高中数学必修 第三章直线方程测试题答案
2020-2021学年高中数学人教A版 必修2第三章直线与方程测试卷(一)-教师用卷

2020-2021学年必修2第三章测试卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线1:320l x my +-=,2:280l x y ++=互相平行,则实数m 的值为( ) A .6- B .6C .32D .32-【答案】B【解析】因为直线1:320l x my +-=,2:280l x y ++=互相平行, 所以321m ⨯=⋅且82(2)m ⋅≠⨯-,解得6m =且12m ≠-,所以6m =, 故选B .2.已知两点()1,2A ,()3,6B ,动点M 在直线y x =上运动,则MA MB +的最小值为( ) A .25 B .26C .4D .5【答案】B【解析】根据题意画出图形,如图所示:设点A 关于直线y x =的对称点()2,1A ',连接A B ',则A B '即为MA MB +的最小值,且A B '故选B .3.下面说法正确的是( )A .经过定点()00,P x y 的直线都可以用方程()00y y k x x -=-表示B .不经过原点的直线都可以用方程1x ya b+=表示 C .经过定点(0,)A b 的直线都可以用方程y kx b =+表示D .经过任意两个不同的点()11,P x y ,()22,Q x y 的直线都可以用方程()()()()211211-⋅-=--x x y y y y x x 表示【答案】D【解析】经过定点()00,P x y 且斜率存在的直线才可用方程()00y y k x x -=-表示,所以A 错; 不经过原点且与两坐标轴都不垂直的直线才可以用方程1x ya b+=表示,所以B 错; 经过定点(0,)A b 且斜率存在的直线才可用方程y kx b =+表示,所以C 错; 当12x x ≠时,经过点()11,P x y ,()22,Q x y 的直线可以用方程()211121y y y y x x x x --=--,即()()()()211211-⋅-=--x x y y y y x x 表示;当12x x =时,经过点()11,P x y ,()22,Q x y 的直线可以用方程1x x =, 即()()()()211211-⋅-=--x x y y y y x x 表示,因此经过任意两个不同的点()11,P x y ,()22,Q x y 的直线都可以用方程()()()()211211-⋅-=--x x y y y y x x 表示,所以D 对,故选D .4.若两条平行直线()1:200l x y m m -+=>与2:260l x ny+-=,则m n +=( ) A .0 B .1C .2-D .1-【答案】C【解析】由12l l ,得122n-=,解得4n =-,即直线2:230l x y --=, 两直线之间的距离为d ==2m = (8m =-舍去),所以2m n +=-,故答案选C .5.过点(1,2)的直线l 与两坐标轴分别交于A 、B 两点,O 为坐标原点,当OAB △的面积最小时,直线l 的方程为( ) A .240x y +-= B .250x y +-= C .30x y +-=D .2380x y +-=【答案】A【解析】设l 的方程为1(0,0)x y a b a b +=>>,则有121a b+=, 因为0a >,0b >,所以12a b +≥,即1≥,所以8ab ≥, 当且仅当1212a b ==,即2a =,4b =时,取“=”. 即当2a =,4b =时,OAB △的面积最小, 此时l 的方程为124x y+=,即240x y +-=,故选A . 6.已知,m n ∈R ,则“直线10x my +-=与10nx y ++=平行”是“1mn =”的( )条件. A .充分不必要 B .必要不充分 C .充要D .既不充分又不必要【答案】A【解析】若直线10x my +-=与10nx y ++=平行, 则10mn -=,即1mn =,当1m =-,1n =-时,两直线方程为10x y --=,10x y -++=,此时两直线重合, 故“直线10x my +-=与10nx y ++=平行”是“1mn =”的充分不必要条件, 故选A .7.直线l 经过()2,1A ,()2(,)1B mm ∈R 两点,那么直线l 的倾斜角的取值范围为( )A.0,πB.π3 0,π,π44⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C.0,π4⎡⎤⎢⎥⎣⎦D.ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭【答案】D【解析】直线l的斜率为2212121121y y mk mx x--===---,因为m∈R,所以(],1k∈-∞,所以直线的倾斜角的取值范围是ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭,故选D.8.已知直线20kx y-+=和以()3,2M-,()2,5N为端点的线段相交,则实数k的取值范围为()A.32k≤B.32k≥C.4332k-≤≤D.43k≤-或32k≥【答案】C【解析】因为直线20kx y-+=恒过定点(0,2)A,又因为43AMk=-,32ANk=,故直线的斜率k的范围为4332k-≤≤,故选C.9.已知点()2,3A-,()3,2B--,直线l的方程为10kx y k--+=,且与线段AB相交,则直线l 的斜率k 的取值范围为( )A .3(,4][,)4-∞-+∞B .13(,][,)44-∞-+∞C .3[4,]4-D .3[,4]4【答案】A【解析】直线:10l kx y k --+=整理为()()110k x y ---=, 即可知道直线l 过定点()1,1P , 作出直线和点对应的图象如图:(2,3)A -,(3,2)B --,(1,1)P ,31421PA k --∴==--,213314PB k --==--,要使直线l 与线段AB 相交,则直线l 的斜率k 满足PB k k ≤或PA k k ≤,4k ∴≤-或34k ≥, 即直线l 的斜率的取值范围是3(,4][,)4-∞-+∞,故选A .10.设m ∈R ,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值( )A .25B .32C .6D .3【答案】C【解析】直线10x my ++=可整理为()1my x =-+,故恒过定点1,0,即为A 的坐标;直线230mx y m --+=整理为()32y m x -=-,故恒过定点()2,3,即为B 坐标,又两条直线垂直,故可得22218PA PB AB +==, 即()2218PA PBPA PB +-=,整理得()()2211924PA PB PA PB PA PB =+-≤+,解得 6PA PB +≤, 当且仅当PA PB =时取得最大值, 故选C .11.已知实数,a b 满足21a b +=,则直线30ax y b ++=必过定点,这个定点的坐标为( ) A .11(,)62B .11(,)26C .11(,)62D .11(,)26-【答案】D【解析】∵12=+b a ,∴b a 21-=,∵直线03=++b y ax ,∴03)21(=++-b y x b ,即0)3()21(=++-y x x b .12030x x y -=⎧⎨+=⎩,1216x y ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线必过点11(,)26-, 本题选择D 选项.12.已知ABC △是等腰三角形,5AB AC ==,6BC =,点P 在线段AC 上运动,则PB PC +的取值范围是( ) A .[]3,4 B .12,65⎡⎤⎢⎥⎣⎦C .[]6,8D .24,85⎡⎤⎢⎥⎣⎦【答案】D【解析】以BC 的中点O 为坐标原点,BC 所在直线为x 轴,OA 所在直线为y 轴建立直角坐标系,如图:可得()3,0B -,()3,0C ,由5AC =,可得()0,4A , 直线AC 的方程为134x y+=,即4312x y +=, 可设()(),04P m n n ≤≤,,即有334n m =-, 则()()()3,3,2,2PB PC m n m n m n +=---+--=--====,当[]360,425n =∈, 可得PB PC +的最小值为122421655==⨯=, 当4n =时,可得PB PC +的最大值8,则PB PC +的取值范围是24,85⎡⎤⎢⎥⎣⎦,故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知点(1,3)A 与直线4:30x y l ++=,则点A 关于直线l 的对称点坐标为______. 【答案】(5,1)-【解析】设点(1,3)A 关于直线340x y ++=的对称点(,)A a b ',则由3(3)11133++4022b a a b -⎧⨯-=-⎪⎪-⎨++⎪⨯=⎪⎩,解得5a =-,1b =,故点(5,1)A '-,故答案为()5,1-.14.过直线1:230l x y -+=与直线2:2380l x y +-=的交点,且到点()0,4P 距离为2的直线方程为______.【答案】2y =或4320x y -+=【解析】由2302380x y x y -+=⎧⎨+-=⎩,得12x y =⎧⎨=⎩,所以,直线1l 与2l 的交点为()1,2.当所求直线的斜率不存在时,所求直线的方程为1x =,点P 到该直线的距离为1,不合乎题意; 当所求直线的斜率存在时,设所求直线的方程为()21y k x -=-,即20kx y k --+=, 由于点()0,4P 到所求直线的距离为2,可得2=,整理得2340k k -=,解得0k =或43k =, 综上所述,所求直线的方程为2y =或4320x y -+=, 故答案为2y =或4320x y -+=.15.