因式分解的应用——初中数学竞赛讲义
数学竞赛《因式分解的应用》

七年级数学竞赛培优专题讲义----- 因式分解的应用知识精讲因式分解是代数变形的有力工具,在以后的学习中,因式分解是学习分式、一元二次方程等知识的基础,其应用主要体现在以下几个方面:1.复杂的数值计算;2.代数式的化简与求值;3.简单的不定方程(组);4.代数等式的证明等. 有些多项式分解因式后的结果在解题中经常用到,我们应熟悉这些结果:(1)4224(22)(22)x x x x x +=++-+;(2)42241(221)(221)x x x x x +=++-+; (3)1(1)(1)ab a b a b ±±+=±±;(4)1(1)(1)ab a b a b ±-=±; (5)3332223()()a b c abc a b c a b c ab bc ac ++-=++++---。
例题精析例1、(1)已知0≠ab ,2220a ab b +-=,那么22a ba b-+的值为_________________;(2)若62222244++-=+b b a a b a ,则=+22b a ___________________。
例2、(1)a ,b ,c 是正整数,a >b ,且27a ab ac bc --+=,则a c -等于().A . -1B .-1或-7C .1 D.1或7(2) 已知A ,n 都是自然数,且26152++=n n A 是一个完全平方数,则n =___________。
例3、计算:(1)20212020202020182020220202323-+-⋅- (2)444444444411111(2)(4)(6)(8)(10)4444411111(1)(3)(5)(7)(9)44444++++++++++例4、求下列方程的整数解(1)64970xy x y +--= (2)222522007x xy y ++=例5、正数a ,b ,c 满足3=++=++=++a c ca c b bc b a ab ,求)1)(1)(1(+++c b a 的值。
因式分解(竞赛培训资料)

因式分解把一个多项式化成几个整式的积的形式,叫做多项多式的因式分解。
因式分解是整数质因数分解的发展,实质是多项式乘法的逆运算。
它是多项式的一种重要的变化方法,是解决许多数学问题的有力工具。
在几何、三角等解题与证明中扮演着重要角色,因式分解方法灵活,技巧性强,有利于培养学生的解题技能,发展学生思维能力。
它主要包括以下几个方面的内容:(1) 因式分解的对象是多项式,无论是被分解式还是分解后的每个因式都必须是多项式或单项式。
(2) 因式分解的过程是多项式的恒等变形,每一步都必须保持前后两式相等。
(3) 要注意因式分解的范围是在实数范围几因式分解,还是在有理数范围内因式分解。
(4) 因式分解的结果都是整式的乘积的形式,每一个多项式都要在规定范围内分解到不能再分解为止。
主要方法:提公因式法、公式法、分组分解法、十字相乘法、拆项添项法、待定系数法等。
重要公式及结论:()3223333b ab b a a b a ±+±=± ()()3322b a b ab a b a ±=+±()bcac ab c b a c b a 2222222+++++=++()()()()c a c b b a c b a c b a +++-++=++33333 ()()()b x a x ab x b a x ++=+++2()()122321-----+++++-=-n n n n n n n b ab b a b a a b a b a (n 为正整数)()()122321------+-+-+=-n n n n n n n b ab b a b a a b a b a (n 为偶数)()()122321-----+--+-+=+n n n n n n n b ab b a b a a b a b a (n 为奇数)待定系数法因式分解的依据是: n n n n n n n n n n b a b a b a b x b x b x b a x a x a x a ===⇔++++=++++----,,,110011101110 因式定理:如果多项式()001110≠++++--a a x a x a x a n n n n 当a x =时,它的值为0,那么它有因式a x -。
八年级数学(竞赛)因式分解

第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。
数学竞赛专题讲座---第一讲因式分解(一)

第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一:它被广泛地应用于初等数学之中:是我们解决许多数学问题的有力工具.因式分解方法灵活:技巧性强:学习这些方法与技巧:不仅是掌握因式分解内容所必需的:而且对于培养学生的解题技能:发展学生的思维能力:都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上:对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中:我们学过若干个乘法公式:现将其反向使用:即为因式分解中常用的公式:例如:(1)a2-b2=(a+b)(a-b):(2)a2±2ab+b2=(a±b)2:(3)a3+b3=(a+b)(a2-ab+b2):(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2:(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca):(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数:(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1):其中n为偶数:(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1):其中n为奇数.