福建省莆田市涵江区七年级数学下册第八章《二元一次方程组》作业4解二元一次方程组人教版

合集下载

七年级数学下册 第八章 二元一次方程组 8.2 消元—解二元一次方程组作业 (新版)新人教版-(新版

七年级数学下册 第八章 二元一次方程组 8.2 消元—解二元一次方程组作业 (新版)新人教版-(新版

消元—二元一次方程组一、选择题:1.二元一次方程组的解是( )A. B. C. D.2.用加减消元法解二元一次方程组时,下列步骤可以消去未知数x的是( ).A.①×4+②×3B.①×2+②×5C.①×5+②×2D.①×5-②×23.已知二元一次方程组,如果用加减法消去n,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×54.用代入法解方程组正确的解法是()①变形为,再代入②①变形为,再代入②②变形为,再代入①②变形为,再代入①5.已知是二元一次方程组的解,则m﹣n的值是()6.在关于x、y的二元一次方程组中,若,则a的值为()B.-37.若方程组与方程组有相同的解,则a,b的值分别为()A.1,2B.1,0C.,-,8.若与的和是单项式则( ).A. B. C. D.9.若是方程组的解,则(a+b)·(a-b)的值为()B.10.关于x,y的方程组的解是方程3x+2y=10的解,那么a的值为()A.﹣2 C.﹣111.已知实数x,y,z满足,则代数式3x﹣3z+1的值是( )A.﹣2B.2C.﹣612.关于x,y的方程组(其中a,b是常数)的解为,则方程组的解为( )A. B. C. D.二、填空题:13.如果实数x、y满足方程组,那么x2-y2= .14.对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9= .15.如果是二元一次方程,那么a = ,b= .16.已知方程组有无数组解,则a=_____,b=_____.17.已知关于x、y的二元一次方程组的解互为相反数,则k值是 .18.已知(xyz≠0),则x∶y∶z的值 .三、解答题:19.解方程组: 20、解方程组:21.解方程组: 22.解方程组:;23.解关于x、y方程组可以用(1)×2+(2)消去未知数x;也可以用(1)+(2)×5消去未知数y;求m、n的值。

七年级数学下册第八章【二元一次方程组】经典题(含答案)

七年级数学下册第八章【二元一次方程组】经典题(含答案)

一、选择题1.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .72.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( ) A .958220x y x y +=⎧⎨-=⎩B .954220x y x y +=⎧⎨-=⎩C .9516220x y x y +=⎧⎨-=⎩D .9516110x y x y +=⎧⎨-=⎩3.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( )A .3B .4C .2D .14.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .165.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,46.下列方程组的解为31x y =⎧⎨=⎩的是( )A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩7.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩8.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( )A .1B .2C .3D .49.若方程x-y=3与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,则这个方程可以( )A .3x-4y=16B .1254x y += C .1382x y -+= D .2(x-y)=6y10.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy11.下表为服饰店卖出的服装种类与原价对照表.某日服饰店举办大拍卖,外套按原价打六折出售,衬衫和裤子按原价打八折出售,各种服装共卖200件,营业额是24000元,则外套卖出了( )A .100件B .80件C .60件D .40件二、填空题12.某超市促销活动,将车厘子、波罗蜜、山竹三种水果采用三种不同方式搭配成礼盒,分别是蒸蒸日上礼盒、独占鳌头礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中车厘子、波罗蜜、山竹三种水果成本之和,盒子成本忽略不计,蒸蒸日上每盒分别装有车厘子、波罗蜜、山竹三种水果8千克,4千克,3千克;独占鳌头每盒装有车厘子、波罗蜜、山竹三种水果3千克,8千克,6千克;蒸蒸日上每盒的总成本是每千克车厘子水果成本的14倍,每盒蒸蒸日上的销售利润是60%,每盒独占鳌头的售价是成本的43倍,每盒吉祥如意在成本上提高60%标价后打八折出售,获利为每千克车厘子水果成本的2.8倍,当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,则销售的总利润率为______. 13.若1m ,2m ,…,是从0,1-,2这三个数中取值的一列数,若1232020...700m m m m ++++=,()()()22212202011...13520m m m -+-++-=,则1m ,2m ,…,2020m 中为2的个数是______.14.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若3213,218==※※.则12※的值是_______15.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.16.若方程组35661516x y x y +=⎧⎨+=⎩的解也是310x ky +=的解,则k =__________.17.如图,在两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后得到如图①、②,已知大长方形的长为m ,则(1)若记小长方形的长为a ,宽为()b a b >,则a 和b 之间的数量关系是_________;(2)图①中阴影部分的周长与图②中阴影部分的周长的和是________(结果用含m 的代数式表示).18.已知方程组5257x y m x y -=⎧⎨+=⎩中,x ,y 的值相等,则m=________.19.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .20.若方程组23103228a b a b -=⎧⎨+=⎩的解是82a b =⎧⎨=⎩,则方程组()()()()223110322128x y x y ⎧+--=⎪⎨++-=⎪⎩的解是____________. 21.若方程2(3)31a a xy --+=是关于x ,y 的二元一次方程,则a 的值为_____.三、解答题22.已知多项式21231365m x y xy x +-+-+是六次多项式,单项式3x 2n y 5-m 的次数也是六,求:(1)m ,n 的值;(2)[2()]m n m m n ---+的值.23.2019年12月3日,140余件从明末清初延续至民国时期的民间晋绣在山西省太原美术馆展出,这是山西首次将这一传承百年的工艺品进行系统梳理.某校组织学生前去参观,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满.问这批学生的人数是多少?原计划租用45座客车多少辆? 24.解方程组: (1)355223x y x y -=⎧⎨+=⎩(2)52253415x y x y +=⎧⎨-=⎩(3)1312223x y x y ⎧-=-⎪⎨⎪+=⎩ (4)2313424575615u v u v ⎧+=⎪⎪⎨⎪+=⎪⎩25.甲、乙两人同时解方程组1542ax by x by +=⎧⎨=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩.求原方程组的正确解.一、选择题1.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种2.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =23.