在平面直角坐标系xOy 中,直线1:40l kx y -+=与直线2:30l x ky +-=相交于点P ,则当实数k 变化时,点P 到直线43100x y -+=的距离的最大值为______.【答案】92【解析】设直线1l 与y 轴交于()0,4A ,直线2l 与x 轴交于()3,0B ,5AB ==.当0k =时,直线1l 为4y =,直线2l 为3x =,所以两条直线的交点为()13,4P . 当0k ≠时,两条直线的斜率分别为k 、1k-,斜率乘积为1-,故12l l ⊥, 所以P 点的轨迹是以AB 为直径的圆(除,A B 两点外).设以AB 为直径的圆的圆心为3,22C ⎛⎫⎪⎝⎭,半径522AB r ==, 圆的方程为()22235222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,点()13,4P 满足圆的方程.综上所述,点P 点的轨迹是以AB 为直径的圆(除,A B 两点外).圆心C 到直线43100x y -+=的距离为2d ==. 所以点P 到直线43100x y -+=的距离的最大值为59222d r +=+=, 故答案为92.16.直线2360x y +-=分别交,x y 轴于,A B 两点,点P 在直线1y x =--上,则PA PB +的最小值是______.【解析】直线2360x y +-=分别交,x y 轴于,A B 两点, 则()3,0A ,()0,2B ,设A 关于直线1y x =--对称的点为()1,A x y ,则133122y x y x ⎧=⎪⎪-⎨+⎪=--⎪⎩, 解得14x y =-⎧⎨=-⎩,11PA PB PA PB A B +=+≥=1A ,P ,B 三点共线时等号成立,.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知ABC △的顶点()2,4A ,()0,2B -,()4,2C -. 求:(1)AB 边上的中线CM 所在直线的方程; (2)求A 点关于直线BC 对称点坐标. 【答案】(1)560x y +-=;(2)()6,4--. 【解析】(1)由题设有()1,1M ,故211415CM k -==---, 故直线CM 的方程为()1115y x =--+,即560x y +-=. (2)()22104CB k --==---,故直线BC 的方程为2y x =--,设A 点关于直线BC 对称点坐标为(),a b ,则42222412b a b a ++⎧=--⎪⎪⎨-⎪=⎪-⎩,解得64a b =-⎧⎨=-⎩,故A 点关于直线BC 对称点坐标为()6,4--.18.(12分)己知直线l 的方程为210x y -+=. (1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求与直线l 平行,且到点()3,0P2l 的方程. 【答案】(1)270x y +-=;(2)210x y --=或2110x y --=. 【解析】(1)∵直线l 的斜率为2,∴所求直线斜率为12-, 又∵过点()3,2A ,∴所求直线方程为()1232y x -=--, 即270x y +-=.(2)依题意设所求直线方程为20x y c -+=, ∵点()3,0P=解得1c =-或11c =-,所以,所求直线方程为210x y --=或2110x y --=.19.(12分)已知直线l 经过直线3420x y +-=与直线220x y ++=的交点P ,且垂直于直线210x y --=.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S . 【答案】(1)220x y ++=;(2)1.【解析】(1)3420220x y x y +-=⎧⎨++=⎩,解得22x y =-⎧⎨=⎩,则点P 的坐标为()2,2-.由于点P 的坐标是()2,2-,且所求直线l 与直线210x y --=垂直, 可设所求直线l 的方程为20x y c ++=.将点P 坐标代入得()2220c ⨯-++=,解得2c =, 故所求直线l 的方程为220x y ++=.(2)由直线l 的方程知它在x 轴,y 轴上的截距分别是1-,2-, 所以直线l 与两坐标轴围成的三角形的面积11212S =⨯⨯=.20.(12分)已知直线方程为()()221340m x m y m -++++=.(1)证明:直线恒过定点;(2)m 为何值时,点()3,4Q 到直线的距离最大,最大值为多少?(3)若直线分别与x 轴,y 轴的负半轴交于,A B 两点,求AOB △面积的最小值及此时直线的方程.【答案】(1)证明见解析;(2)47m =,点()3,4Q 到直线的距离最大,最大值为(3)面积的最小值为4,240x y ++=.【解析】(1)证明:直线方程为()()221340m x m y m -++++=,可化为()()24230x y m x y +++-++=,对任意m 都成立,所以230240x y x y -++=⎧⎨++=⎩,解得12x y =-⎧⎨=-⎩,所以直线恒过定点()1,2--.(2)解:点()3,4Q 到直线的距离最大,可知点Q 与定点()1,2P --的连线的距离就是所求最大值,= 423312PQ k +==+, ()()221340m x m y m -++++=的斜率为23-, 可得22321m m --=-+,解得47m =. (3)解:若直线分别与x 轴,y 轴的负半轴交于,A B 两点,直线方程为()21y k x +=+,0k <,则21,0A k ⎛⎫- ⎪⎝⎭,()0,2B k -,()12122121222222AOB k S k k k k k -⎛⎫⎛⎫=--=--=++≥+ ⎪ ⎪-⎝⎭⎝⎭△4=,当且仅当2k =-时取等号,面积的最小值为4,此时直线的方程240x y ++=.21.(12分)已知ABC △的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S =△,求点A 的坐标.【答案】(1)240x y +-=;(2)()3,4A 或()3,0A -.【解析】(1)由()2,1B 、()2,3C -,得BC 边所在直线方程为123122y x --=---, 即240x y +-=.(2)BC ==,A 到BC 边所在直线240x y +-=的距离为d =由于A 在直线2360x y -+=上,故1722360ABC S BC d m n ⎧=⋅⋅=⎪⎨⎪-+=⎩△, 即2472360m n m n ⎧+-=⎨-+=⎩,解得()3,4A 或()3,0A -.22.(12分)设直线l 的方程为()()1520a x y a a ++--=∈R .(1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(),0A A x ,()0,B B y , 当AOB △面积最小时,求AOB △的周长及此时的直线方程;(3)当直线l 在两坐标轴上的截距均为正整数且a 也为正整数时,求直线l 的方程.【答案】(1)证明见解析;(2)10+32120x y +-=;(3)390x y +-=.【解析】(1)由()1520a x y a ++--=,得()250a x x y -++-=,则2050x x y -=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩, 所以不论a 为何值,直线l 必过一定点()2,3P .(2)由()1520a x y a ++--=得,当0x =时,52B y a =+;当0y =时,521A a x a +=+, 又由5205201B A y a a x a =+>⎧⎪+⎨=>⎪+⎩,得1a >-, ()()5252111941+12221AOB S a a a a a ++⎡⎤∴=⋅++⎢⎥+=⎣⋅+⎦△112122⎡⎤≥=⎢⎥⎣⎦, 当且仅当()9411a a +=+,即12a =时,取等号. ()4,0A ∴,()0,6B ,AOB∴△的周长为4610OA OB AB ++=+=+ 直线方程为32120x y +-=.(3)直线l 在两坐标轴上的截距均为正整数,即52a +,521a a ++均为正整数,而a 也为正整数, 523211a a a +=+++,2a ∴=, 所以直线l 的方程为390x y +-=.。
高中数学必修三-练习题(包与答案)

.. Word资料. 必修三测试题 参考公式: 1. 回归直线方程方程: ,其中 , .
2.样本方差: 一、填空 1. 在下列各图中,每个图的两个变量具有相关关系的图是( )
(1) (2) (3) (4) A.(1)(2) B.(1)(3) C.(2)(4) D.zs(2)(3) 2 下列给变量赋值的语句正确的是 (A)3=a (B)a+1=a (C)a=b=c=3 (D)a=2b+1
3.某程序框图如下所示,若输出的S=41,则判断框内应填( )
A.i>3? B.i>4? C.i>5? D.i>6? 4.图4中程序运行后输出的结果为( ). A.7 B.8 C.9 D.10
(第3题) (第4题) 5阅读题5程序,如果输入x=-2,则输出结果y为( ). (A)3+ (B)3- (C)-5 (D)--5 6.有一人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶 7.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )
A.21 B.31 C.41 D. 52
Input x if x<0 then
y=32x else if x>0 then
y=52x else y=0 end if end if print y (第5题) ..