运用公式法分解因式时:要根据多项式的特点:根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4:(2)x3-8y3-z3-6xyz:(3)a2+b2+c2-2bc+2ca-2ab:(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形:直接使用公式(5):解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性:现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式:本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式:用它可以推出很多有用的结论:例如:我们将公式(6)变形为a3+b3+c3-3abc显然:当a+b+c=0时:则a3+b3+c3=3abc:当a+b+c>0时:则a3+b3+c3-3abc ≥0:即a3+b3+c3≥3abc:而且:当且仅当a=b=c时:等号成立.如果令x=a3≥0:y=b3≥0:z=c3≥0:则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项:从最高次项x15开始:x的次数顺次递减至0:由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1):所以说明在本题的分解过程中:用到先乘以(x-1):再除以(x-1)的技巧:这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时:整理、化简常将几个同类项合并为一项:或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时:需要恢复那些被合并或相互抵消的项:即把多项式中的某一项拆成两项或多项:或者在多项式中添上两个仅符合相反的项:前者称为拆项:后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多:这里只介绍运用拆项、添项法分解的几种解法:注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出:用拆项、添项的方法分解因式时:要拆哪些项:添什么项并无一定之规:主要的是要依靠对题目特点的观察:灵活变换:因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3:(2)(m2-1)(n2-1)+4mn:(3)(x+1)4+(x2-1)2+(x-1)4:(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目:由于分解后的因式结构较复杂:所以不易想到添加+ab-ab:而且添加项后分成的三项组又无公因式:而是先将前两组分解:再与第三组结合:找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在:同学们需多做练习:积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体:并用一个新的字母替代这个整体来运算:从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开:是关于x的四次多项式:分解因式较困难.我们不妨将x2+x看作一个整体:并用字母y来替代:于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y:则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体:比如今x2+x+1=u:一样可以得到同样的结果:有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式:然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2:则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y:则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知:用换元法分解因式时:不必将原式中的元都用新元代换:根据题目需要:引入必要的新元:原式中的变元和新变元可以一起变形:换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体:但并没有设立新元来代替它:即熟练使用换元法后:并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母:且当互换这两个字母的位置时:多项式保持不变:这样的多项式叫作二元对称式.对于较难分解的二元对称式:经常令u=x+y:v=xy:用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u:xy=v:则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2:(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4:(2)x4-11x2y2+y2:(3)x3+9x2+26x+24:(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1:(2)x4+7x3+14x2+7x+1:(3)(x+y)3+2xy(1-x-y)-1:(4)(x+3)(x2-1)(x+5)-20.。