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩4.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x y y xB . 4.512x y yxC .4.512xy x yD .4.512xyy x5.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=36.若方程x-y=3与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,则这个方程可以( )A .3x-4y=16B .1254x y += C .1382x y -+= D .2(x-y)=6y7.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-8.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( ) A .23x y =+B .32y x +=C .23y x =-D .32y x =-9.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩10.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:511.已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( )A .8B .0C .4D .﹣2二、填空题12.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .13.某商店准备用每千克19元的A 糖果和每千克10元的B 糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A 糖果x 千克,B 糖果y 千克,根据题意可列二元一次方程组:_____.14.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+(10b )2021=________. 15.已知方程组32223x y m x y m+=+⎧⎨+=⎩的解适合8x y +=,则m =_______.16.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.17.已知关于,x y 的方程组231x ay bx y -=⎧⎨+=-⎩的解是13x y =⎧⎨=-⎩,则a b +=___________.18.甲、乙二人分别从A 、B 两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h 时相遇,相遇后0.5h 甲到达B 地,若相遇后乙又走了20千米才到达A 、B 两地的中点,那么乙的速度为______千米/时. 19.已知2353210x y x y +=⎧⎨+=⎩,则x +y ﹣2020=_____.20.若方程2(3)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值为_____.21.已知x ,y ,z 都不为0,且4330230x y z x y z --=⎧⎨-+=⎩,则式子346x y z x y z -+++的值为_____.三、解答题22.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料,该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元? 23.若关于x ,y 的方程组45321x y x y +=⎧⎨-=⎩和31ax by ax by +=⎧⎨-=⎩有相同的解,求a 和b 的值.24.解方程组: (1)355223x y x y -=⎧⎨+=⎩(2)52253415x y x y +=⎧⎨-=⎩(3)1312223x y x y ⎧-=-⎪⎨⎪+=⎩ (4)2313424575615u v u v ⎧+=⎪⎪⎨⎪+=⎪⎩25.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.一、选择题1.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.49 B.64 C.81 D.1002.已知2x2y3a与﹣4x2a y1+b是同类项,则a b的值为()A.1 B.﹣1 C.2 D.﹣23.若关于x、y的方程组228x yax y+=⎧⎨+=⎩的解为整数,则满足条件的所有a的值的和为()A.6 B.9 C.12 D.164.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种5.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.2210002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩B.1000222.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩C.10002.5%0.5%22x yx y-=⎧⎨+=⎩D.10002.5%0.5%22x yx y+=⎧⎨-=⎩6.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2 B.2-C.1 D.1-7.方程组5213310x yx y+=⎧⎨-=⎩的解是()A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②9.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种10.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩11.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c-+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩二、填空题12.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本.13.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .14.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__. 15.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.16.若2a m b 2m +3n 与a 2n ﹣3b 8的和仍是一个单项式,则m =_____n =_____.17.关于,x y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是41x y =⎧⎨=⎩,则关于,x y 的方程组111222(1)()2(1)()2a x b y c a x b y c -+-=⎧⎨-+-=⎩的解是_____________. 18.甲、乙两码头相距180km ,某轮船从甲码头顺流航行到乙码头需要5h ,返回时需要6h ,那么这条河的水流速度是________.19.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________. 20.如果28a b --与()21a b ++互为相反数,那么a b =________.21.若方程2(3)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值为_____.三、解答题22.某水果店有甲,乙两种水果,它们的单价分别为a 元/千克,b 元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a 和b 的值;(2)甲种水果涨价m 元/千克(02)m <<,乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m 的代数式表示).23.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.24.解方程组:321121x y x y -=⎧⎨+=⎩. 25.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.。