Word资料. 8.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )
A.92% B.24%
C.56% D.76%
9.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( ) A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球
C.恰有一个白球;一个白球一个黑球 D.至少有一个白球;红、黑球各一个 10.某算法的程序框图如右所示,该程序框图的功能是( ). A.求输出a,b,c三数的最大数 B.求输出a,b,c三数的最小数 C.将a,b,c按从小到大排列 D.将a,b,c按从大到小排列
高中数学 第三章 直线与方程 3.2.1 直线的点斜式方程学案(含解析)新人教A版必修2

3.2.1 直线的点斜式方程学习目标 1.了解由斜率公式推导直线方程的点斜式的过程;2.掌握直线的点斜式方程与斜截式方程;3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一 直线的点斜式方程思考1 如图,直线l 经过点P 0(x 0,y 0),且斜率为k ,设点P (x ,y )是直线l 上不同于点P 0的任意一点,那么x ,y 应满足什么关系?答案 由斜率公式得k =y -y 0x -x 0, 则x ,y 应满足y -y 0=k (x -x 0).思考2 经过点P 0(x 0,y 0)的所有直线是否都能用点斜式方程来表示?答案 斜率不存在的直线不能用点斜式表示,过点P 0斜率不存在的直线为x =x 0.知识点二 思考1 已知直线l 的斜率为k ,且与y 轴的交点为(0,b ),得到的直线l 的方程是什么? 答案 将k 及点(0,b )代入直线方程的点斜式得:y =kx +b .思考2 方程y =kx +b ,表示的直线在y 轴上的截距b 是距离吗?b 可不可以为负数和零? 答案 y 轴上的截距b 不是距离,可以是负数和零. 思考3 对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2. ①l 1∥l 2⇔________________, ②l 1⊥l 2⇔________________.答案 ①k 1=k 2且b 1≠b 2 ②k 1k 2=-1类型一 直线的点斜式方程例1 (1)经过点(-3,1)且平行于y 轴的直线方程是________.(2)直线y =2x +1绕着其上一点P (1,3)逆时针旋转90°后得直线l ,则直线l 的点斜式方程是________.(3)一直线l 1过点A (-1,-2),其倾斜角等于直线l 2:y =33x 的倾斜角的2倍,则l 1的点斜式方程为________. 答案 (1)x =-3 (2)y -3=-12(x -1)(3)y +2=3(x +1)解析 (1)∵直线与y 轴平行,∴该直线斜率不存在, ∴直线方程为x =-3.(2)由题意知,直线l 与直线y =2x +1垂直,则直线l 的斜率为-12.由点斜式方程可得l 的方程为y -3=-12(x -1).(3)∵直线l 2的方程为y =33x , 设其倾斜角为α,则tan α=33得α=30°, 那么直线l 1的倾斜角为2×30°=60°, 则l 1的点斜式方程为y +2=tan 60°(x +1),即y +2=3(x +1).跟踪训练1 写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行. 解 (1)y -5=4(x -2);(2)∵直线的斜率k =tan 45°=1, ∴直线方程为y -3=x -2; (3)y =-1.类型二 直线的斜截式方程例 2 (1)倾斜角为60°,与y 轴的交点到坐标原点的距离为3的直线的斜截式方程是_________________.答案 y =3x +3或y =3x -3 解析 ∵直线的倾斜角是60°, ∴其斜率k =tan 60°=3,∵直线与y 轴的交点到原点的距离是3, ∴直线在y 轴上的截距是3或-3,∴所求直线方程是y =3x +3或y =3x -3.(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.解 由斜截式方程知直线l 1的斜率k 1=-2,又因为l ∥l 1.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.反思与感悟 (1)斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.(2)截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数和零,而距离是一个非负数.跟踪训练2 (1)已知直线l 的斜率为16,且和两坐标轴围成面积为3的三角形,求l 的斜截式方程;(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1垂直且与l 2在y 轴上的截距互为相反数,求直线l 的方程.解 (1)设直线方程为y =16x +b ,则x =0时,y =b ;y =0时,x =-6b .由已知可得12·|b |·|-6b |=3,即6|b |2=6,∴b =±1.故所求直线方程为y =16x +1或y =16x -1.(2)∵l 1⊥l ,直线l 1:y =-2x +3,∴l 的斜率为12,∵l 与l 2在y 轴上的截距互为相反数, 直线l 2:y =4x -2,∴l 在y 轴上的截距为2, ∴直线l 的方程为y =12x +2.类型三 平行与垂直的应用例3 (1)当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行? (2)当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直? 解 (1)由题意可知,12212l l k k a =-,=-,∵l 1∥l 2,∴⎩⎪⎨⎪⎧a 2-2=-1,2a ≠2,解得a =-1.故当a =-1时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行.(2)由题意可知,12214l l k a k =-,=, ∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.故当a =38时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直.反思与感悟 设直线l 1和l 2的斜率k 1,k 2都存在,其方程分别为l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,那么:(1)l 1∥l 2⇔k 1=k 2,且b 1≠b 2;(2)k 1=k 2,且b 1=b 2⇔两条直线重合;(3)l 1⊥l 2⇔k 1·k 2=-1. 跟踪训练3 已知在△ABC 中,A (0,0),B (3,1),C (1,3). (1)求AB 边上的高所在直线的方程; (2)求BC 边上的高所在直线的方程; (3)求过A 与BC 平行的直线方程. 解 (1)直线AB 的斜率k 1=1-03-0=13,AB 边上的高所在直线斜率为-3且过点C ,所以AB 边上的高所在直线的方程为y -3=-3(x -1).(2)直线BC 的斜率k 2=3-11-3=-1,BC 边上的高所在直线的斜率为1且过点A ,所以BC 边上的高所在直线的方程为y =x .(3)由(2)知,过点A 与BC 平行的直线的斜率为-1,其方程为y =-x .1.方程y =k (x -2)表示( ) A .通过点(-2,0)的所有直线 B .通过点(2,0)的所有直线C .通过点(2,0)且不垂直于x 轴的所有直线D .通过点(2,0)且除去x 轴的所有直线 答案 C解析 易验证直线通过点(2,0),又直线斜率存在,故直线不垂直于x 轴. 2.倾斜角是30°,且过(2,1)点的直线方程是____________. 答案 y -1=33(x -2) 解析 ∵斜率为tan 30°=33, ∴直线的方程为y -1=33(x -2). 3.(1)已知直线y =ax -2和y =(a +2)x +1互相垂直,则a =________;(2)若直线l 1∶y =-2a x -1a与直线l 2∶y =3x -1互相平行,则a =________.答案 (1)-1 (2)-23解析 (1)由题意可知a (a +2)=-1,解得a =-1.(2)由题意可知⎩⎪⎨⎪⎧-2a=3,-1a ≠-1,解得a =-23.4.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解 (1)∵与直线y =2x +7平行, ∴该直线斜率为2, 由点斜式方程可得y -1=2(x -1),即y =2x -1∴所求直线的方程为y =2x -1. (2)∵所求直线与直线y =3x -5垂直,∴该直线的斜率为-13,由点斜式方程得:y +2=-13(x +2),即y =-13x -83.故所求的直线方程为y =-13x -83.1.求直线的点斜式方程的方法步骤2.