【题文】五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【答案】(1) 甲、乙两种救灾物品每件的价格各是70元、60元;(2) 需筹集资金125000元.【解析】试题分析:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据“用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同”列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据”该爱心组织按照此需求的比例购买这2000件物品”列出方程,求解即可.试题解析:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得, =,解得:x=60.经检验,x=60是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.考点:分式方程的应用;一元一次方程的应用.【题文】如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.【答案】(1)详见解析;(2);(3)圆心O到弦ED的距离为.【解析】试题分析:(1)如图1,连结CO.先由勾股定理求出AC=10,再利用勾股定理的逆定理证明△ACD是直角三角形,∠C=90°,那么OC为Rt△ACD斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半得出OC=AD=r,即点C在圆O上;(2)如图2,延长BC、DE交于点F,∠BFD=90°.根据同角的余角相等得出∠CDE=∠ACB.在Rt△ABC中,利用正切函数定义求出tan∠ACB==,则tan∠CDE=tan∠ACB=;(3)如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,根据相似三角形对应边成比例求出CF=,那么BF=BC+CF=.再证明四边形ABFE是矩形,得出AE=BF=,所以OG=AE=.试题解析:(1)证明:如图1,连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠C=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AED=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.考点:圆的综合题.【题文】如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C 停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.【答案】(1)A(2,1)、C(0,1)、D(﹣2,1);(2)a=﹣,y2=x2+2x+1;(3)S=t2(0≤t≤1)或S=﹣(1<t≤2).【解析】试题分析:(1)直接将点A的坐标代入y1=ax2﹣2ax+1得出m的值,因为由图象可知点A在第一象限,所以m≠0,则m=2,写出A,C的坐标,点D与点A关于点C对称,由此写出点D的坐标;(2)根据顶点坐标公式得出抛物线y1的顶点B的坐标,再由矩形对角线相等且平分得:BC=CD,在直角△BMC中,由勾股定理列方程求出a的值得出抛物线y1的解析式,由旋转的性质得出抛物线y2的解析式;(3)分两种情况讨论:①当0≤t≤1时,S=S△GHD=S△PDH+S△PDG,作辅助线构建直角三角形,求出PG 和PH,利用面积公式计算;②当1<t≤2时,S=S直角三角形+S矩形﹣S不重合,这里不重合的图形就是△GE′F,利用30°角和60°角的直角三角形的性质进行计算得出结论.试题解析:(1)由题意得:将A(m,1)代入y1=ax2﹣2ax+1得:am2﹣2am+1=1,解得:m1=2,m2=0(舍),∴A(2,1)、C(0,1)、D(﹣2,1);(2)如图1,由(1)知:B(1,1﹣a),过点B作BM⊥y轴,若四边形ABDE为矩形,则BC=CD,∴BM2+CM2=BC2=CD2,∴12+(﹣a)2=22,∴a=,∵y1抛物线开口向下,∴a=﹣,∵y2由y1绕点C旋转180°得到,则顶点E(﹣1,1﹣),∴设y2=a(x+1)2+1﹣,则a=,∴y2=x2+2x+1;(3)如图1,当0≤t≤1时,则DP=t,构建直角△BQD,得BQ=,DQ=3,则BD=2,∴∠BDQ=30°,∴PH=,PG=t,∴S=(PE+PF)×DP=t2,如图2,当1<t≤2时,EG=E′G=(t﹣1),E′F=2(t﹣1),S不重合=(t﹣1)2,S=S1+S2﹣S不重合=+(t﹣1)﹣(t﹣1)2,=﹣;综上所述:S=t2(0≤t≤1)或S=﹣(1<t≤2).考点:二次函数综合题.。
【最新人教版初中数学精选】2020年广西贺州市中考数学试卷.doc
2020年广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A. B.C.D.3.(3分)下列式子中是分式的是()A.B.C. D.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×1045.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S 甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定 D.无法确定6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:48.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A.B.C.D.9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.412.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4) B.(4,4) C.(4,5) D.(3,5)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2020+﹣(π﹣3)0+2cos30°.20.(6分)先化简,再求值:÷(1+),其中x=+1.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O 于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E 作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2020年广西贺州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)(2020•贺州)的倒数是()A.﹣2 B.2 C.D.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)(2020•贺州)下列各图中,∠1与∠2互为邻补角的是()A. B.C.D.【分析】根据邻补角的定义作出判断即可.【解答】解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.