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

七年级下册数学第八章《二元一次方程组》单元练习题一、单选题 1.已知,那么x+y 的值是( )A .0B .5C .﹣1D .12.已知单项式 23x m y -- 与 2323n m nx y - 是同类项,那么m ,n 的值分别是A .31m n =⎧⎨=-⎩B .31m n =⎧⎨=⎩C .31m n =-⎧⎨=⎩D .31m n =-⎧⎨=-⎩3.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少? 设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是( )A .30()40080()400x y y x +=⎧⎨-=⎩B .30()40080()400y x x y -=⎧⎨+=⎩C .30()40080()400x y x y +=⎧⎨-=⎩D .30()40080()400x y x y -=⎧⎨+=⎩4.《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x 只,怪鸟为y 只,可列方程组为( ).A .62464276x y x y +=⎧⎨+=⎩B .64762246x y x y +=⎧⎨+=⎩C .62764246x y x y +=⎧⎨+=⎩D .22766246x y x y +=⎧⎨+=⎩5.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔20s 相遇一次,若同向而行,则每隔300s 相遇一次,已知甲比乙跑得快,设甲每秒跑x 米,乙每秒跑y 米,则可列方程为( )A .30020x y x y +=⎧⎨-=⎩B .20300x y x y +=⎧⎨-=⎩C .2020300300300300x y x y +=⎧⎨-=⎩D .2030030030020300x y x y +=⎧⎨-=⎩6.已知|2x+y+3|+(x-y+3)2=0,则(x+y )2019等于( ) A .2019B .-1C .1D .-20197.把方程7215x y =-写成用含x 的代数式表示y 的形式,得( ) A .2517x y -=B .1527yx +=C .7152x y -=D .1572xy -=8.在一个古代文献里记录了一个“鸡免同笼”问题,翻译内容如下:在一个笼子里混装有鸡和兔子若干只,已知共有头45个,脚160个,设鸡x 只,兔子y 只,根据题意可列出方程组( )A .4524160x y x y +=⎧⎨+=⎩B .4522160x y x y +=⎧⎨+=⎩C .452160x y x y -=⎧⎨+=⎩D .4524160x y x y +=⎧⎨-=⎩9.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=-⎩10.如果方程x ﹣y =3与下面的方程组成的方程组的解为47x y =-⎧⎨=-⎩,那么这一个方程可以是( )A .2(x ﹣y )=6yB .3x ﹣4y =16C .1x 2y 54+=D .1x 3y 82+=二、填空题11.二元一次方程3x +2y =15共有_______组正整数解.... 12.已知24280x x y -++-=,则()2019x y -=_____________.13.已知关于x ,y 的二元一次方程组3522x y k x y k +=⎧⎨+=-⎩的解互为相反数,则k 的值是_______14.方程组26{0x y x y -=+=的解是 . 15.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.16.已知关于 x ,y 的二元一次方程组2122x y k x y k -=+⎧⎨-=-+⎩,则 x ﹣y 的值是_____17.《九章算术》是我国东汉年间编订的一部数学经典著作,其中有一个问题是:“今有三人公车,二车空;二人公车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,若每3人坐一辆车,则有2辆空车;若每2人坐一辆车,则有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为_________.18.若7353x y x y +=⎧⎨-=-⎩,则5x ﹣3y 的值是_____.三、解答题19.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b== ,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.20.如果264(1)(2)12x x A B Cx x x x x x +-=++-+-+,求A,B,C 的值.21.甲、乙两车将一批抗疫物资从A 地运往B 地,两车各自的速度都保持匀速行驶.甲出发0.5h 后乙开始出发,结果比甲早0.5h 到达B 地.甲、乙两车离A 地的路程1s ()km 、2s ()km 与甲车行驶时间行驶的时间()t h 之间的函数关系如图所示.(1)求2s ()km 与t ()h 之间的函数关系式; (2)图中a =_______;b =______;(3)若甲、乙两车之间的路程不小于20km ,则t 的取值范围是________.(直接写出答案)22.对于两个不相等的实数a 、b ,我们规定符号max{a ,b}表示a 、b 中的较大值,min{a ,b}表示a 、b 中的较小值.如:max{2,4}=4,min{2,4}=2.按照这个规定:解方程组:{}{}1max ,3min 39,3114x x y x x y ⎧-=⎪⎨⎪++=⎩23.已知关于x ,y 的方程组3+5223x y m x y m =+⎧⎨+=⎩的解满足x +y =-10,求式子m 2-2m +1的值.24.学完二元一次方程组的应用之后,老师写出了一个方程组如下:254340x y x y -=⎧⎨+=⎩,要求把这个方程组赋予实际情境. 小军说出了一个情境:学校有两个课外小组,书法组和美术组,其中书法组的人数的二倍比美术组多5人,书法组平均每人完成了4幅书法作品,美术组平均每人完成了3幅美术作品,两个小组共完成了40幅作品,问书法组和美术组各有多少人?小明通过验证后发现小军赋予的情境有问题,请找出问题在哪?25.对于实数a ,b ,定义关于“⊕”的一种运算:a ⊕b=2a+b ,例如3⊕4=2×3+4=10.若x ⊕(-y )=2,(2y)⊕x=1,求x+y 的平方根.26.开学初,小芳和小亮去学校商店购买学习用品,小芳用17元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.求每支钢笔和每本笔记本的价格.27.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,试计算两种笔记本各买了多少本?答案1.B2.B3.A4.C5.C6.B7.C8.A9.C10.B 11.2 12.1- 13.4 14.2{2x y ==- 15.22. 16.117.()3229y x y x ⎧-=⎨+=⎩18.1119.(1) 6,10;(2)02x y =⎧⎨=⎩。

精选初中数学七年级下册第8章《二元一次方程组》单元综合练习题及答案(1)

精选初中数学七年级下册第8章《二元一次方程组》单元综合练习题及答案(1)

人教版七年级数学下册第八章二元一次方程组的解法研究专题 一.典例讲解:解方程组:x+y=6,①2x-y=9.②

解:①+②,得3x=15.∴x=5. 将x=5代入①,得5+y=6.∴y=1.

∴原方程组的解为x=5,y=1. 二.对应训练:

1.解方程组:x-2y=3,①3x+4y=-1.② 2.解方程组:x+0.4y=40,①0.5x+0.7y=35.②

3.解方程组:5x+4y=6,①2x+3y=1.② 类型3 选择适当的方法解二元一次方程组 一.典例讲解:解方程组:x=y-52,①4x+3y=65.②

解:把①代入②,得4×y-52+3y=65. 解得y=15. 把y=15代入①,得x=15-52=5. ∴原方程组的解为x=5,y=15. 二.对应训练: 1.解方程组:3x+5y=19,①8x-3y=67.② 2.解方程组:x-y2=9,①x3-y2=7.② 3.解方程组:x2=y3,①3x+4y=18.② 4.解方程组:x4+y3=13,3(x-4)=4(y+2).

5.解方程组:x+2y+12=4(x-1),3x-2(2y+1)=4. 6.解方程组:2x-y=5,①x-1=12(2y-1).② 类型4 利用“整体代换法”解二元一次方程组

一.典例讲解: 阅读材料:善于思考的小军在解方程组2x+5y=3,①4x+11y=5②时,采用了一种“整体代换”的解法: 解:将方程②变形:4x+10y+y=5, 即2(2x+5y)+y=5,③ 把方程①代入③,得2×3+y=5.∴y=-1. 把y=-1代入①,得x=4.

∴原方程组的解为x=4,y=-1. 一.对应训练: 请你解决以下问题:

(1)模仿小军的“整体代换法”解方程组:3x-2y=5,①9x-4y=19;②

七年级初一数学第八章 二元一次方程组(讲义及答案)附解析

七年级初一数学第八章 二元一次方程组(讲义及答案)附解析

七年级初一数学第八章二元一次方程组(讲义及答案)附解析一、选择题1.方程组2x yx y 3+=⎧+=⎨⎩的解为{x2y==,则被遮盖的两个数分别为( )A.2,1 B.5,1 C.2,3 D.2,42.若方程6kx﹣2y=8有一组解32xy=-⎧⎨=⎩,则k的值等于(()A.23-B.23C.16-D.163.把方程23x y-=改写成用含x的式子表示y的形式,正确的是()A.23x y=+B.32yx+=C.23y x=-D.32y x=-4.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x岁,小红今年y岁”,根据题意可列方程为()A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩5.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是()A.504x yy x+=⎧⎨=⎩B.504x yx y+=⎧⎨=⎩C.504x yy x-=⎧⎨=⎩D.504x yx y-=⎧⎨=⎩6.在关于x、y的二元一次方程组321x y ax y+=⎧⎨-=⎩中,若232x y+=,则a的值为()A.1 B.-3 C.3 D.47.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x元,年支出为y元,可列出方程组为()A.4002740034x yx y-=⎧⎪⎨+=⎪⎩B.4003440027x yx y=+⎧⎪⎨-=⎪⎩C .4002440037x y x y -=⎧⎪⎨-=⎪⎩ D .4003740024x y x y -=⎧⎪⎨-=⎪⎩ 8.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40 B .41C .45D .469.方程组的解的个数是( )A .1B .2C .3D .410.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.13.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 14.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y+的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)15.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a+b﹣m =_____.16.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒17.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.18.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包.19.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.三、解答题21.阅读材料:对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.22.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.23.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器 乙型机器 价格(万元/台) a b 产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元. (1) 求a 、b 的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案? (3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案. 24.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.25.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论. (1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由. (3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A 、B 、C 、D ,第一次购A 教具1件、B 教具3件、 C 教具4件、D 教具5件共花2018元;第二次购A 教具1件、B 教具5件、 C 教具7件、D 教具9件共花3036元. 求购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需多少元?26.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】把x=2代入x+y=3中,得:y=1, 把x=2,y=1代入得:2x+y=4+1=5, 故选B .2.A解析:A 【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,解得k=-23, 故选A . 【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键.3.C解析:C 【分析】将x 看做常数移项求出y 即可得. 【详解】由2x-y=3知2x-3=y ,即y=2x-3, 故选C . 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .4.D【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.5.B解析:B【解析】分析:设小长方形的长为xcm,宽为ycm,根据图形可得:大长方形的宽=小长方形的长+小长方形的宽,小长方形的长=小长方形的宽×4,列出方程中即可.详解:设小长方形的长为xcm,宽为ycm,则可列方程组:504x yx y+=⎧⎨=⎩.故选B.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,看懂图示,找出合适的等量关系,列出方程组,注意弄清小正方形的长与宽的关系.6.C解析:C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣②,得:2x+3y=a﹣1.∵2x+3y=2,∴a﹣1=2,解得:a=3.故选C.点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.7.C解析:C【分析】由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为23x,乙的支出为47y,根据题意找出等量关系,列出方程中选出正确选项即可.设甲的年收入为x 元,年支出为y 元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4, ∴乙的收入为23x ,乙的支出为47y , 根据题意列出方程组得:4002440037x y x y -=⎧⎪⎨-=⎪⎩. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.8.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=, ∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.9.A解析:A【解析】解:当x >0,y >0时,方程组变形得:,无解;当x >0,y <0时,方程组变形得:,①+②得:2x=14,即x=7, ②﹣①得:2y=﹣6,即y=﹣3, 则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选A【点评】此题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【详解】设一个大桶盛酒 x 斛,一个小桶盛酒 y 斛,根据题意得:5352x yx y+=⎧⎨+=⎩,故选B.【点睛】根据文字转化出方程条件是解答本题的关键.二、填空题11.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案. 【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时, x=17、14、11、8、5、2, ∴共有6种购买方案, 故答案为:6. 【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题.12.15 【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15 【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可. 【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人, ∵945不能被11和13整除且945÷9=105(人), ∴两个部门的人数之和为105(人), ∵1245不能被11和13整除, ∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩,解得:4560x y =⎧⎨=⎩,∴15-=x y , 故答案为:15. 【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.13.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.14.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a=+⎧⎨=--⎩ , 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④.【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.15.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.16.98【解析】【分析】设未知的三块面积分别为x ,y ,z (如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BC E 列出三元一次方程组,再利用加减消元法即可求得y 的值.