直线的斜截式方程的求解策略(1)用斜截式求直线方程,只要确定直线的斜率和截距即可,同时要特别注意截距和距离的区别. (2)直线的斜截式方程y =kx +b 不仅形式简单,而且特点明显,k 是直线的斜率,b 是直线在y 轴上的截距,只要确定了k 和b 的值,直线的图象就一目了然.因此,在解决直线的图象问题时,常通过把直线方程化为斜截式方程,利用k ,b 的几何意义进行判断. 3.判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑.一、选择题1.过点(4,-2),倾斜角为150°的直线方程的点斜式为( )A .y -2=-33(x +4) B .y -(-2)=-33(x -4) C .y -(-2)=33(x -4) D .y -2=33(x +4) 答案 B解析 由题意知k =tan 150°=-33,所以直线的点斜式方程为y -(-2)=-33(x -4). 2.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1 答案 C解析 ∵方程变形为y +2=-(x +1), ∴直线过点(-1,-2),斜率为-1.3.已知直线l 1:y =x +12a ,l 2:y =(a 2-3)x +1,若l 1∥l 2,则a 的值为( )A .4B .2C .-2D .±2答案 C解析 因为l 1∥l 2,所以a 2-3=1,a 2=4,所以a =±2, 又由于l 1∥l 2,两直线l 1与l 2不能重合,则12a ≠1,即a ≠2,故a =-2.4.下列选项中,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是( )答案 C解析 ①当a >0时,直线y =ax 的倾斜角为锐角,直线y =x +a 在y 轴上的截距a >0,A ,B ,C ,D 都不成立;②当a =0时,直线y =ax 的倾斜角为0°,A ,B ,C ,D 都不成立;③当a <0时,直线y =ax 的倾斜角为钝角,直线y =x +a 的倾斜角为锐角且在y 轴上的截距a <0,只有C 成立.5.直线y =kx +b 通过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <0答案 B解析 ∵直线经过第一、三、四象限,∴图形如图所示,由图知,k >0,b <0.6.已知直线kx -y +1-3k =0,当k 变化时,所有的直线恒过定点( ) A .(1,3) B .(-1,-3) C .(3,1) D .(-3,-1)答案 C解析 直线kx -y +1-3k =0变形为y -1=k (x -3), 由直线的点斜式可得直线恒过定点(3,1). 二、填空题7.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位长度,所得到的直线方程为______________. 答案 y =-13x +13解析 直线y =3x 绕原点逆时针旋转90°所得到的直线方程为y =-13x ,再将该直线向右平移1个单位得到的直线方程为y =-13(x -1),即y =-13x +13.8.直线y =ax -3a +2(a ∈R )必过定点________. 答案 (3,2)解析 ∵y =a (x -3)+2,即y -2=a (x -3), ∴直线过定点(3,2).9.已知直线y =(3-2k )x -6不经过第一象限,则k 的取值范围为________. 答案 k ≥32解析 由题意知,需满足它在y 轴上的截距不大于零,且斜率不大于零,则⎩⎪⎨⎪⎧-6≤0,3-2k ≤0,得k ≥32.10.与直线l :y =34x +1平行,且在两坐标轴上截距之和为1的直线l 1的方程为________________.答案 y =34x -3解析 根据题意知直线l 的斜率k =34,故直线l 1的斜率k 1=34,设直线l 1的方程为y =34x +b 1,则令y =0得它在x 轴上的截距a 1=-43b 1.∵a 1+b 1=-43b 1+b 1=-13b 1=1,∴b 1=-3.∴直线l 1的方程为y =34x -3.11.斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.答案 y =34x ±3解析 设所求直线方程为y =34x +b ,令y =0得x =-4b3,由题意得:|b |+⎪⎪⎪⎪⎪⎪-43b + b 2+16b 29=12,|b |+43|b |+53|b |=12,4|b |=12,∴b =±3, ∴所求直线方程为y =34x ±3.三、解答题12.已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在的斜截式方程.解 直线AB 的斜率k AB =-3-03--=-38,过点A (-5,0),∴直线AB 的点斜式方程为y =-38(x +5),即所求的斜截式方程为y =-38x -158.同理,直线BC 的方程为y -2=-53x ,即y =-53x +2.直线AC 的方程为y -2=25x ,即y =25x +2.∴直线AB ,BC ,AC 的斜截式方程分别为y =-38x -158,y =-53x +2,y =25x +2.13.已知直线l 的斜率与直线3x -2y =6的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的方程.解 由题意知,直线l 的斜率为32,故设直线l 的方程为y =32x +b ,l 在x 轴上的截距为-23b ,在y轴上的截距为b ,所以-23b -b =1,b =-35,所以直线l 的方程为y =32x -35.。
2021_2022学年高中数学章末综合测评三直线与方程课时分层作业含解析新人教A版必修2

高中数学专题强化训练:章末综合测评(三) 直线与方程(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x -y =0的倾斜角为( )A .45°B .60°C .90°D .135°A [因为直线的斜率为1,所以tan α=1,即倾斜角为45°.故选A.]2.经过点(-1,1),斜率是直线y =22x -2的斜率的2倍的直线方程是( ) A .x =-1B .y =1C .y -1=2(x +1)D .y -1=22(x +1) C [直线y =22x -2的斜率为22,由题意可知所求直线的斜率为2,直线方程为y -1=2(x +1),故选C.]3.已知直线l 1:x +my +6=0和l 2:mx +4y +2=0互相平行,则实数m 的值为( )A .-2B .2C .±2D .2或4C [由l 1∥l 2得m 2-4=0.解得m =±2.经验证均符合题意,故选C.]4.直线3x +my -1=0与4x +3y -n =0的交点为(2,-1),则m +n 的值为( )A .12B .10C .-8D .-6B [将点(2,-1)代入3x +my -1=0可求得m =5,将点(2,-1)代入4x +3y -n =0,得n =5,所以m +n =10,故选B.]5.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3C [由题意知:-m n =-43,即3m =4n ,且有-1n =13,∴n =-3,m =-4.] 6.已知等边△ABC 的两个顶点A (0,0),B (4,0),且第三个顶点在第四象限,则BC 边所在的直线方程是( )A .y =-3xB .y =-3(x -4)C .y =3(x -4)D .y =3(x +4)C [由题意知∠A =∠B =60°,故直线BC 的倾斜角为60°,∴k BC =tan 60°=3,则BC 边所在的直线方程为y =3(x -4).]7.已知点A (1,-2),B (m ,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1C [由已知条件可知线段AB 的中点⎝⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,把中点坐标代入直线方程,解得m =3.]8.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( )A .(0,0)B .⎝⎛⎭⎫17,27C .⎝⎛⎭⎫27,17D .⎝⎛⎭⎫17,114 C [直线方程变形为k (3x +y -1)+(2y -x )=0,则直线通过定点⎝⎛⎭⎫27,17. ]9.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程为( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0A [由已知得A (-1,0),P (2,3),由|P A |=|PB |,得B (5,0),由两点式得直线PB 的方程为x +y -5=0.]10.点P (a ,b )关于l :x +y +1=0对称的点仍在l 上,则a +b 等于( )A .-1B .1C .2D .0A [∵点P (a ,b )关于l :x +y +1=0对称的点仍在l 上,∴点P (a ,b )在直线l 上,∴a +b +1=0,即a +b =-1.]11.已知点A (1,1),B (3,5)到经过点(2,1)的直线l 的距离相等,则l 的方程为( )A .2x -y -3=0B .x =2C .2x -y -3=0或x =2D .