(3分)(2020•贺州)下列式子中是分式的是()A.B.C. D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.4.(3分)(2020•贺州)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将318000用科学记数法可以表示为3.18×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2020•贺州)现有相同个数的甲、乙两组数据,经计算得:=,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定 D.无法确定【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立解答即可.【解答】解:∵S甲2>S乙2,∴乙比较稳定,故选:B.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.6.(3分)(2020•贺州)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、正五边形,不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;C、矩形,既是中心对称图形又是轴对称图形,故本选项正确;D、等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2020•贺州)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果.【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.8.(3分)(2020•贺州)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A.B.C.D.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.9.(3分)(2020•贺州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)(2020•贺州)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.【点评】本题主要考查的是一次函数、反比例函数的图象和性质,熟练掌握相关性质是解题的关键.11.(3分)(2020•贺州)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.4【分析】根据==和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④.【解答】解:∵==,点E 是点D 关于AB 的对称点, ∴=, ∴∠DOB=∠BOE=∠COD==60°,∴①正确;∠CED=∠COD==30°=,∴②正确; ∵的度数是60°, ∴的度数是120°, ∴只有当M 和A 重合时,∠MDE=60°,∵∠CED=30°,∴只有M 和A 重合时,DM ⊥CE ,∴③错误;做C 关于AB 的对称点F ,连接CF ,交AB 于N ,连接DF 交AB 于M ,此时CM +DM 的值最短,等于DF 长,连接CD ,∵===,并且弧的度数都是60°,∴∠D==60°,∠CFD==30°, ∴∠FCD=180°﹣60°﹣30°=90°,∴DF 是⊙O 的直径,即DF=AB=10,∴CM +DM 的最小值是10,∴④正确;故选C .【点评】本题考查了圆周角定理,轴对称﹣最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M 的位置是解此题的关键.12.(3分)(2020•贺州)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4) B.(4,4) C.(4,5) D.(3,5)【分析】先找出被开方数的规律,然后再求得的位置即可.【解答】解:这组数据可表示为:、、、、;、、、、;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点评】本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2020•贺州)要使代数式有意义,则x的取值范围是x≥且x≠1.【分析】直接利用二次根式的定义、分式的有意义的条件分析得出答案.【解答】解:由题意可得:2x﹣1≥0,x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.(3分)(2020•贺州)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.(3分)(2020•贺州)将多项式2mx2﹣8mx+8m分解因式的结果是2m(x ﹣2)2.【分析】原式提取2m,再利用完全平方公式分解即可.【解答】解:原式=2m(x2﹣4x+4)=2m(x﹣2)2,故答案为:2m(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)(2020•贺州)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【分析】利用余弦的概念求出AC,根据弧长公式计算即可.【解答】解:Rt△ABC中,∠A=60°,AC==2,∠ACB=30°,∴∠ACA1=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.【点评】本题考查的是点的轨迹以及弧长的计算,掌握弧长公式、旋转变换的性质、正确找出点的运动轨迹是解题的关键.17.(3分)(2020•贺州)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y<0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.18.(3分)(2020•贺州)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为6.【分析】由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来再证明∠GAE=∠FAE,由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2020•贺州)计算:(﹣1)2020+﹣(π﹣3)0+2cos30°.【分析】直接利用算术平方根的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣1+3﹣1+2×=1+.【点评】此题主要考查了算术平方根的性质以及零指数幂的性质和特殊角的三角函数值,正确化简各数是解题关键.20.(6分)(2020•贺州)先化简,再求值:÷(1+),其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)(2020•贺州)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2020•贺州)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(8分)(2020•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.