【解析:98【解析】【分析】设未知的三块面积分别为x ,y ,z (如图).根据S △BCF =S △ABF +S △CDF ,S △ABE =S △ADE +S △BCE 列出三元一次方程组,再利用加减消元法即可求得y 的值.【详解】设未知的三块面积分别为x ,y ,z (如图),则x+y+76=24+87+55+19+z ,z+y+87=55+x+24+19+76,即x+y-z=109①,z+y-x=87②由①+②得,y=98.即图中阴影部分的面积是98﹒故答案为:98.【点睛】本题主要考查了矩形的性质,解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再通过加减消元,得到阴影部分的面积.17.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x z z y x y z -+=⎧⎪-+=⎨⎪+-+=⎩,解得135x y z =⎧⎪=⎨⎪=⎩, 所以x+y+z =9.18.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.19.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.20.90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁解析:90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.【详解】解:设道路一侧植树棵数为x 棵,则78x+=2+102610x -⨯+, 解得x =180,实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010y-+﹣5=()18078678y -+++, 解得y =5, 则丁植树的时长为1805610-⨯=15, 所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).故答案为:90.【点睛】本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过计算两人的植树时间进行比较.三、解答题21.(1)(134)8F =;(2)325361s t =. 【分析】(1)由题意直接根据()F n 的定义把“相异数”任意两个数位上的数字对调后得到的三个不同的新三位数进行代入计算即可;(2)根据题意由“相异数”的定义进行分析,并根据()F n 的定义求出()F s 和()F t ,进而依据()()20F s F t +=建立不定方程进行分析即可求解.解:(1)(134)(314431143)1118F =++÷=;(2)∵s ,t 都是“相异数”,10025s x =+,360t y =+,∴()(2051052010052)1117F s x x x x =+++++÷=+,()(6301006330610)1119F t y y y y =+++++÷=+.∵()()20F s F t +=,∴791620x y x y +++=++=,∴4x y +=,∵19x ≤≤,19y ≤≤,且x ,y 都是正整数,13x y =⎧⎨=⎩,22x y =⎧⎨=⎩,31x y =⎧⎨=⎩ ∵s 是“相异数”,∴2x ≠,5x ≠.∵t 是“相异数”,∴3y ≠,6y ≠.∴31x y =⎧⎨=⎩是符合条件的解 ∴100325325s =⨯+=,3601361t =+= ∴325361s t =. 【点睛】 本题属于材料阅读题,考查代数以及二元一次方程中不定方程的应用,读懂题干所给的定义和分析解决二元一次方程是解题的关键.22.(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭ 【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论.【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF∴DAE BEA ∠=∠∴EAF AEG ∠=∠ ∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠∴180GEF DAF ∠+∠=︒∵GEF k DAF ∠=∠∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点∴45BAE x ∠=︒>︒∵k 为不超过10的正整数∴当8k 时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.23.(1)3018a b =⎧⎨=⎩;(2)有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x 台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x 的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12236a b a b -=⎧⎨-=⎩, 解得,3018a b =⎧⎨=⎩; (2)解:设买了x 台甲种机器由题意得:30+18(10-x)≤216解得:x ≤3∵x 为非负整数∴x =0、1、2、3∴有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x )≥1890解得:x ≥1.5∴1.5≤x ≤ 3∴整数 x =2 或 3当 x =2 时购买费用=30×2+18×8=204(元) 当 x =3 时购买费用=30×3+18×7=216(元) ∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.24.(1)0≤x≤1;(2)①x=1;②a=b=c ;③存在 063a b c =⎧⎪=⎨⎪=⎩使等式成立 . 【解析】【分析】(1)根据题意可得关于x 的不等式组,解不等式组即可求得答案;(2)①先求出{}21,21M x x x +=+,,继而根据题意可得{}min 2,1,21x x x +=+,由此可得关于x 的不等式组,求解即可得;②M{a ,b ,c}=3a b c ++,如果min{a ,b ,c}=c ,则a ≥c ,b ≥c ,即3a b c ++=c ,由此可推导得出a=b=c ,其他情况同理可证,故a=b=c ;③由②的结果可得关于a 、b 、c 的方程组,由此进行求解即可得.【详解】(1)由题意得2224-22x x +≥⎧⎨≥⎩, 解得0≤x≤1;(2)①{}21221,213x x M x x x ++++==+, {}{}21,2min 2,1,2M x x x x ,+=+所以{}min 2,1,21x x x +=+则有1212x x x +≤⎧⎨+≤⎩ 即11x x ≤⎧⎨≥⎩所以x=1 ②∵M{a ,b ,c}=3a b c ++, 如果min{a ,b ,c}=c ,则a ≥c ,b ≥c , 则有3a b c ++=c , 即a+b-2c=0,∴(a-c)+(b-c)=0,又a-c ≥0,b-c ≥0,∴a-c=0且b-c=0,∴a=b=c ,其他情况同理可证,故a=b=c ;③存在,理由如下:由题意得:()()273212741a b a b a b c ⎧-+=++⎪⎨-+=+⎪⎩ⅠⅡ, 由(Ⅰ)得 a+3b=6,即23a b =-, 因为a ,b ,c 是非负整数 ,所以a=0,3,6 ,b=2,1,0,即06a b =⎧⎨=⎩,代入(Ⅱ)得c=3, 或31a b =⎧⎨=⎩,代入(Ⅱ)得c=114,不符合题意,舍去, 或60a b =⎧⎨=⎩ ,代入(Ⅱ)得c=92,不符合题意,舍去, 综上所述: 存在063a b c =⎧⎪=⎨⎪=⎩使等式成立.【点睛】本题考查了一元一次不等式组的应用,方程组的应用,读懂题意,正确进行分析得出相应的不等式组或方程组是解题的关键.25.(1) 购甲、乙、丙三种商品各一件共需90元.(2) 小丽的说法正确. (3) 购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.【解析】分析:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列三元一次方程组求解即可;(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列方程组,变形后用整体思想解答即可;(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,根据题意列方程组,变形后用整体思想解答即可.详解:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得: 357490471069023170x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.解得: 203040x y z =⎧⎪=⎨⎪=⎩.∴ 90x y z ++=.答:购甲、乙、丙三种商品各一件共需90元.(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得:3574904710690x y z x y z ++=⎧⎨++=⎩. 变形得:()()()()322490432690x y z y z x y z y z ①②⎧++++=⎪⎨++++=⎪⎩解得:①×3-②×2得:∴x +y +z =90答:购甲、乙、丙三种商品各一件共需90元.(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,由题意得: 34520185793036a b c d a b c d +++=⎧⎨+++=⎩①②①×11-②×6得:5a +3b +2c +d =3982答:购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.点睛:本题考查了二元一次方程组的应用以及利用换元法解方程组,解题的关键是:(1)用加减消元法解三元一次方程组;(2)(3)运用了整体思想解决问题.解决该题型题目时,整体替换部分是关键.26.(1)方程组的解为32x y ⎧⎨⎩==;(2)19. 【解析】【分析】(1)仿照小军的方法将方程②变形,把方程①代入求出y 的值,即可确定出x 的值; (2)方程组两方程变形后,利用加减消元法求出所求即可.【详解】解:(1)由②得:3(3x-2y )+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:x=3,则方程组的解为32x y ⎧⎨⎩==; (2)由①得:3(x 2+4y 2)-2xy=47③,。