第五讲1因式分解培优竞赛专题辅导

第五讲1因式分解培优竞赛专题辅导第五讲因式分解培优专题辅导初中数学教材中主要介绍了提公因式法、公式法。
⽽在竞赛上,⼜有⼗字相乘法,分组分解法,换元法,拆项和添减项法,双⼗字相乘法,对称多项式轮换对称多项式法,求根公式法,余数定理法,长除法,除法等。
因式分解⼀些注意点:(1)必须分解到每个因式都不能为⽌,即分解要彻底;(2)结果应该是的形式,(3)如果结果有相同的因式,必须写成的形式;(4)最后结果只有⼩括号;(5)最后结果中多项式⾸项系数为正(例如:()1332--=+-x x x x )。
因式分解⼀般要遵循的步骤:“⼀提⼆⽤三分四查”即先考虑能否提公因式,再考虑能否运⽤公式或⼗字相乘法,最后考虑分组分解法.对于⼀个还能继续分解的多项式因式仍然⽤这⼀步骤反复进⾏.以上步骤可⽤⼝诀概括如下:“⾸先提取公因式,然后考虑⽤公式、⼗字相乘试⼀试,分组分解要合适,四种⽅法反复试,结果应是乘积式”.⼀、因式分解的定义把⼀个多项式公成⼏个整式的积的形式,这种变形叫做把这个多项式。
分解因式与整式乘法的关系:分解因式与整式乘法是的恒等变形。
例1:下列各式从左边到右边的变形,哪些是分解因式,哪些不是?(1))11(22xx x x +=+; (2)3)1(4x 222+-=+-x x (3)22))((n m n m n m -=-+ (4)22)2(44+=++x x x(5))23(232y x x x xy x -=+- (6)32)1)(3(2--=+-x x x x⼆、因式分解的⽅法:(⼀)提公因式法:ab +ac =a (b +c)确定公因式的⽅法(1)系数公因式:应取多项式中各项系数为 ;(2)字母公因式:应取多项式中各项字母为 .常见的两个⼆项式幂的变号规律:①22()()n n a b b a -=-;②2121()()n n a b b a ---=--.(n 为正整数)例2、把下列各式分解因式(1))a 1(-)1(--n a m =(2))2(4)2(3)2(2y x c x y b y x a -----=(3)32)2()2(2x y b y x a -+-=(4)32)3(25)3(15a b b a b -+-=(⼆)、公式法乘法公式逆变形(1)平⽅差公式:22b a -=(2)完全平⽅公式:222b ab a ++= 222-b ab a +=例3.1、如果2592++kx x 是⼀个完全平⽅式,那么k 的值是()A 15B 15±C 30D 30±2、下列多项式,不能运⽤平⽅差公式分解的是()A 、42+-mB 、22y x --C 、122-y xD 、()()22a m a m +-- 例4 :利⽤平⽅差公式进⾏因式分解: ))((22b a b a b a -+=-(1)12-x = (2)2294-b a += (3)22)(16z y x +- =(4)221164a b -= (5)22)2()2(b a b a --+ =(6)4348x - =(7)117218-+-n n x x =(8)4()()2223362a b a b +-- =例5:利⽤完全平⽅公式进⾏因式分解:完全平⽅公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- (1)442+-m m = (2)2269y xy x ++=(3)24x -9162+x = (4)36)(12)(2++-+b a b a =(5)225101x x -+-= (6)222212123m n m n m -+=(三)、***⼗字相乘法:对于⼆次项系数为1的⼆次三项式因式分解⼗字相乘法⼝诀:⾸尾分解,交叉相乘,求和凑中例6:利⽤⼗字相乘法进⾏因式分解:(1)892++x x = (2)、x 2-5x -6=(2)、x 2-5x +6= (4)8652-+x x =(5)3x 2-11xy -14y 2 = (6)6(x+y)2 -7(x+y)-3=(四)、***分组分解法:把⼀个多项式分成⼏组,先对各组分别分解因式,使其能够具有公因式或应⽤公式来分解.这种分解因式的⽅法叫分组分解法.(1)运⽤分组分解因式的关键是要能预见到分组之后能否进⼀步⽤其他⽅法(如提公因式法、公式法等)来分解,难点是恰当地分组.(2)分组分解法不是⼀种独⽴的分解因式的⽅法,⽽且适当的分组也没有固定的形式,但要掌运⽤分组分解法分解因式常⽤以下⼀些⽅法:①分组后能提取公因式;②分组后能运⽤公式;③重新分组例7:运⽤分组分解法分解因式:(⼀)分组后能直接提公因式分解因式1、bc ac ab a -+-2 2、1+--y x xy(三)分组后能直接运⽤公式:分解因式:ay ax y x +--22 2222c b ab a -+-(五)、配⽅法对于某些不能利⽤公式法的多项式,可以将其配成⼀个完全平⽅式,然后再利⽤平⽅差公式,就能将其因式分解,这种⽅法叫配⽅法。