【分析】可设乙工程队单独完成这项工程需要x天,根据等量关系:甲、乙两个工程队合作10天完成了剩余的工程,即工程总量的1﹣,依此列出方程求解即可.【解答】解:设乙工程队单独完成这项工程需要x天,依题意有(+)×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.24.(8分)(2020•贺州)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC ⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,在△AOD与△COB中,,∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∵AC=4,=AC•BD=4.∴S菱形ABCD【点评】本题考查了菱形的性质和判定,勾股定理,菱形的面积的计算,全等三角形的判定与性质,角平分线的定义,熟练掌握菱形的判定和性质定理是解题的关键.25.(10分)(2020•贺州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.26.(12分)(2020•贺州)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E 作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求解即可;(2)设直线AB的解析式为y=kx+b,将点A和点B的坐标代入可求得直线AB的解析式,设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的解析式求得对应的x的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的解析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:x=﹣或x=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:x=﹣1+或x=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.。
初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列各数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【答案】A.【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.【题文】如图,AB∥CD,∠1=50°,则∠2的大小是()A.50° B.120° C.130° D.150°【答案】C.【解析】试题分析:如图,∵AB∥CD,∴∠A+∠3=180°,∴∠3=130°,∴∠1=∠3=130°.故选C.考点:平行线的性质.【题文】下列四个几何体中,主视图为圆的是()评卷人得分A. B. C. D.【答案】C.【解析】试题分析:A.主视图是正方形,B.主视图是三角形,C.主视图为圆,D.主视图是矩形,故选C.考点:简单几何体的三视图.【题文】下列长度的三条线段不能组成三角形的是()A.5,5,10 B.4,5,6 C.4,4,4 D.3,4,5【答案】A.【解析】试题分析:A.5+5=10,不能组成三角形,故此选项正确;B.4+5=9>6,能组成三角形,故此选项错误;C.4+4=8>4,能组成三角形,故此选项错误;D.4+3=7>5,能组成三角形,故此选项错误.故选A.考点:三角形三边关系.【题文】下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣2bC. D.【答案】B.【解析】试题分析:A.2a和3b不是同类项不能合并,故A错误;B.2(2a﹣b)=4a﹣2b,故B正确;C.,故C错误;D.,故D错误.故选B.考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.【题文】如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B.【解析】试题分析:由①得,x>﹣2,由②得,x≤2,故此不等式组的解集为:﹣2<x≤2.故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.【题文】要调查河池市中学生了解禁毒知识的情况,下列调查方式最适合的是()A.在某中学抽取200名女生B.在某中学抽取200名男生C.在某中学抽取200名学生D.在河池市中学生中随机抽取200名学生【答案】D.【解析】试题分析:要调查河池市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在河池市中学生中随机抽取200名学生.故选D.考点:全面调查与抽样调查.【题文】如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150° B.130° C.120° D.100°【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.考点:平行四边形的性质.【题文】二次函数的图象如图所示,则下列结论不正确的是()A.a<0 B.c>0 C.a+b+c>0 D.>0【答案】C.【解析】试题分析:A.抛物线开口方向向下,则a<0,故本选项错误;B.抛物线与y轴交于正半轴,则c>0,故本选项错误;C.当x=1时,y<0,∴a+b+c<0,故本选项正确;D.抛物线与x轴有2个交点,则>0,故本选项错误;故选C.考点:二次函数图象与系数的关系.【题文】如图,在平面直角坐标系中,D为坐标原点,点A的坐标为(1,).将线段OA绕原点0逆时针旋转30°,得到线段OB,则点B的坐标是( )A. (0,2)B. (2,0)C. (1,-)D. (-1,)【答案】A【解析】试题分析:作AC⊥x轴于点C,∵点A的坐标为(1,),∴OC=1,AC=,则OA==2,tan∠AOC==,∴∠AOC=60°,∴将线段OA绕原点O逆时针旋转30°,得到线段OB,则点B的坐标是(0,2),故选A.考点:坐标与图形变化-旋转.【题文】如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.【题文】如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P 的坐标是()A.(5,3) B.(5,4) C.(3,5) D.(4,5)【答案】D.【解析】试题分析:如图,过P作PC⊥AB于点C,过P作PD⊥x轴于点D,连接PB,∵P为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8﹣2=6,∴AC=BC=3,∴OC=8﹣3=5,∵⊙P与x轴相切,∴PD=PB=OC=5,在Rt△PBC中,由勾股定理可得PC===4,∴P点坐标为(4,5),故选D.考点:切线的性质;坐标与图形性质.