以上都不对C [当A ,B 都在l 的同侧时,设l 的方程为y -1=k (x -2),此时,AB ∥l ,所以k =k AB=5-13-1=2,l 的方程为2x -y -3=0. 当A ,B 在l 的两侧时,A ,B 到x =2的距离相等,因此,l 的方程为x =2,故选C.]12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)A [设B (x ,y ),根据题意可得⎩⎪⎨⎪⎧k AC ·k BC =-1,|BC |=|AC |,即⎩⎪⎨⎪⎧3-43-0·y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =4y =6,所以B (2,0)或B (4,6).] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若过点P (1-a ,1+a )与点Q (3,2a )的直线的倾斜角是钝角,则实数a 的取值范围是________.(-2,1) [k =2a -(1+a )3-(1-a )=a -1a +2<0,得-2<a <1. ] 14.若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________.l 1⊥l 2 [将A (4,-1)点的坐标代入ax -y +1=0,得a =-12,则kl 1·kl 2=-12×2=-1,∴l 1⊥l 2.] 15.已知点M (a ,b )在直线3x +4y =15上,则a 2+b 2的最小值为________.3 [a 2+b 2的最小值为原点到直线3x +4y =15的距离:d =|0+0-15|32+42=3.] 16.若直线l 被直线l 1:x -y +1=0与l 2:x -y +3=0截得的线段长为22,则直线l 的倾斜角θ(0°≤θ<90°)的值为________.15°或75° [易求得平行线l 1,l 2之间的距离为|1-3|2= 2. 画示意图(图略)可知,要使直线l 被l 1,l 2截得的线段长为22,必须使直线l 与直线l 1,l 2成30°的夹角.∵直线l 1,l 2的倾斜角为45°,∴直线l 的倾斜角为45°-30°=15°或45°+30°=75°.]三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l 经过点P (-2,5)且斜率为-34. (1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.[解] (1)直线l 的方程为:y -5=-34(x +2),整理得3x +4y -14=0. (2)设直线m 的方程为3x +4y +n =0,d =|3×(-2)+4×5+n |32+42=3, 解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0.18.(本小题满分12分)直线l 在两坐标轴上的截距相等,且P (4,3)到直线l 的距离为32,求直线l 的方程.[解] 若l 在两坐标轴上截距为0,设l :y =kx ,即kx -y =0,则|4k -3|1+k 2=3 2.解得k =-6±3214. 此时l 的方程为y =⎝⎛⎭⎫-6±3214x ; 若l 在两坐标轴上截距不为0,设l :x a +y a =1,即x +y -a =0,则|4+3-a |12+12=3 2. 解得a =1或13.此时l 的方程为x +y -1=0或x +y -13=0.综上,直线l 的方程为y =⎝⎛⎭⎫-6±3214x 或x +y -1=0或x +y -13=0.19.(本小题满分12分)已知点A (0,3),B (-1,0),C (3,0),试求点D 坐标使四边形ABCD 为等腰梯形.[解] 设所求D 点坐标为(x ,y ),(1)若AD ∥BC ,|AB |=|CD |,则⎩⎪⎨⎪⎧y =3,(0+1)2+(3-0)2=(x -3)2+y 2.解得⎩⎪⎨⎪⎧x =2,y =3或⎩⎪⎨⎪⎧x =4,y =3(不合题意,舍去). (2)若AB ∥CD ,|BC |=|AD |,则⎩⎪⎨⎪⎧y -0x -3=3-00+1,(-1-3)2+02=x 2+(y -3)2.解得⎩⎨⎧x =165,y =35或⎩⎪⎨⎪⎧x =4,y =3(不合题意,舍去). 综上,得点D 的坐标为(2,3)或⎝⎛⎭⎫165,35.20.(本小题满分12分)已知直线l 过点P (0,1),且分别与直线l 1:2x +y -8=0和l 2:x -3y +10=0交于B ,A 两点,线段AB 恰被点P 平分.(1)求直线l 的方程;(2)设点D (0,m ),且AD ∥l 1,求△ABD 的面积.[解] (1)∵点B 在直线l 1上,∴可设B (a ,8-2a ).又P (0,1)是AB 的中点,∴A (-a ,2a -6).∵点A 在直线l 2上,∴-a -3(2a -6)+10=0,解得a =4,即B (4,0).故直线l 的方程是x +4y -4=0.(2)由(1),知A (-4,2).又AD ∥l 1,∴k AD =2-m -4-0=-2,∴m =-6. 点A 到直线l 1的距离d =|2×(-4)+2-8|22+12=1455, |AD |=(-4-0)2+(2+6)2=45,∴S △ABD =12|AD |·d =12×45×1455=28. 21.(本小题满分12分)已知一束光线经过直线l 1:3x -y +7=0和l 2:2x +y +3=0的交点M ,且射到x 轴上一点N (1,0)后被x 轴反射.(1)求点M 关于x 轴的对称点P 的坐标;(2)求反射光线所在的直线l 3的方程;(3)求与直线l 3的距离为10的直线方程.[解] (1)由⎩⎪⎨⎪⎧3x -y +7=0,2x +y +3=0,得⎩⎪⎨⎪⎧x =-2,y =1,∴M (-2,1).∴点M 关于x 轴的对称点P 的坐标为(-2,-1).(2)易知l 3经过点P 与点N ,∴l 3的方程为y -0-1-0=x -1-2-1,即x -3y -1=0. (3)设与l 3平行的直线为y =13x +b . 根据两平行线之间的距离公式,得⎪⎪⎪⎪b +131+19=10, 解得b =3或b =-113, ∴与直线l 3的距离为10的直线方程为y =13x -113或y =13x +3,即x -3y -11=0或x -3y +9=0.22.(本小题满分12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程;(2)求直线BC 的方程;(3)求△BDE 的面积.[解] (1)由已知得直线AB 的斜率为2, ∴AB 边所在的直线方程为y -1=2(x -0), 即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B ⎝⎛⎭⎫12,2.设C (m ,n ),则由已知条件得⎩⎨⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1). ∴BC 边所在直线的方程为y -12-1=x -212-2, 即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1). ∴|BE |=⎝⎛⎭⎫12-12+(2-1)2=52, 由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0,得⎩⎨⎧x =25,y =95,∴D ⎝⎛⎭⎫25,95, ∴D 到BE 的距离为d =⎪⎪⎪⎪2×25+95-322+12=255,∴S △BDE =12·d ·|BE |=110.。
2021_2022年高中数学第三章直线与方程2

特别提醒 应用斜截式方程时,应注意斜率是否存在,当斜率
不存在时,不能表示成斜截式方程.
跟踪练习
写出满足下列条件的直线的方程. (1)斜率为 5,在 y 轴上截距为-1,________; (2)倾斜角 30°,在 y 轴上截距为 3,________. [答案] (1)5x-y-1=0 (2)x- 3y+3=0 [解析] (1)方程为 y=5x-1,即 5x-y-1=0. (2)方程为 y=xtan30°+ 3,即 x- 3y+3=0.
B.-1
C.3
D.-3
[答案] B
2.直线y=-2x+3的斜率是________,在y轴上的截距是
________,在x轴上的截距是________.
[答案]
-2
3
3 2
[解析] 斜率是-2;在 y 轴上的截距是 3;令 y=0 得 x=32, 即在 x 轴上的截距是32.
3.写出下列直线的点斜式方程并化成斜截式:
特别提醒 若已知含参数的两条直线平行或垂直,求参数的值
时,要注意讨论斜率是否存在,若是平行关系注意考虑b1≠b2
这个条件.
跟踪练习
(1)已知直线y=ax-2和y=(a+2)x+1互相垂直,则a=______. (2)经过点(1,1),且与直线y=2x+7平行的直线的方程为_____. [答案] (1)-1 (2)2x-y-1=0 [解析] (1)由两直线垂直可得a(a+2)=-1,即a2+2a+1=0 ,所以a=-1; (2)由y=2x+7得k1=2,由两直线平行知k2=2.∴所求直线方程 为y-1=2(x-1),即2x-y-1=0.