因式分解的应用【竞赛专题】

因式分解的应用在一定的条件下,把一个代数式变换成另一个与它恒等的代数式称为代数式的恒等变形,是研究代数式、方程和函数的基础.因式分解是代数变形的重要工具.在后续的学习中,因式分解是学习分式、一元二次方程等知识的基础,现阶段.因式分解在数值计算,代数式的化简求值,不定方程(组)、代数等式的证明等方面有广泛的应用.同时,通过因式分解的训练和应用,能使我们的观察能力、运算能力、变形能力、逻辑思维能力、探究能力得以提高.因此,有人说因式分解是学好代数的基础之一.【例1】若142=++y xy x 282=++x xy y ,则y x +的值为 .思路点拨 恰当处理两个等式,分解关于y x +的二次三项式.在信息技术飞速发展的今天,信息已经成为人类生活中最重要的因素.在军事、政治、商业、生活等领域中,信息的保密工作显得格外重要.现代保密技术的一个基本思想,在编制密码的工作中,许多密码方法,就来自于因数分解、因式分解技术的应用.代数式求值的常用方法是:(1)代入字母的值求值; (2)通过变形,寻找字母间的关系,代入关系求值;(3)整体代入求值.【例2】已知 a 、b 、c 是一个三角形的三边,则222222444222a c c b b a c b a ---++的值( )A .恒正B .恒负C .可正可负D .非负思路点拨 从变形给定的代数式入手,解题的关键是由式于的特点联想到熟悉的结果,注意几何定理的约束.【例3】计算下列各题:(1))219961993()2107)(285)(263)(241()219971994()2118)(296)(274)(222(+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ ; (2)20012000200019982000220002323-+-⨯-思路点拨 观察分子、分母数字间的特点,用字母表示数,从一般情形考虑,通过分解变形,寻找复杂数值下隐含的规律.【例4】已知 n 是正整数,且n 4—16n 2+100是质数,求n 的值.思路点拔 从因数分解的角度看,质数只能分解成l 和本身的乘积(也可从整除的角度看),故对原式进行恰当的分解变形,是解本例的最自然的思路.【例5】(1)求方程07946=--+y x xy 的整数解;(2)设x 、y 为正整数,且096422=-++y y x ,求xy 的值.思路点拔 观察方程的特点,利用整数解这个特殊条件,运用因式分解或配方,寻找解题突破口. 解题思路的获得,一般要经历三个步骤:(1)从理解题意中提取有用的信息,如数式特点、图形结构特征等;(2)从记忆储存中提取相关的信息,如有关公式、定理、基本模式等;(3)将上述两组信息进行进行有效重组,使之成为一个舍乎逻辑的和谐结构. 不定方程(组)的基本解法有:(1)枚举法; (2)配方法;(3)因数分解、因式分解法; (4)分离系数法.运用这些方法解不定方程时,都需灵活运用奇数偶数、质数合数、整除等与整数相关的知识.学力训练1.已知x+y =3,422=-+xy y x ,那么3344xy y x y x +++的值为 .2.方程01552=-+--y x xy x 的整数解是 . ( “希望杯”邀请赛试题)3.已知a 、b 、c 、d 为非负整数,且ac+bd+ad+bc=1997,则a+b+c+d = .4.对一切大于2的正整数n ,数n 5一5n 3+4n 的量大公约数是 . (四川省竞赛题)5.已知724-1可被40至50之间的两个整数整除,这两个整数是( )A .41,48B .45,47C .43,48D .4l ,476,已知2x 2-3xy+y 2=0(xy ≠0),则xy y x +的值是( ) A . 2,212 B .2 C .212 D .-2,212- 7.a 、b 、c 是正整数,a>b ,且a 2-ac+bc=7,则a —c 等于( )A .一2B .一1C .0D . 2(江苏省竞赛题)8.如果133=-x x ,那么200173129234+--+x x x x 的值等于( )A .1999B .2001C .2003D .20059.(1)求证:8l 7一279—913能被45整除;(2)证明:当n 为自然数时,2(2n+1)形式的数不能表示为两个整数的平方差;(3)计算:)419)(417)(415)(413)(411()4110)(418)(416)(414)(412(4444444444++++++++++10.若a 是自然数,则a 4-3a+9是质数还是合数?给出你的证明.11.已知a 、b 、c 满足a+b =5,c 2=ab+b -9,则c = .12.已知正数a 、b 、c 满足ab+a+b=bc+b+c=ac+a+c ,则(a+1)(b+1)(c+1)= .13.整数a 、b 满足6ab =9a —l0b+303,则a+b= .14.已知01445=--+--b a a b a a ,且132=-b a ,则33b a +的值等于 .15.设a<b<c<d ,如果x=(a +b)(c +d),y=(a+c)(b+d),z =(a+d)(b+c),那么x 、y 、z 的大小关系为( )A .x<y<zB . y<z<xC .z <x<yD .不能确定16.若x+y=-1,则43222234585y xy xy y x y x y x x ++++++的值等于( )A .0B .