【题文】在函数中,自变量x的取值范围是.【答案】x≥1.【解析】试题分析:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.考点:函数自变量的取值范围.【题文】已知关于x的方程的一个根是1,则m=.【答案】2.【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=2,故答案为:2.考点:一元二次方程的解.【题文】同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.【答案】.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为:.考点:列表法与树状图法.【题文】如图,AB是⊙O的直径,点C,D都在⊙O上,∠ABC=50°,则∠BDC的大小是.【答案】40°.【解析】试题分析:∵∠ABC=50°,∴的度数为100°,∵AB为直径,∴的度数为80°,∴∠BDC=×80°=40°,故答案为:40°.考点:圆周角定理.【题文】对于实数a,b,定义运算“*”:a*b=.例如:因为4>2,所以4*2==8,则(-3)*(-2)=.【答案】-1.【解析】试题分析:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为:-1.考点:实数的运算;新定义.【题文】如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为EF,那么BF的长为 cm.【答案】.【解析】试题分析:过D作DH⊥BC,过点A作AN⊥BC于点N,∵AB=AC,∴∠B=∠C=30°,根据折叠可得:DF=BF,∠EDF=∠B=30°,∵AB=AC,BC=12cm,∴BN=NC=6cm,∵点B落在AC的中点D处,AN∥DH,∴NH=HC=3cm,∴DH=3tan30°=(cm),设BF=DF=xcm,则FH=12﹣x﹣3=9﹣x(cm),故在Rt△DFC中,,故,解得:x=,即BF的长为:cm.故答案为:.考点:翻折变换(折叠问题).【题文】计算:.【答案】.【解析】试题分析:根据绝对值,特殊角的三角函数值,二次根式的性质,零指数幂的意义化简即可.试题解析:原式==.考点:实数的运算;零指数幂;特殊角的三角函数值.【题文】先化简,再求值:,其中x=2.【答案】,4.【解析】试题分析:先算乘法,再算减法,最后把x的值代入进行计算即可.试题解析:原式====当x=2时,原式=4.考点:分式的化简求值.【题文】如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.【答案】(1)作图见解解析;(2)AB=AD=BC.【解析】试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC ,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO 平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.【题文】如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于A(﹣3,2),B (2,n).(1)求反比例函数的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.【答案】(1);(2)y=﹣x+1;(3)﹣3<x<0或x>2.【解析】试题分析:(1)把A坐标代入反比例解析式求出k的值,确定出反比例解析式;(2)把B坐标代入反比例解析式求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(3)根据A与B横坐标,结合图象确定出所求不等式的解集即可.试题解析:(1)把A(﹣3,2)代入反比例解析式得:k=﹣6,则反比例解析式为;(2)把B(2,n)代入反比例解析式得:n=﹣3,即B(2,﹣3),把A(﹣3,2)与B(2,﹣3)代入y=ax+b 中得:,解得:a=﹣1,b=﹣1,则一次函数解析式为y=﹣x+1;(3)∵A(﹣3,2),B(2,﹣3),∴结合图象得:不等式ax+b<的解集为﹣3<x<0或x>2.考点:反比例函数与一次函数的交点问题.【题文】某校八年级学胜在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【答案】(1)作图见解析;(2)中位数为90分,众数为90分;(3)138;(4)他的成绩中游偏下,因为全班的中位数为90分.【解析】试题分析:(1)由统计表得96分的人数为6人,然后补全条形统计图;(2)根据中位数和众数的定义求解;(3)用500乘以样本中96分以上(含96分)的人数所占的百分比即可;(4)把它的成绩与中位数比较可判断他的成绩如何.试题解析:(1)如图:(2)共有40个数据,第20个数和第21个数都为90,所以该班学生成绩的中位数为90分,90出现的次数最多,所以众数为90分;(3)500×≈138,所以估计有138名学生的成绩在96分以上(含96分);(4)小明的成绩为88分,他的成绩中游偏下,因为全班的中位数为90分.考点:条形统计图;用样本估计总体;加权平均数;中位数;众数;数形结合.【题文】某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.(1)该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?(2)因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套?【答案】(1)购买A型桌椅100套,B型桌椅150套;(2)66.【解析】试题分析:(1)设购买A型桌椅x套,B型桌椅y套,根据“A,B型课桌椅共250套”、“A型课桌椅230元/套,B型课桌椅200元/套,付款53000元,”列出方程组并解答(2)设能购买A型课桌椅a套,则根据“最多能购买A型课桌椅多少套”列出不等式并解答即可.试题解析:(1)设购买A型桌椅x套,B型桌椅y套,依题意得:,解得:.答:购买A型桌椅100套,B型桌椅150套;(2)设能购买A型课桌椅a套,依题意得:230a+200(100﹣a)≤22000,解得a≤.∵a是正整数,∴a最大=66.答:最多能购买A型课桌椅66套.考点:一元一次不等式的应用;二元一次方程组的应用;最值问题.【题文】如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D.E为的中点,连接CE,BE,BE交AC于F.(1)求证:AB=AF;(2)若AB=3,BC=4,求CE的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)先证明∠EBC=∠ECF,再证明∠ABF=∠AFB,即可得AB=AF;(2)先应用勾股定理求出AC的长,用AC-AF求出CF的长,再应用△EFC∽△ECB可求出CE的长.试题解析:解:(1)证明:∵BC直径为⊙O的直径,∴∠BEC=90°,∴∠ECF+∠EFC=90°.∵∠ABC=90°,∴∠ABF+∠EBC=90°.又∵E为的中点,∴∠EBC=∠ECF,∴∠EFC=∠ABF.又∵∠AFB=∠EFC,∴∠AFB=∠ABF,∴AB=AF;(2)∵∠ABC=90°,∴AC===5.