七年级数学(下)第八章《二元一次方程组》单元测试卷附答案

七年级数学(下)第八章《二元一次方程组》单元测试卷附答案

七年级数学(下)第八章《二元一次方程组》单元测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.方程2x ﹣3y=4,2x+y 3=4,2x-3y=4,2x+3y ﹣z=5,x 2﹣y=1中,是二元一次方程的有( )A .1个B .2个C .3个D .4个 2.如果a 3x b y与﹣a 2y b x+1是同类项,则( )A 、23x y =-⎧⎨=⎩ B. 23x y =⎧⎨=-⎩ C. 23x y =-⎧⎨=-⎩D. 23x y =⎧⎨=⎩3.x 与y 的值相等,则已知程方组54358x y mx y -=⎧⎨+=⎩中m 的值是( ).(A )1 (B )1- (C )1± (D )5±4.甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?设原来甲车间有x 名工人,乙车间有y 名工人,列以下方程组正确的是( ) A.⎩⎨⎧-==-)10(210y x y x B.⎩⎨⎧-==-10210y x y x C.⎩⎨⎧-=++=-)10(2101010y x y x D.⎩⎨⎧-=++=-10)10(21010y x y x5.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .50180x y x y =-⎧⎨+=⎩ B .50180x y x y =+⎧⎨+=⎩ C . 5090x y x y =+⎧⎨+=⎩ D .5090x y x y =-⎧⎨+=⎩6.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩ B .3421x y x y +=⎧⎨=+⎩ C .3421x y x y +=⎧⎨=+⎩ D .23421x y x y +=⎧⎨=+⎩7.已知:21x y =⎧⎨=⎩是方程kx-y=3的解,则k 的值是( )A.2B.-2C.1D.-18.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-39.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.4 10.下列四组数值中,为方程组⎪⎩⎪⎨⎧=--=--=++231202z y x z y x z y x 的解是( )A 、⎪⎩⎪⎨⎧-===210z y xB 、⎪⎩⎪⎨⎧===101z y xC 、⎪⎩⎪⎨⎧=-==010z y xD 、⎪⎩⎪⎨⎧=-==321z y x二、填空题(共10小题,每题3分,共30分) 11.已知x 2y 1=⎧⎨=-⎩是方程ax 5y 15+=的一个解,则a = 。

人教版数学七年级下册 第八章 二元一次方程组 单元练习(含答案)

第八章 二元一次方程组一、选择题1.下列各式是二元一次方程的是( )A .x 2+y =0B .x =2y +1C .2x 3−2y =0D .y +12x 2. 解方程组{2x +y =3①,2x −3y =4②时,若将①-②可得( ) A .4y=1 B .4y=-1 C .-2y=-1 D .-2y=13.{x =5y =3是下面哪个二元一次方程的解( ) A .2x −y =7 B .y =−x +2 C .x =−y −2 D .2x −3y =−14.若{x =3,y =4是方程kx +y =−5的一个解,则k 的值是( ) A .−13 B .−3 C .3 D .13 5.已知{x =2y =1是关于x ,y 的二元一次方程组{ax +by =7,ax −by =1的解,则a-b 的值为( ) A .-1 B .1 C .2 D .36.小华和爸爸一起玩: 掷飞镖游戏.游戏规则:站在5米开外朝飞镇盘扔飞镖,若小华投中1次得5分,爸爸投中1次得3分.结果两人一共投中了20次,经过计算发现省爸的得分比小华的得分多4分,设小华投中的次数为x ,爸爸投中的次数为y ,根据题意列出的方程组正确的是( )A .{x +y =203x +4=5yB .{x +y =203x =5y +4C .{x +y =205x =3y +4D .{x +y =205x +4=3y7. 已知关于x ,y 的二元一次方程组{ax +3y =2,2x −y =1无解,则a 的值是( ) A .2 B .6 C .-2 D .-68.已知实数x ,y ,z 满足{x +y +z =74x +y −2z =2,则代数式3(x −z)+1的值是( ) A .-2B .-4C .-5D .-6二、填空题9.若5x m−1+5y n−3=−1是关于x ,y 的二元一次方程,则m +n = .10.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x 个,足球y 个,则可列方程组为 .11.若关于x 、y 的方程组{ax +3y =92x +3y =0有整数解,则正整数a 的值为 . 12.我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”设该问题中的人数为x 人,物品的价格为y 钱,则可列二元一次方程组为 .13.若关于x ,y 的二元一次方程组{3x +y =5m x −2y =3m的解也是二元一次方程2x +3y =6的一个解,则m 的值为 .三、解答题14.解方程组:(1){2x +3y =22①x =y +1②(2){3x +2y =7①2x −4y =4②15. 已知关于x , y 的方程组{3x +y =m +6x +3y =2−3m的解满足x +y 和x −y 的值都是正数. (1)求m 的取值范围;(2)化简:|m −4|−|m +4|16.已知关于x ,y 的方程组{mx +2ny =4x +y =2与{x −y =4nx +(m −1)y =3有相同的解. (1)求这个相同的解;(2)求m ,n 的值;(3)若(1)中的解也是关于x ,y 的方程(3−a)x +(2a +1)y =3的解,求a 的值.17.我市为了打造湿地公园,今年计划改造一片绿化地种植A ,B 两种景观树.种植3棵A 种、4棵B 种景观树需要1800元,种植4棵A 种、3棵B 种景观树需要1700元.种植每棵A 种景观树和每棵B 种景观树各需要多少元?18.某公益团体组织“义卖助学,奉献爱心”活动,计划购进红、白两种颜色的文化衫通过手绘设计后进行出售,并将所获利润全部捐资助学.已知该公益团体花费了2400元从批发商城购买了红、白两种颜色的文化衫100件,每件文化衫的批发价格及手绘后的零售价格如下表所示:(1)该公益团体购进红、白文化衫各多少件?(2)这批文化衫通过手绘设计后全部售出,求该公益团体“义卖助学”活动所获的利润.参考答案1.C2.B3.A4.B5.A6.D7.D8.B9.610.{x +y =1150x +80y =70011.1或3或512.{8x −y =3,y −7x =413.314.(1)解:{2x +3y =22①x =y +1②, 将②代入①得:2(y +1)+3y =22,整理得:5y +2=22,解得:y =4,将y =4代入②得:x =4+1=5,故原方程组的解为{x =5y =4(2)解:{3x +2y =7①2x −4y =4②, ①×2+②得:8x =18,解得:x =94将x =94是代入②得:92−4y =4,解得:y =18,故原方程组的解为{x =94y =18. 15.(1){3x +y =m +6①x +3y =2−3m②①+②得4x +4y =8−2m ,①-②得2x −2y =4+4m .∵x +y 和x −y 的的值都是正数,∴{4x +4y >02x −2y >0,即{8−2m >04+4m >0, 解得:−1<m <4,所以m 的取值范围是−1<m <4;(2)由(1)得−1<m <4,∴m −4<0,m +4>0,∴|m −4|−|m +4|=4−m −(m +4)=4−m −m −4=−2m .16.(1)解:由题意可得{x +y =2x −y =4,解得{x =3y =−1; (2)将{x =3y =−1代入含有m ,n 的方程得{3m −2n =43n −(m −1)=3,解得{m =167n =107; (3)将{x =3y =−1代入(3−a)x +(2a +1)y =3,得(3−a)×3+(2a +1)×(−1)=3,解得a =1. 17.解:设种植每棵A 种景观树需要a 元,每棵B 种景观树需要b 元,根据题意得:{3a +4b =18004a +3b =1700, 解得:{a =200b =300, 答:种植每棵A 种景观树需要200元,每棵B 种景观树需要300元.18.(1)解:设该公益团体购进红色文化衫x 件,白色文化衫y 件,由题意得:{x +y =10025x +20y =2400, 解得:{x =80y =20答:该公益团体购进红色文化衫80件,白色文化衫20件;(2)解:(45−25)×80+(35−20)×20=20×80+15×20=1600+300=1900(元)答:该公益团体“义卖助学”活动所获的利润为1900元.。