-1C .1D . 317.已知两个不同的质数p 、q 满足下列关系 :020012=+-m p p ,020012=+-m q q ,m 是适当的整数,那么22q p +的数值是( )A .4004006B .3996005C .3996003D .400400418.设n 为某一自然数,代入代数式n 3-n 计算其值时,四个学生算出了下列四个结果.其中正确的结果是( )A .5814B .5841C .8415D .845l (陕西省竞赛题)19.求证:存在无穷多个自然数k ,使得n 4+k 不是质数.20.某校在向“希望工程”捐救活动中,甲班的m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是(mn+9m+11n+145)元,已知每人的捐款数相同,且都是整数,求每人的捐款数.21.已知b 、c 是整数,二次三项式x 2+bx +c 既是x 4+6x 2+25的一个因式,也是x 3+4x 2+28x+5的一个因式,求x =1时,x 2+bx +c 的值.22.按下面规则扩充新数:已有两数a 、b ,可按规则c=ab+a+b 扩充一个新数,在a 、b 、c 三个数中任取两数,按规则又可扩充一个新数,……每扩充一个新数叫做一次操作.现有数1和4,(1)求按上述规则操作三次得到扩充的最大新数;(2)能否通过上述规则扩充得到新数1999,并说明理由.。
(完整)初中数学竞赛因式分解专题
初中数学竞赛专题——因式分解多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.。
八年级数学竞赛讲座因式分解的应用附答案
第三讲 因式分解的应用 在一定的条件下,把一个代数式变换成另一个与它恒等的代数式称为代数式的恒等变形,是研究代数式、方程和函数的基础.因式分解是代数变形的重要工具.在后续的学习中,因式分解是学习分式、一元二次方程等知识的基础,现阶段.因式分解在数值计算,代数式的化简求值,不定方程(组)、代数等式的证明等方面有广泛的应用.同时,通过因式分解的训练和应用,能使我们的观察能力、运算能力、变形能力、逻辑思维能力、探究能力得以提高.因此,有人说因式分解是学好代数的基础之一.例题求解【例1】若142=++y xy x 282=++x xy y ,则y x +的值为 .(全国初中数学联赛题)思路点拨 恰当处理两个等式,分解关于y x +的二次三项式.注:在信息技术飞速发展的今天,信息已经成为人类生活中最重要的因素.在军事、政治、商业、生活等领域中,信息的保密工作显得格外重要.现代保密技术的一个基本思想,在编制密码的工作中,许多密码方法,就来自于因数分解、因式分解技术的应用.代数式求值的常用方法是:(1)代入字母的值求值; (2)通过变形,寻找字母间的关系,代入关系求值;(3)整体代入求值.【例2】已知 a 、b 、c 是一个三角形的三边,则222222444222a c c b b a c b a ---++的值( )A .恒正B .恒负C .可正可负D .非负(大原市竞赛题)思路点拨 从变形给定的代数式入手,解题的关键是由式于的特点联想到熟悉的结果,注意几何定理的约束.【例3】计算下列各题:(1))219961993()2107)(285)(263)(241()219971994()2118)(296)(274)(222(+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ ; (2)20012000200019982000220002323-+-⨯-思路点拨 观察分子、分母数字间的特点,用字母表示数,从一般情形考虑,通过分解变形,寻找复杂数值下隐含的规律.【例4】已知 n 是正整数,且n 4—16n 2+100是质数,求n 的值.( “希望杯’邀请赛试题)思路点拔 从因数分解的角度看,质数只能分解成l 和本身的乘积(也可从整除的角度看),故对原式进行恰当的分解变形,是解本例的最自然的思路.【例5】(1)求方程07946=--+y x xy 的整数解;(上海市竞赛题)(2)设x 、y 为正整数,且096422=-++y y x ,求xy 的值.( “希望杯”邀请赛试题)思路点拔 观察方程的特点,利用整数解这个特殊条件,运用因式分解或配方,寻找解题突破口. 链接解题思路的获得,一般要经历三个步骤:(1)从理解题意中提取有用的信息,如数式特点、图形结构特征等;(2)从记忆储存中提取相关的信息,如有关公式、定理、基本模式等;(3)将上述两组信息进行进行有效重组,使之成为一个舍乎逻辑的和谐结构.不定方程(组)的基本解法有:(1)枚举法; (2)配方法;(3)因数分解、因式分解法; (4)分离系数法.运用这些方法解不定方程时,都需灵活运用奇数偶数、质数合数、整除等与整数相关的知识.学力训练1.已知x+y =3,422=-+xy y x ,那么3344xy y x y x +++的值为 .2.方程01552=-+--y x xy x 的整数解是 . ( “希望杯”邀请赛试题)3.已知a 、b 、c 、d 为非负整数,且ac+bd+ad+bc=1997,则a+b+c+d = .4.对一切大于2的正整数n ,数n 5一5n 3+4n 的量大公约数是 .(四川省竞赛题)5.已知724-1可被40至50之间的两个整数整除,这两个整数是( )A .41,48B .45,47C .43,48D .4l ,476,已知2x 2-3xy+y 2=0(xy ≠0),则xy y x +的值是( ) A . 