规律总结
①使用点斜式方程,必须注意前提条件是斜率存在. ②注意方程x=1的含义:它表示一条垂直于x轴的直线,这条
2019-2020学年高中数学 阶段质量检测(三)直线与方程(含解析)新人教A版必修2

阶段质量检测(三) 直线与方程(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60°D .135°解析:选D 由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |=( )A .10B .180C .6 3D .6 5解析:选D 由k MN =a -4-2-a =-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.已知直线nx -y =n -1和直线ny -x =2n 的交点在第二象限,则实数n 的取值范围是( )A .(0,1)B.⎝⎛⎭⎪⎫-∞,12∪(1,+∞)C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫12,+∞ 解析:选C 由题意,知当n =1时,两直线平行,当n =-1时,两直线重合,故n ≠±1.解方程组⎩⎪⎨⎪⎧nx -y =n -1,ny -x =2n ,得x =nn -1,y =2n -1n -1.∴n n -1<0且2n -1n -1>0,解得0<n <12. 4.已知直线l 1:(2m 2-5m +2)x -(m 2-4)y +5=0的斜率与直线l 2:x -y +1=0的斜率相同,则实数m 等于( )A .2或3B .2C .3D .-3解析:选C 直线l 1的斜率为2m 2-5m +2m 2-4,直线l 2的斜率为1,则2m 2-5m +2m 2-4=1,即2m 2-5m +2=m 2-4,整理得m 2-5m +6=0,解得m =2或3.当m =2时,2m 2-5m +2=0,-(m 2-4)=0,不符合题意,故m =3.5.若直线(m 2-1)x -y -2m +1=0不经过第一象限,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,1B.⎝⎛⎦⎥⎤-1,12C.⎣⎢⎡⎭⎪⎫-12,1 D.⎣⎢⎡⎦⎥⎤12,1 解析:选D 若直线(m 2-1)x -y -2m +1=0不经过第一象限,则直线经过第二、四象限或第三、四象限或第二、三、四象限,所以直线的斜率和截距均小于等于0.直线方程变形为y =(m 2-1)x -2m +1,则⎩⎪⎨⎪⎧m 2-1≤0,-2m +1≤0,解得12≤m ≤1.6.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3解析:选C 由题意知:-m n =-43,即3m =4n ,且有-1n =13,∴n =-3,m =-4.7.两点A (a +2,b +2)和B (b -a ,-b )关于直线4x +3y =11对称,则a ,b 的值为( ) A .a =-1,b =2 B .a =4,b =-2 C .a =2,b =4D .a =4,b =2解析:选D A 、B 关于直线4x +3y =11对称,则k AB =34,即b +2-(-b )a +2-(b -a )=34,①且AB 中点⎝⎛⎭⎪⎫b +22,1在已知直线上,代入得2(b +2)+3=11,②解①②组成的方程组得⎩⎪⎨⎪⎧a =4,b =2.8.直线l 1与直线l 2:3x +2y -12=0的交点在x 轴上,且l 1⊥l 2,则直线l 1在y 轴上的截距是( )A .-4B .4C .-83D.83解析:选C 设直线l 1的斜率为k 1,直线l 2的斜率为k 2,则k 2=-32.∵l 1⊥l 2,∴k 1k 2=-1,∴k 1=-1k 2=-1-32=23.设直线l 1的方程为y =23x +b ,直线l 2与x 轴的交点为(4,0).将点(4,0)代入l 1方程,得b =-83.9.光线从点A (-3,5)射到x 轴上,经反射以后经过点B (2,10),则光线从A 到B 的路程为( )A .5 2B .2 5C .510D .10 5解析:选C 点A (-3,5)关于x 轴的对称点为A ′(-3,-5),则光线从A 到B 的路程即A ′B 的长,|A ′B |=(-5-10)2+(-3-2)2=510.10.数学家欧拉在1765年提出定理,三角形的外心、重心、垂心(外心是三角形三条边的垂直平分线的交点,重心是三角形三条中线的交点,垂心是三角形三条高线的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点B (-1,0),C (0,2),AB =AC ,则△ABC 的欧拉线方程为( )A .2x -4y -3=0B .2x +4y +3=0C .4x -2y -3=0D .2x +4y -3=0解析:选D 本题考查欧拉线方程,∵B (-1,0),C (0,2),∴线段BC 中点的坐标为⎝ ⎛⎭⎪⎫-12,1,线段BC 所在直线的斜率k BC =2,则线段BC 的垂直平分线的方程为y -1=-12×⎝ ⎛⎭⎪⎫x +12,即2x+4y -3=0.∵AB =AC ,∴△ABC 的外心、重心、垂心都在线段BC 的垂直平分线上,∴△ABC 的欧拉线方程为2x +4y -3=0.故选D.11.已知点M (1,0)和N (-1,0),直线2x +y =b 与线段MN 相交,则b 的取值范围为( ) A .[-2,2]B .[-1,1] C.⎣⎢⎡⎦⎥⎤-12, 12 D .[0,2]解析:选A 直线可化成y =-2x +b ,当直线过点M 时,可得b =2;当直线过点N 时,可得b =-2,所以要使直线与线段MN 相交,b 的取值范围为[-2,2].12.若直线l 1:y -2=(k -1)x 和直线l 2关于直线y =x +1对称,那么直线l 2恒过定点( )A .(2,0)B .(1,-1)C .(1,1)D .(-2,0)解析:选C ∵l 1:kx =x +y -2,由⎩⎪⎨⎪⎧x =0,x +y -2=0,得l 1恒过定点(0,2),记为点P ,∴与l 1关于直线y =x +1对称的直线l 2也必恒过一定点,记为点Q ,且点P 和Q 也关于直线y=x +1对称.令Q (m ,n ),则⎩⎪⎨⎪⎧n +22=m 2+1,n -2m ×1=-1,⇒⎩⎪⎨⎪⎧m =1,n =1,即Q (1,1),∴直线l 2恒过定点(1,1).二、填空题(本大题共4小题,每小题5分,共20分)13.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 解析:BC 中点为(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10. 答案:1014.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为________.解析:设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =-3-14-(-2)=-23.答案:-2315.已知点M (a ,b )在直线3x +4y =15上,则 a 2+b 2的最小值为________. 解析:a 2+b 2的最小值为原点到直线3x +4y =15的距离:d =|0+0-15|32+42=3. 答案:316.在△ABC 中,已知C (2,5),角A 的平分线所在的直线方程是y =x ,BC 边上的高所在的直线方程是y =2x -1,则顶点B 的坐标为________.解析:依题意,由⎩⎪⎨⎪⎧y =2x -1,y =x ,解得⎩⎪⎨⎪⎧x =1,y =1,则A (1,1).因为角A 的平分线所在的直线方程是y =x ,所以点C (2,5)关于直线y =x 的对称点C ′(5,2)在边AB 所在的直线上, 所以边AB 所在的直线方程为y -1=2-15-1(x -1),整理得x -4y +3=0.又边BC 上的高所在的直线方程是y =2x -1, 所以边BC 所在的直线的斜率为-12,所以边BC 所在的直线方程是y -5=-12(x -2),整理得x +2y -12=0.由⎩⎪⎨⎪⎧x -4y +3=0,x +2y -12=0,解得⎩⎪⎨⎪⎧x =7,y =52,则B ⎝ ⎛⎭⎪⎫7,52.答案:⎝ ⎛⎭⎪⎫7,52 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知直线l 经过点P (-2,1),且与直线x +y =0垂直. (1)求直线l 的方程;(2)若直线m 与直线l 平行且点P 到直线m 的距离为2,求直线m 的方程. 解:(1)由题意得直线l 的斜率为1,故直线l 的方程为y -1=x +2,即x -y +3=0. (2)由直线m 与直线l 平行, 可设直线m 的方程为x -y +c =0,由点到直线的距离公式得|-2-1+c |2=2,即|c -3|=2,解得c =1或c =5.故直线m 的方程为x -y +1=0或x -y +5=0.18.(本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时,l 1与l 2:(1)相交;(2)平行;(3)重合.解:当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m23m 得m =-1或m =3,由1m -2=62m,得m =3. 故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.19.(本小题满分12分)等腰直角三角形斜边所在直线的方程是3x -y =0,一条直角边所在的直线l 的斜率为12,且经过点(4,-2),若此三角形的面积为10,求此直角三角形的直角顶点的坐标.解:设直角顶点为C ,点C 到直线y =3x 的距离为d , 则12d ·2d =10,∴d =10. ∵直线l 的斜率为12,且经过点(4,-2),∴直线l 的方程为y +2=12(x -4).即x -2y -8=0.设直线l ′是与直线y =3x 平行且距离为10的直线, 则直线l ′与l 的交点就是C 点, 设直线l ′的方程是3x -y +m =0, ∴|m |32+(-1)2=10,∴m =±10,∴直线l ′的方程是3x -y ±10=0.