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (100)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案)已知4x-y=6,用含x的代数式表示y,则y=______________.【答案】-6+4x.【解析】【分析】把x当作已知数,求出关于y的方程的解即可.【详解】解:∵4x-y=6,∴-y= 6-4x,∴ y= -6+4x,故答案为:-6+4x【点睛】本题考查了解二元一次方程,解题关键是把x当作已知数表示y.92.|5212||326|0x y x y+-++-=,则2x+4y=________.【答案】0【解析】【分析】根据非负数的性质列出方程组,求出x、y的值代入所求代数式计算即可.【详解】由题意得52120 3260x yx y+-⎧⎨+-⎩==,两个方程相减得:2x=6,解得x=3.把x=3代入5x+2y-12=0得,5×3+2y-12=0,解得y=-32.把x=3,y=-32代入2x+4y得:原式=2×3+4×(-32)=0.故答案为:0.【点睛】此题考查绝对值的非负性,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.93.对于方程238x y+=,用含x的代数式表示y,则可以表示为________.【答案】823xy-=【解析】【分析】根据等式的基本性质移项、系数化1即可.【详解】解:238x y+=移项,得382y x=-系数化1,得823xy-=故答案为:823xy-=.【点睛】此题考查的是用含一个字母的式子表示另一个字母,掌握等式的基本性质是解决此题的关键.94.已知 x ,y 是方程组2624x y x y +=⎧⎨+=⎩的解,则 x −y 的值为_____. 【答案】2【解析】【分析】用①-②可直接求解.【详解】2624x y x y +=⎧⎨+=⎩①② ①-②得:x −y=2故答案为:2【点睛】本题考查的是解二元一次方程组-加减消元法,掌握加减消元的方法是关键.95.以方程组2123y x y x =+⎧⎨=--⎩的解为坐标的点(,)x y 在第__________象限. 【答案】三【解析】【分析】解出x ,y 的值,再通过符号判断出在第几象限即可.【详解】解:由方程组2123y x y x =+⎧⎨=--⎩可得11x y =-⎧⎨=-⎩, 根据第三象限点的特点可知,点(-1,-1)在第三象限,故答案为:三.【点睛】本题考查了二元一次方程组的解法及直角坐标系中各象限点的坐标特点,解题的关键是熟记各象限点的坐标特点.96.几个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是68x y =⎧⎨=⎩,求方程组111222326326a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以6,通过换元替换的方法来解决.”参考他们的讨论,你认为这个题目的解应该是_______.【答案】1224x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以6,通过换元替代的方法即可得到一个关于x ,y 的方程组,即可求解.【详解】第二个方程组的两个方程的两边都除以6得:11122211231123a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是68x y =⎧⎨=⎩,∴162183xy⎧=⎪⎪⎨⎪=⎪⎩,解得1224xy=⎧⎨=⎩.故答案为:1224xy=⎧⎨=⎩.【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.97.若25(4)0x y x y+++--=,则___________xy=【答案】94【解析】【分析】根据非负数性质列出方程组,再用加减法解方程组可得.【详解】因为25(4)0x y x y+++--=,且250;(4)0x y x y+≥--≥+所以250;(4)0x y x y+=--=+所以5040 x yx y++=⎧⎨--=⎩解得1292 xy⎧=-⎪⎪⎨⎪=-⎪⎩,所以xy=94故答案为:94【点睛】 考核知识点:解二元一次方程组.利用非负数性质列方程组,再运用加减法求解是关键.98.小明用加减消元法解二元一次方程组236223x y x y +=⎧⎨-=⎩①②.由①-②得到的方程是________.【答案】53y =【解析】【分析】直接利用两式相减进而得出消去x 后得到的方程.【详解】236223x y x y +=⎧⎨-=⎩①②, ①-①得:53y =.故答案为:53y =.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.99.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩的值为_____. 【答案】9727x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据二元一次方程组的加减消元法,即可求解.【详解】345254x y x y +=⎧⎨+=⎩①②, ①×5﹣②×4,可得:7x =9,解得:x =97, 把x =97代入①,解得:y =27, ∴原方程组的解是:9727x y ⎧=⎪⎪⎨⎪=⎪⎩. 故答案为:9727x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.100.若3126x y x y -=⎧⎨+=⎩,则2x y -=________. 【答案】7【解析】【分析】解方程求出x 、y 的值,然后代入求值即可.3126x y x y -=⎧⎨+=⎩①② ①-②得-5y=-5,解得,y=1,把y=1代入①,得:x=4,∴2x-y=8-1=7.故答案为:7【点睛】此题主要考查了二元一次方程组的解法,解二元一次方程组的方法有代入消元法和加减消元法.。