2,212 B .2 C .212 D .-2,212- 7.a 、b 、c 是正整数,a>b ,且a 2-ac+bc=7,则a —c 等于( )A .一2B .一1C .0D . 2(江苏省竞赛题)8.如果133=-x x ,那么200173129234+--+x x x x 的值等于( )A .1999B .2001C .2003D .2005(武汉市选拔赛试题)9.(1)求证:8l 7一279—913能被45整除;(2)证明:当n 为自然数时,2(2n+1)形式的数不能表示为两个整数的平方差;(3)计算:)419)(417)(415)(413)(411()4110)(418)(416)(414)(412(4444444444++++++++++ 10.若a 是自然数,则a 4-3a+9是质数还是合数?给出你的证明.(“五城市”联赛题)11.已知a 、b 、c 满足a+b =5,c 2=ab+b -9,则c = . (江苏省竞赛题)12.已知正数a 、b 、c 满足ab+a+b=bc+b+c=ac+a+c ,则(a+1)(b+1)(c+1)= .(北京市竞赛题)13.整数a 、b 满足6ab =9a —l0b+303,则a+b= .(“祖冲之杯”邀请赛试题)14.已知01445=--+--b a a b a a ,且132=-b a ,则33b a +的值等于 .( “希望杯”邀请赛试题)15.设a<b<c<d ,如果x=(a +b)(c +d),y=(a+c)(b+d),z =(a+d)(b+c),那么x 、y 、z 的大小关系为( )A .x<y<zB . y<z<xC .z <x<yD .不能确定16.若x+y=-1,则43222234585y xy xy y x y x y x x ++++++的值等于( )A .0B .-1C .1D . 3( “希望杯”邀请赛试题)17.已知两个不同的质数p 、q 满足下列关系 :020012=+-m p p ,020012=+-m q q ,m 是适当的整数,那么22q p +的数值是( )A .4004006B .3996005C .3996003D .400400418.设n 为某一自然数,代入代数式n 3-n 计算其值时,四个学生算出了下列四个结果.其中正确的结果是( )A .5814B .5841C .8415D .845l (陕西省竞赛题)19.求证:存在无穷多个自然数k ,使得n 4+k 不是质数.20.某校在向“希望工程”捐救活动中,甲班的m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是(mn+9m+11n+145)元,已知每人的捐款数相同,且都是整数,求每人的捐款数. (全国初中教学联赛题)21.已知b、c是整数,二次三项式x2+bx+c既是x4+6x2+25的一个因式,也是x3+4x2+28x+5的一个因式,求x=1时,x2+bx+c的值.(美国中学生数学竞赛题)22.按下面规则扩充新数:已有两数a、b,可按规则c=ab+a+b扩充一个新数,在a、b、c三个数中任取两数,按规则又可扩充一个新数,……每扩充一个新数叫做一次操作.现有数1和4,(1)求按上述规则操作三次得到扩充的最大新数;(2)能否通过上述规则扩充得到新数1999,并说明理由. (重庆市竞赛题)。
初中数学竞赛 知识点和真题 第10讲 因式分解及其应用
第10讲 因式分解的应用如果你不能解决这个提出的问题,环视一下四周,找一个适宜的有关的问题。
辅助问题可能提供方法论的帮助。
它可能提示解的方法、解的轮廓,或是提示我们应从哪一个方向着手工作等等。
——波利亚 知识方法扫描因式分解是一种重要的恒等变形。
利用恒等变形,我们可以解决许多数学问题。
如求代数式的值;证明不等式;处理与整数有关的一些问题:分解质因数、判断数的整除性、求方程的整数解等。
经典例题解析例1.(2005年东清市初中数学竞赛试题)已知正实数a,b,c 满足方程组222229,217,225.a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩求a+b+c 的值。
解 三式相加,得:2222()(222)72(a +b +c )()720. [(a +b +c )+9][(a +b +c )-8]=0.a b c a b c a b b c c a a b c ++++++++=∴+++-=∴∵ a,b,c 都是正实数,a+b+c+9>0. a+b+c=8.∴∴ 例2 (1986年广州,武汉,福州,合肥,重庆五市初中数学联赛试题)若a 为正整数,则a 4-3a 2+9是质数还是合数?给出你的证明。
解 a 4-3a 2+9= a 4+6a 2+9-9a 2=( a 2+3)2-(3a)2=( a 2+3a+3)( a 2-3a+3)=( a 2+3a+3)[( a-1)(a-2)+1]当a=1时,a 4-3a 2+9=7是质数;当a=2时,a 4-3a 2+9=13是质数;当a>2时, a 2+3a+3>1, ( a-1)(a-2)+1>1,故a 4-3a 2+9是合数。
例3.(第17届江苏省初二数学竞赛试题)多项式x 2-(a+5)x+5a-1能分解为两个一次因式(x+b),(x+c)的乘积, 则a 的值应为多少?解 因x 2-(a+5)x+5a-1=(x+b)(x+c)= x 2+(b+c)x+bc ,故有b+c=-a-5, bc=5a-1消去a, 变形得 (b+5)(c+5)=-1因 b ,c 是整数,故有b=-4,c=-6 或b=-6,c=-4。