由方程组⎩⎪⎨⎪⎧x -2y -8=0,3x -y -10=0或⎩⎪⎨⎪⎧x -2y -8=0,3x -y +10=0,得点C 的坐标是⎝⎛⎭⎪⎫125,-145或⎝⎛⎭⎪⎫-285,-345.20.(本小题满分12分)如图,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为:y -2=x -3,即x -y -1=0. (2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.21.(本小题满分12分)已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,说明理由. 解:(1)直线l 2的方程等价于2x -y -12=0,所以两条平行线l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510,即⎪⎪⎪⎪⎪⎪a +12=72.又因为a >0,解得a =3. (2)假设存在点P ,设点P (x 0,y 0),若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪⎪⎪c +125,解得c =132或116, 所以2x 0-y 0+132=0或2x 0-y 0+116=0.若P 点满足条件③,由点到直线的距离公式, 得|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0.若点P 满足条件①,则3x 0+2=0不合适. 解方程组⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=-3,y 0=12.不符合点P 在第一象限,舍去.解方程组⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=19,y 0=3718.符合条件①.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.22.(本小题满分12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程; (2)当-2+3≤k ≤0时,求折痕长的最大值.解:(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称, 有k OG ·k =-1⇒1a·k =-1⇒a =-k .故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M ⎝ ⎛⎭⎪⎫-k 2,12. 故折痕所在的直线方程为y -12=k ⎝ ⎛⎭⎪⎫x +k 2,即y =kx +k 22+12. 由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E ⎝ ⎛⎭⎪⎫2,2k +k 22+12,交y 轴于点N ⎝⎛⎭⎪⎫0,k 2+12.则|NE |2=22+⎣⎢⎡⎦⎥⎤k 2+12-⎝ ⎛⎭⎪⎫2k +k 22+122=4+4k 2≤4+4(7-43)=32-16 3. 此时,折痕长度的最大值为32-163=2(6-2). 而2(6-2)>2,故折痕长度的最大值为2(6-2).。
2020版高中数学人教版必修2高一数学第三章直线的方程(课时作业)
课时作业20 直线的点斜式方程基础巩固1.直线的点斜式方程y -y 0=k (x -x 0)可以表示( ) A .任何一条直线 B .不过原点的直线C .不与坐标轴垂直的直线D .不与x 轴垂直的直线解析:点斜式方程适用的前提条件是斜率存在,故其可表示不与x 轴垂直的直线.答案:D2.已知直线的倾斜角为60°,在y 轴上的截距为-2,则此直线的方程为( )A .y =x +2B.y =-x +2 33C .y =-x -2D.y =x -233解析:直线的倾斜角为60°,则其斜率为,利用斜截式得y =3x -2. 3答案:D3.直线y -b =2(x -a )在y 轴上的截距为( ) A .a +b B .2a -b C .b -2aD .|2a -b |解析:由y -b =2(x -a ),得y =2x -2a +b ,故在y 轴上的截距为b -2a .答案:C4.直线l 过点(-3,0),且与直线y +1=2x 垂直,则直线l 的方程为( )A .y =-(x -3)B.y =-(x +3)1212C .y =(x -3)D.y =(x +3)1212解析:因为直线y =2x -1的斜率为2,所以直线l 的斜率为-.12又直线l 过点(-3,0),故所求直线的方程为y =-(x +3),选B.12答案:B5.直线l 1:y =ax +b 与直线l 2:y =bx +a (ab ≠0,a ≠b )在同一平面直角坐标系内的图象只可能是( )解析:对于A 选项,由l 1得a >0,b <0,而由l 2得a >0,b >0,矛盾;对于B 选项,由l 1得a <0,b >0,而由l 2得a >0,b >0,矛盾;对于C 选项,由l 1得a >0,b <0,而由l 2得a <0,b >0,矛盾;对于D 选项,由l 1得a >0,b >0,而由l 2得a >0,b >0.故选D.答案:D6.直线x tan +y =0的倾斜角是__________.π7解析:k =-tan =tan =tan ,且∈[0,π),所以π7(π-π7)6π76π7倾斜角为π.67答案:6π7能力提升1.已知直线l 1:y =x +a ,l 2:y =(a 2-3)x +1,若l 1∥l 2,则a12的值为( )A .4B .2C .-2D.±2解析:∵l 1∥l 2,∴a 2-3=1,∴a =±2.又由于l 1∥l 2,两直线l 1与l 2不能重合,则a ≠1,12即a ≠2,故a =-2. 答案:C2.将直线y =(x -2)绕点(2,0)按逆时针方向旋转60°后所得3直线方程是( )A.x +y -2=0B.x -y +2=0 3333C.x +y +2=0D.x -y -2=03333解析:∵直线y =(x -2)的倾斜角是60°,∴按逆时针旋转60°3后的直线的倾斜角为120°,斜率为-,且过点(2,0).∴其方程为3y -0=-(x -2),即x +y -2=0.333答案:A3.在等腰三角形AOB 中,|AO |=|AB |,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D.y -3=-3(x -1)解析:由对称性可得B (2,0),∴k AB ==-3,31-2∴直线AB 的方程为y -3=-3(x -1).答案:D4.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( )( ) A .1 B .2 C .-D .2或-1212解析:当2m 2+m -3≠0时,在x 轴上的截距为=1,4m -12m 2+m -3即2m 2-3m -2=0,∴m =2或m =-.12答案:D5.若直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P (3, 3),则直线l 的方程为________.解析:直线y =x +1的斜率为1,则倾斜角为45°,所以直线l 的倾斜角为90°,且l 过点P (3,3),所以直线l 的方程x =3.答案:x =36.直线y =k (x -2)+3必过定点,该定点坐标是________. 解析:将直线方程化为点斜式得y -3=k (x -2),所以该直线过定点(2,3).答案:(2,3)7.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,图1如图1,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]8.与直线l :y =x +1平行,且在两坐标轴上截距之和为1的34直线l 1的方程为________.解析:依题意设直线方程为y =x +b ,34令x =0可得纵截距为b , 令y =0可得横截距为-b ,43∴-b +b =1,∴b =-3,43所以直线方程为y =x -3.34答案:y =x -3349.已知直线l :5ax -5y -a +3=0,(1)求证:不论a 为何值,直线l 总过第一象限; (2)为了使直线l 不过第二象限,求a 的取值范围. 解:(1)证明:直线l 的方程可化为y -=a , 35(x -15)图2由点斜式方程可知直线l 的斜率为a , 且过定点A ,(15,35)由于点A 在第一象限,所以直线一定过第一象限.(2)如图2,直线l 的倾斜角介于直线AO 与AP 的倾斜角之间, k AO ==3,直线AP 的斜率不存在,故a ≥3.35-015-010.已知在△ABC 中,A (0,0),B (3,1),C (1,3). (1)求AB 边上的高所在直线的方程. (2)求BC 边上的高所在直线的方程. (3)求过点A 与BC 平行的直线方程.解:(1)直线AB 的斜率k 1==,AB 边上的高所在直线的斜1-03-013率为-3且过点C ,所以AB 边上的高所在直线的方程为y -3=-3(x -1).(2)直线BC 的斜率k 2==-1,BC 边上的高所在直线的斜率3-11-3为1且过点A ,所以BC 边上的高所在直线的方程为y =x .(3)由第二问知过点A 与BC 平行的直线的斜率为-1,其方程为y =-x .11.求经过点A (-2,2),并且和x 轴的正半轴,y 轴的正半轴所围成的三角形的面积是1的直线方程.解:因为直线的斜率存在且不为0, 所以设直线方程为y -2=k (x +2), 令x =0,得y =2k +2, 令y =0,得x =-,2k +2k由2k +2>0,->0,得-1<k <0.2k +2k 由已知得(2k +2)=1,12(-2k +2k )整理得2k 2+5k +2=0, 解得k =-2或k =-,12因为-1<k <0,所以k =-,12所以直线方程为y -2=-(x +2).1212.已知直线l :ax +y -4=0(-1≤a ≤1),求直线l 的倾斜角3α的取值范围.解:设l 的斜率为k ,∴k =-,a3∵-1≤a ≤1,∴-≤k ≤.3333当0≤k ≤时,α∈, 33[0,π6]当-≤k <0时,α∈,33[5π6,π)[0,π6][5π6,π)∴α的取值范围是∪.。
高中数学必修三-练习题(包含答案)