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (74)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)用代入法解方程组227x yx y+=⎧⎨-=⎩,①,②正确的解法是()A.先将①变形为2x y=+,再代入②B.先将①变形为2x y=-,再代入②C.先将②变形为72y x=-,再代入①D.先将②变形为72yx-=,再代入①【答案】B【解析】根据解二元一次方程的代入法,将①变形为x=2-y后可知,变形后A是错误的,B是正确的;将②变形为x=7+y2或y=2x-7可知,变形后C和D都是错误的.故选B.22.已知a,b满足方程组,则a+b=()A.2 B.3 C.4 D.5【答案】D【解析】+②得2a+2b=10,∴a+b=5.故选D.23.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.5【答案】D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+①得:3(x+y)=15,则x+y=5,故选D24.将点B(5,-1)向上平移2个单位得到点A(a+b,a-b).则()A.a=2,b=3 B.a=3,b=2 C.a=-3,b=-2 D.a=-2,b=-3【答案】B【解析】【分析】本题考查坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:将点B向上平移2个单位①点B的横坐标不变,纵坐标加2①a+b=5,-1+2= a-b①a=3,b=2故选B.二、解答题25.在解方程组134ax bycx y-=⎧⎨-=⎩时,小张因看错了b的符号,从而得解为32xy=⎧⎨=⎩,小李由于忽略了方程组中的C得到方程组的解为51xy=⎧⎨=⎩,求a+b+c的值【答案】a+b+c=7.【解析】试题分析:根据题意由两个同学的做法可得到三个等式,从而可求得a+b+c 的值.试题解析:由题意知3213513324a ba bc+=⎧⎪-=⎨⎪-=⎩,解得322abc=⎧⎪=⎨⎪=⎩,所以a+b+c=7.26.计算:(1)(﹣3)2(2)﹣|2|(3)3125x yx y+=-⎧⎨-=⎩;(4)5344(1)32x xx x-<⎧⎨-+≥⎩.【答案】(1)8;(2);(3)21xy=⎧⎨=-⎩;(4)12≤x<3.【解析】试题分析:(1)原式利用乘方、平方的定义计算即可;(2)原式利用平方和立法的定义以及绝对值进行计算即可;(3)原方程利用加减消元法即可解得;(4)分别解不等式的解集,再求公共部分即可.试题解析:(1)原式=9+2-3=8;(2)原式=2-(2)-(-2);(3)3125x y x y +=-⎧⎨-=⎩①② ①+②×3,得7x=14,解得x=2,把x=2代入②,得2×2-y=5,解得y=-1,所以原方程组的解为21x y =⎧⎨=-⎩; (4)()5344132x x x x -<⎧⎪⎨-+≥⎪⎩①② 解①,得x<3,解②,得x ≥12, 所以原不等式组的解集为:12≤x <3 27.已知关于x ,y 的方程组27243x y a x y a +=+⎧⎨-=-⎩的解是正数,且x 的值小于y 的值.(1)求a 的范围.(2)化简:|8a +11|-|10a +1|.【答案】(1)111<a<-.810-(2) 18a +12. 【解析】试题分析:(1)先求出y ,x ,再组成不等式求a 的范围即可.(2)由a 的范围求解即可.试题解析:(1)解方程组+=2+7243x y ax y a⎧⎨-=-⎩得8+11=3102=.3axay⎧⎪⎪⎨-⎪⎪⎩根据题意,得8+113102381110233aaa a⎧>⎪⎪-⎪>⎨⎪+-⎪<⎪⎩①②③解不等式①,得a>-118. 解不等式②,得a<5.解不等式③,得a<-110.∴不等式组的解是-118<a<-110.(2)∵-118<a<-110,∴8a+11>0,10a+1<0.∴|8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a +12.28.已知方程组42ax byax by-=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,求2a-3b的值.【答案】6.【解析】试题分析:根据方程组的解的定义,将21xy=⎧⎨=⎩代入方程组42ax byax by-=⎧⎨+=⎩中可得关于a,b的二元一次方程组,解方程组求出a,b的值,最后代入式子求值.试题解析:由已知可得24 22 a ba b-=⎧⎨+=⎩,解得321a b ⎧=⎪⎨⎪=-⎩, ∴()32323162a b -=⨯-⨯-=. 29.解方程组:(1)(加减法)21242x y x y +=⎧⎨-=⎩①② (2)(代入法)23322x y x y -=⎧⎨+=-⎩①② 【答案】(1) 1,0;x y =⎧⎨=⎩(2)01x y =⎧⎨=-⎩【解析】试题分析:根据二元一次方程组的解法—加减消元法和代入消元法求解方程组即可.试题解析:(1)21242x y x y ①②+=⎧⎨-=⎩, ①×2得2x+4y=2, ③③+②得4x=4,解得x=1,把x=1代入①得y=0,所以原方程组的解为1,0;x y =⎧⎨=⎩(2)23322x y x y ①②-=⎧⎨+=-⎩, 由②得x=-2y-2, ③把③代入①得2(-2y-2)-3y=3,解得y=-1,把y=-1代入③得x=0,所以原方程组的的解为0.1x y =⎧⎨=-⎩30.图中的折线ABC 表示某汽车的耗油量(/)y L km 与速度(/)x km h 之间的函数关系(30120x ≤≤).已知线段BC 表示的函数关系中,该汽车的速度每增加1km /h ,耗油量增加0.002L /km .(1)求图像中AB 段与BC 段分别对应的y 与x 的函数关系式.(2)该汽车的速度是多少时,耗油量最低?最低是多少?【答案】(1)AB :0.0010.18y x =-+,BC :0.0020.06y x =- (2)速度是80km /h 时,该汽车的耗油量最低,最低是0.1/L km【解析】(1)先把()30,0.15和()60,0.12,()90,0.12和()100,0.14分别代入y kx b =+中,利用待定系数法求出AB 、BC 的解析式;(2)观察图形发现,两线段的交点即为最低点,因此求出两函数解析式组成的方程组的解即可.解:(1)设AB 的解析式为:y kx b =+,把()30,0.15和()60,0.12代入y kx b =+中得:300.15600.12k b k b +=⎧⎨+=⎩解得110000.18k b ⎧=-⎪⎨⎪=⎩, ∴:0.0010.18AB y x =-+, 设BC 的解析式为:y kx b =+, 把()90,0.12和()100,0.14代入y kx b =+中得: 900.121000.14k b k b +=⎧⎨+=⎩解得0.0020.06k b =⎧⎨=-⎩, ∴:0.0020.06BC y x =-,(3)根据题意得0.0010.180.0020.06y x y x =-+⎧⎨=-⎩解得800.1x y =⎧⎨=⎩, 答:速度是80km /h ,该汽车的耗油量最低,最低是0.1L /km .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档