初中数学竞赛精品标准教程及练习19因式分解
初中数学竞赛精品标准教程及练习19因式分解因式分解是数学中一个非常重要的概念和方法,它在初中数学竞赛中也是经常出现的题型之一、掌握因式分解的方法对于解题有很大的帮助。
下面是一篇关于因式分解的精品标准教程及练习,共1200字以上。
一、因式分解的概念因式分解是指将一个代数式写成若干个因式的乘积的过程。
通俗地说,就是找到一个式子的“因子”,使得式子能够被“因子”相乘得到。
例如,对于一个简单的算式12=2×2×3,我们可以将12写成2×2×3的形式,这就是因式分解的过程。
二、基本的因式分解方法基本的因式分解方法主要有两种:公因式提取和配方法。
1.公因式提取公因式提取是指将一个代数式中的公因式分解出来。
例如:将4x+12分解为4(x+3)4是4x和12的公因式,x+3是剩余部分。
2.配方法配方法是指将一个代数式按照指定的分法进行拆分,然后再将拆分后的各部分进行因式分解。
例如:将x²+3xy+2y²分解为(x+y)(x+2y)第一步,我们观察到第一项是x²,第二项是3xy,第三项是2y²,我们希望通过拆分得到两个相同的式子,这就需要把x²拆分成两个相同的项,即(x+y)(x+2y)。
三、因式分解的练习题练习1:将6x+9分解为3(2x+3)练习2:将x²-4y²分解为(x+2y)(x-2y)练习3:将3x³-27y³分解为3(x-3y)(x²+3xy+9y²)练习4:将x²+7xy+12y²分解为(x+4y)(x+3y)练习5:将6a²b²c-18a²b²分解为6a²b²(c-3)练习6:将x³+y³分解为(x+y)(x²-xy+y²)练习7:将16x²-40xy+25y²分解为(4x-5y)²练习8:将8x³y+12x²y²分解为4xy(2x²+3xy)以上就是因式分解的精品标准教程及练习,掌握了这些基本的方法和技巧,相信大家能够在初中数学竞赛中取得不错的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解的应用一、利用因式分解判断整除性例1 2n-1和2n+1表示两个连续的奇数(n是整数),证明这两个连续奇数的平方差能被8整除.证明(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n·2=8n∴这两个连续奇数的平方差能被8整除.例2 x3+y3+z3-3xyz能被(x+y+z)整除.证明因式分解,得原式即(x+y+z)(x2+y2+z2-xy-yz-zx),∴x3+y3+z3-3xyz能被(x+y+z)整除.例3 设4x-y为3的倍数,求证:4x2+7xy-2y2能被9整除.证明∵4x2+7xy-2y2=(4x-y)(x+2y),又∵ x+2y=4x-y-3x+3y=(4x-y)-3(x-y).∴原式=(4x-y)[(4x-y)-3(x-y)]=(4x-y)2-3(4x-y)(x-y)∵4x-y为3的倍数∴4x2+7xy-2y2能被9整除例4设实数a<b<c<d,如果x=(a+b)(c+d),y=(a+c)(b+d),z=(a+d)(b+c,那么x、y、z的大小关系为( )A. x<y<zB. y<z<xC. z<x<yD. 不能确定解:∵a<b<c<d,∴x-y=(a+b)(c+d)-(a+c)(b+d)=ac+bd-ab-cd=(a-d)(c-b)<0,即;x<y。
同理y-z=(a-b)(d-c)<0,即y<z。
∴x<y<z,选A。
说明:因式分解能使x-y和y-x两个差式显示出正负性质,达到可比较的目的。
二、因式分解解计算题例5计算下列各题:(1)23×3.14+5.9×31.4+180×0.314(2)解:(1)适当变形之后,提取公因式:原式=23×3.14+59×3.14+18×3.14=3.14×(23+59+18)=3.14×100=314(2)原式=说明:上述这些计算,巧妙应用了因式分解,使运算过程显得灵活、简捷。
例6 积的整数部分为( )A. 1B. 2C. 3D. 4分析:这道题,要求99个括号里的数值的乘积,当然不能用常规方法去实乘。
观察其特点:每个分母是相邻奇数或偶数的积,记为n(n+2);每个括号的分子相加又都是n(n+2)+1=(n+1)2,于是,设所求式子之积为S,则有1<S<2,应选A。
说明:这时用了因式分解,使隐含的数量关系明显化。
三、利用因式分解化简求值例7已知ac+bd=0,则ab(c2+d2)+cd(a2+b2)的值等于___________。
解:原式=(abc2+a2cd)+(abd2+b2cd)=ac(bc+ad)+bd(ad+bc)=(ad+bc)(ac+bd)=(ad+bc)×0=0说明:利用因式分解,先化简代数式,上述的求值题变得十容易了。
例8 已知a -b=3, a -c=326, 求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值 分析:所求的代数式中含有c -b ,可以通过已知的a -b=3与a -c=326来推得c -b解:由已知得c -b=3-326所以 原式=(3-326)[2332)26(3263+⨯+]=332)26(3-=27-26=1四、利用因式分解解方程例9 解方程(x 2+4x)2-2(x 2+4x)-15=0 解:将原方程左边分解因式,可得 x 2+4x +3)(x 2+4x -5)=0 (x +1)(x +3)(x -1)(x +5)=0由此得x+1=0或x +3=0,或x -1=0,或x +5=0∴原方程的解是x 1=-1,x 2=-3,x 3=1,x 4=-5例10 求方程4x 2-4xy -3y 2=5的整数解。