高中数学必修三-练习题(包含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN必修三测试题参考公式:1.回归直线方程方程:,其中, .2.样本方差:一、填空1. 在下列各图中,每个图的两个变量具有相关关系的图是()(1)(2)(3)(4)A.(1)(2) B.(1)(3) C.(2)(4) D.zs(2)(3)2 下列给变量赋值的语句正确的是(A)3=a(B)a+1=a(C)a=b=c=3 (D)a=2b+1 3.某程序框图如下所示,若输出的S=41,则判断框内应填( )A.i>3 B.i>4 C.i>5 D.i>64.图4中程序运行后输出的结果为().A.7 B.8 C.9 D.10(第3题)(第4题)5阅读题5程序,如果输入x=-2,则输出结果y为().(A)3+π(B)3-πInput xif x<0 theny=32xπ+ elseif x>0 theny=52xπ-+elsey=0end ifend ifprint y(C )π-5 (D )-π-56.有一人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶7.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A.21B.31C.41D. 528.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( ) A.92% B.24% C.56% D.76%9.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个10.某算法的程序框图如右所示,该程序框图的功能是( ).A .求输出a,b,c 三数的最大数B .求输出a,b,c 三数的最小数C .将a,b,c 按从小到大排列D .将a,b,c 按从大到小排列二、填空11.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则这三种型号的轿车应依次抽取 、 、 辆. 12.将十进制的数253转为四进制的数应为 (4)13.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为 .14. 某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元哈销售量y 件之间的一组数据如下所示:价格x 9 9.5 10 10.5 11 销售量y1110865由散点图可知,y 与x 之间有较好的线性相关关系,其线性回归方程是:=-3.2x+,则= .三 简单题15、(1)用辗转相除法求840与1764的最大公约数.(2)用秦九韶算法计算函数34532)(34=-++=x x x x x f 当时的函数值。
高中数学 第三章 直线与方程 3.2.3 直线的一般式方程学案(含解析)新人教A版必修2(2021
山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2的全部内容。
3.2.3 直线的一般式方程学习目标1。
掌握直线的一般式方程;2.理解关于x,y的二元一次方程Ax+By+C=0(A,B 不同时为0)都表示直线;3。
会进行直线方程的五种形式之间的转化.知识点一直线的一般式方程思考1 直线的点斜式、斜截式、两点式、截距式这四种形式都能用Ax+By+C=0(A,B不同时为0)来表示吗?答案能.思考2 关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)一定表示直线吗?答案一定.思考3 当B≠0时,方程Ax+By+C=0(A,B不同时为0)表示怎样的直线?B=0呢?答案当B≠0时,由Ax+By+C=0得,y=-错误!x-错误!,所以该方程表示斜率为-错误!,在y轴上截距为-错误!的直线;当B=0时,A≠0,由Ax+By+C=0得x=-错误!,所以该方程表示一条垂直于x轴的直线.形式Ax+By+C=0条件A,B不同时为0知识点二直线的一般式与点斜式、斜截式、两点式、截距式的关系类型一直线一般式的性质例1 设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)若直线l在x轴上的截距为-3,则m=________。
2019-2020学年高中数学人教A版必修2作业:章末质量检测第三章 直线与方程 含解析
如图所示,当直线l由位置PA绕点P转动到位置PB时,l的斜率逐渐变大,当直线l垂直于x轴时,l无斜率,再转动时斜率为负值并逐渐变大直到等于PB的斜率,所以直线l的斜率k≥kPA= 或k≤kPB=- ,即k≥ 或k≤- .
答案: ∪
三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
章末质量检测
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.经过A(2,0),B(5,3)两点的直线的倾斜角为()
A.45°B.135°
C.90° D.60°
解析:∵A(2,0),B(5,3),∴直线AB的斜率k= =1.
∴直线l的方程为 + =1,即x+2y-4=0.
20.(12分)求直线l1:x-y-2=0关于直线l:3x-y+3=0对称的直线l2的方程.
解析:由 得 ∴l1与l相交,且交点坐标为 ,则此点也在直线l2上.
在l1上取一点P(0,-2),设它关于直线l的对称点为Q(x0,y0),
则 解得
∴点Q(-3,-1),
∴m=1,n=7.
(2)由m·m-8×2=0,得m=±4.
又8×(-1)-n·m≠0,则 或
即m=4,n≠-2时,或m=-4,n≠2时,l1∥l2.
(3)当且仅当m·2+8·m=0,
即m=0时,l1⊥l2.
又- =-1,∴n=8,
即m=0,n=8时,l1⊥l2且l1在y轴上的截距为-1.
22.(12分)(1)已知直线方程为(2+m)x+(1-2m)y+4-3m=0,求证:不论m为何实数,此直线必过定点;
设直线AB的倾斜角为θ(0°≤θ<180°),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修 第三章直线方程测试题答案
1-5 BACAC 6-10 AADBA 11 A
1、B;2、C;3、D;4、A;5、A;6、C;7、C;8、D
9、c=0
10、0ba或c=0
11、4x+3y=0,或x+y+1=0
12.y=2x或x+y-3=0 13.±6 14、2010 15.33
12、解:直线l经过A(a,0)和B(0,b)两点,代入两点式,得:
a0ax0b0y
,就是1byax
13、解010010xy即y=x
14、解:122yx即x-y+2=0
15、解:设直线的两截距皆为a,当a=0时,直线方程设为y=kx
将P(2,3)代入k=23
当a0时,设直线方程为1ayax
将P(2,3)代入得a=5
所求直线方程为y=x23或155yx
即3x-2y=0或x+y-5=0
16、解:(1)由两点式写方程得 121515xy,……………………3分
即 6x-y+11=0……………………………………………………4分
或 直线AB的斜率为 616)1(251k……………………………1直线AB的方程为
)1(65xy
………………………………………3分
即 6x-y+11=0…………………………………………………………………4分
(2)设M的坐标为(00,yx),则由中点坐标公式得
1231,124200yx
故M(1,1)………………………6分
52)51()11(22AM
…………………………………………8分
(3)因为直线AB的斜率为kAB=51632〃〃〃〃〃〃〃〃(3分)设AB边的高所在直线的斜率为k
则有1(6)16ABkkkk〃〃〃〃〃〃〃〃〃〃(6分)
所以AB边高所在直线方程为13(4)61406yxxy即〃〃〃〃〃〃〃〃(10分)
17.解:设直线方程为1xyab则有题意知有1342abab
又有①314(abbb则有或舍去)此时4a直线方程为x+4y-4=0
②341440babaxy则有或-1(舍去)此时直线方程为
18.方法(1)解:由题意知
2
60(2)320xmymxmymm
23232即有(2m-m+3m)y=4m-12因为两直线没有交点,所以方程没有实根,所以2m-m+3m=0(2m-m+3)=0m=0或m=-1或m=3
当m=3时两直线重合,不合题意,所以m=0或m=-1
方法(2)由已知,题设中两直线平行,当
22
2
2322303116132316mmmmmmmmmmmmmmm
时,=由=得或
由得所以
当m=0时两直线方程分别为x+6=0,-2x=0,即x=-6,x=0,两直线也没有公共点,
综合以上知,当m=-1或m=0时两直线没有公共点。
19解:由0204yxyx,得31yx;…………………………………………….….2′
∴1l与2l的交点为(1,3)。…………………………………………………….3′
(1) 设与直线012yx平行的直线为02cyx………………4′
则032c,∴c=1。…………………………………………………..6′
∴所求直线方程为012yx。…………………………………………7′
方法2:∵所求直线的斜率2k,且经过点(1,3),…………………..5′
∴求直线的方程为)1(23xy,……………………….. …………..…6′
即012yx。………………………………………….….. ……………7′
(2) 设与直线012yx垂直的直线为02cyx………………8′
则0321c,∴c=-7。…………………………………………….9′
∴所求直线方程为072yx。……………………………………..…10′
方法2:∵所求直线的斜率21k,且经过点(1,3),………………..8′
∴求直线的方程为)1(213xy,……………………….. ………….9′
即072yx 。………………………………………….….. ……….10′
20、解:设线段AB的中点P的坐标(a,b),由P到L1,、L2的距离相等,得2252952ba2252752ba
经整理得,0152ba,又点P在直线x-4y-1=0上,所以014ba
解方程组0140152baba 得13ba 即点P的坐标(-3,-1),又直线L过点(2,3)
所以直线L的方程为)3(2)3()1(3)1(xy,即0754yx