又∵AB=AF=3,∴CF=AC-AF=5-3=2.∵∠EBC=∠ECF,∠E=∠E,∴△EFC∽△ECB.∴.∴BE=2CE.∵∠BEC=90°,∴,∴,∴CE=.考点:圆周角定理;等腰三角形的判定;相似三角形的判定与性质.【题文】在平面直角坐标系中,抛物线与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)A(﹣3,0),C(0,3),D(﹣1,4);(2)E(,0);(3)P(2,﹣5)或(1,0).【解析】试题分析:(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论.试题解析:(1)当中y=0时,有,解得:=﹣3,=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当中x=0时,则y=3,∴C(0,3).∵=,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有:,解得:,∴直线C′D的解析式为y=﹣7x ﹣3,当y=﹣7x﹣3中y=0时,x=,∴当△CDE的周长最小,点E的坐标为(,0).(3)设直线AC的解析式为y=ax+c,则有:,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线上,∴,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线上,∴,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线上,∴,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中毕业升学考试(广西贺州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)【题文】的相反数是()A. ﹣B.C. ﹣2D. 2【答案】A【解析】试题分析:根据只有符号不同的两个数互为相反数解答.的相反数是﹣.考点:相反数【题文】如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70° B.100° C.110° D.120°【答案】D【解析】试题分析:先根据补角的定义求出∠2的度数,再由平行线的性质即可得出结论.∠1=60°,∴∠2=180°﹣60°=120°.∵CD∥BE,∴∠2=∠B=120°.考点:平行线的性质.【题文】下列实数中,属于有理数的是()A. B. C.π D.【答案】D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案.A、﹣是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;考点:实数评卷人得分【题文】一个几何体的三视图如图所示,则这个几何体是()A.三棱锥 B.三棱柱 C.圆柱 D.长方体【答案】B【解析】试题分析:根据三视图的知识,正视图为两个矩形,左视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱考点:由三视图判断几何体【题文】从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A. B. C. D.【答案】D【解析】试题分析:由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案.∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:.考点:(1)概率公式;(2)绝对值【题文】下列运算正确的是()A.(a5)2=a10 B.x16÷x4=x4 C.2a2+3a2=5a4 D.b3•b3=2b3 【答案】A【解析】试题分析:根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,可得答案.A、幂的乘方底数不变指数相乘,故A正确;B、同底数幂的除法底数不变指数相减,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;考点:(1)同底数幂的除法;(2)合并同类项;(3)同底数幂的乘法;(4)幂的乘方与积的乘方.【题文】一个等腰三角形的两边长分别为4,8,则它的周长为()A. 12B. 16C. 20D. 16或20【答案】C【解析】试题分析:由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.考点:(1)等腰三角形的性质;(2)三角形三边关系【题文】若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【答案】C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,考点:分式方程的解【题文】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)【答案】B【解析】试题分析:由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O ,由A的坐标就可以求出结论.∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).考点:坐标与图形变化-旋转【题文】抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A. B. C. D.【答案】B【解析】试题分析:根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,考点:(1)二次函数的图象;(2)一次函数的图象;(3)反比例函数的图象【题文】已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A. 2 B. 4 C. 6 D. 8【答案】D【解析】试题分析:根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.设圆锥的底面半径为r.圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是120°,∴弧长==8π,即圆锥底面的周长是8π,∴8π=2πr,解得,r=4,∴底面圆的直径为8.考点:圆锥的计算【题文】n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0B.总是奇数C.总是偶数D.可能是奇数也可能是偶数【答案】C【解析】试题分析:根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,考点:因式分解的应用【题文】要使代数式有意义,则x的取值范围是.【答案】x≥﹣1且x≠0【解析】试题分析:根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.根据题意,得,解得x≥﹣1且x≠0.考点:(1)二次根式有意义的条件;(2)分式有意义的条件【题文】有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是______________.