解:原方程或化为(2x -3y)(2x +y)=5因为x 、y 是整数,故2x -3y 和2x +y 必是整数。
又∵5=5×1=(-5)×(-1),因此原方程可化为四个方程组:解这四个方程组,便可得原方程的四组解为:说明:因式分解的运用,使这两道方程转化为我们熟悉的一次方程。
五、利用因式分解化简例11 化简3)0...3000...3331...111(31- 分析 111…1=91103-n333…3000…0=3×(111…1000…0)=3×(111…1-111…1)=3×(91102-n -9110-n )解:∵)0...3000...3331...111(31-⨯ =)91103911039110(3123-⨯+-⨯--⨯n n n =)110310310(913123-⨯+⨯-⨯n n n=3)110(271-⨯n ∴ 原式=33)110(271-⨯n =)110(31-⨯n=333 (3)六、利用因式分解证明等式(不等式)例12 已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形分析 要证明以a 、b 、c 为边的三角形是等边三角形,只要能证明a=b=c 即可,题中给出了关于a 、b 、c 的关系式abc c b a 3333=++,利用因式分解将它变形,在利用非负数的性质即可。
解:已知abc c b a 3333=++即 (a+b+c)(222c b a ++-ab -bc -ca)=0 ∵a+b+c ≠0∴222c b a ++-ab -bc -ca=0∴(222b ab a +-)+(222c bc b +-)+(222a ac c +-)=0 ∴2)(b a -=2)(c b -=2)(a c -=0 ∴a=b=c∴这个三角形是等边三角形例13 设a 、b 、c 为△ABC 的三边,求证bc c b a 2222---<0证明:bc c b a 2222---=)2(222bc c b a ++-=22)(c b a --=(a+b+c)(a -b -c) ∵a 、b 、c 为△ABC 的三边 ∴a+b+c>0 a -b -c<0 ∴(a+b+c)(a -b -c)<0 ∴bc c b a 2222---<0七、利用因式分解证明几何问题例14 已知:a 、b 为两圆的半径,c 为两圆的圆心距,若方程x2-2ax+b2-(b -a)c=0有相等的实数根,求证:两圆相等或外切.证明 对于方程x 2-2ax+b 2-(b -a)c=0,有 △=4a 2-4b 2+4(b -a)c=0, 即 (a -b)(a+b -c)=0,a=b 或c=a+b 所以两圆相等或外切.例15 在△ABC 中,∠BAC=90°,AC >AB ,AD 是高,M 是BC 的中点,求证:AD 2=BM 2-DM 2.证明 ∵BM 2-DM 2 =(BM+DM)(BM -DM) =(CM+DM)(BM -DM) =CD ·DB=AD 2,∴AD 2=BM 2-DM 2. 注:若用CM 替代BM ,则: CD=CM+DM ,DB=BM -DM练习题1. 求证:146+1能被197整除2. 如果xyz+xy+yz+zx+x+y+z=1975,试求自然数x 、y 、z3. 在△ABC 中,三边a 、b 、c 满足a 3+b 3+c 3-3abc=0,试判定三角形的形状 4. m 为何值时,方程2x 2-xy -6y 2+mx+17y -12=0的图象是两条直线? 5. 求x 2-y 2=1979的整数解 6. 设p 是质数,且p >2,求方程yx p 112+=的正整数解(x ≠y ) 7. 计算11999199819971996+⨯⨯⨯ 8. 计算999...9×999...9+199 (9)9. 已知222y xy x -+=7,求整数x 、y 的值 10.求出方程493322=-+-xy y x y x 的全部正整数解11. 已知012=++x x ,求148++x x 的值 12. 证明45455454+是合数13.如题图,M 为线段CB 的中点, D 为MC 上异于M 的一点,过 点D 作直线l ⊥BC ,A 为l 上任 意一点,(1)求证AB>AC,(2) 若BC=83.25,MD=12 ,求22AC AB -14.如题图,在△ABC 中,∠ABC>∠ACB, AD ⊥BC 于D ,P 是AD 上任一点, 求证:AC+BP<AB+PC答案或提示1. 证明 原式=(142)3+1=1963+1=197(1962-196+1) ∴ 能被197整除 2. (x ,y ,z)为①(7,12,18); ②(7,18,12);③(12,7,18);④(12,18,7),⑤(18,7,12), ⑥(18,12,7)共6组解 3. △ABC 为等边三角形 4. 652==m m 或时,方程2x 2-xy -6y 2+mx+17y -12=0的图象是两条直线 5. x=±990,y=±9896. ∵x ≠y ,以及p 或 或由于y是大于2的质数,且p是奇数,于是21p为整数所以求得的解是整数7.39900058.9...9820 09.x=3,y=2 或x=-5,y=2 或x=-3,y=-2 或x=5,y=210.x=2,y=311.012.略13.(1)运用勾股定理(2)199814.略。