【答案】6【解析】试题分析:根据平均数为5,求出a的值,然后根据中位数的概念,求解即可.∵该组数据的平均数为5,∴,∴a=6,将这组数据按照从小到大的顺序排列为:2,4,6,6,7,可得中位数为:6,考点:(1)中位数;(2)算术平均数【题文】据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为人.【答案】9.4×106【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.考点:科学记数法—表示较大的数【题文】如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.【答案】120°【解析】试题分析:先证明∴△DCB≌△ACE,再利用“8字型”证明∠AOH=∠DCH=60°即可解决问题.如图:AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,∴△DCB≌△ACE,∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°﹣∠AOH=120°.考点:(1)全等三角形的判定与性质;(2)等边三角形的性质【题文】将m3(x﹣2)+m(2﹣x)分解因式的结果是_______________.【答案】m(x﹣2)(m﹣1)(m+1)【解析】试题分析:先提公因式,再利用平方差公式进行因式分解即可.原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1)考点:提公因式法与公式法的综合运用【题文】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【答案】6+3【解析】试题分析:先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=考点:(1)矩形的性质;(2)等腰三角形的判定;(3)相似三角形的判定与性质【题文】计算:﹣(π﹣2016)0+|﹣2|+2sin60°.【答案】3【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简求出答案试题解析:原式=2﹣1+2﹣+2×=3﹣+=3.考点:(1)实数的运算;(2)零指数幂;(3)特殊角的三角函数值【题文】解方程:.【答案】x=30【解析】试题分析:方程去分母,去括号,移项合并,把x系数化为1,即可求出解试题解析:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,解得:x=30.考点:解一元一次方程【题文】为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向文学鉴赏国际象棋音乐舞蹈书法其他所占百分比a20%b10%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.【答案】(1)a=30%,b=35%;(2)答案见解析;(3)455人【解析】试题分析:(1)用书法的人数除以其所占的百分比即可求出抽样调查的学生总人数,用文学鉴赏、音乐舞蹈的人数除以总人数即可求出a、b的值;(2)用总人数乘以国际象棋的人数所占的百分比求出国际象棋的人数,再把条形统计图补充即可;(3)用该校总人数乘以全校选择“音乐舞蹈”社团的学生所占的百分比即可.试题解析:(1)本次抽样调查的学生总人数是:20÷10%=200,a=×100%=30%, b=×100%=35%,(2)国际象棋的人数是:200×20%=40,条形统计图补充如下:(3)若该校共有1300名学生,则全校选择“音乐舞蹈”社团的学生人数是1300×35%=455(人),答:全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.考点:(1)条形统计图;(2)用样本估计总体【题文】如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)【答案】需要拆除,答案见解析【解析】试题分析:根据正切的定义分别求出AB、DB的长,结合图形求出DH,比较即可试题解析:由题意得,AH=10米,BC=10米,在Rt△ABC中,∠CAB=45°,∴AB=BC=10,在Rt△DBC中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),∵2.7米<3米,∴该建筑物需要拆除.考点:解直角三角形的应用-坡度坡角问题【题文】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE ,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【答案】(1)证明过程见解析;(2)2【解析】试题分析:(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.试题解析:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.考点:(1)矩形的性质;(2)菱形的判定【题文】某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据: =1.1, =1.2, =1.3, =1.4)【答案】(1)10%;(2)不能达到.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2900(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解;(2)利用(1)中求得的增长率来求2018年该地区将投入教育经费.试题解析:(1)设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.则2900(1+x)2=3509,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元). 4245.89<4250,答:按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元.考点:一元二次方程的应用【题文】如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.【答案】(1)证明过程见解析;(2)1.6【解析】试题分析:(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.试题解析:(1)∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.考点:切线的判定【题文】如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【答案】(1)y=;(2)AD=5;(3)(5,)【解析】试题分析:(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.试题解析:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).考点:二次函数综合题。