MATLAB 粒子群优化算法
matlab优化算法100例

matlab优化算法100例1. 线性规划问题的优化算法:线性规划问题是一类目标函数和约束条件都是线性的优化问题。
Matlab中有很多优化算法可以解决线性规划问题,如单纯形法、内点法等。
下面以单纯形法为例介绍线性规划问题的优化算法。
单纯形法是一种迭代算法,通过不断改变基础解来寻找问题的最优解。
它的基本思想是从一个可行解出发,通过改变基本变量和非基本变量的取值来逐步逼近最优解。
2. 非线性规划问题的优化算法:非线性规划问题是一类目标函数和约束条件至少有一个是非线性的优化问题。
Matlab中有很多优化算法可以解决非线性规划问题,如拟牛顿法、共轭梯度法等。
下面以拟牛顿法为例介绍非线性规划问题的优化算法。
拟牛顿法是一种逐步逼近最优解的算法,通过近似目标函数的二阶导数信息来构造一个二次模型,然后通过求解该二次模型的最优解来更新当前解。
3. 全局优化问题的优化算法:全局优化问题是一类目标函数存在多个局部最优解的优化问题。
Matlab中有很多优化算法可以解决全局优化问题,如遗传算法、模拟退火算法等。
下面以遗传算法为例介绍全局优化问题的优化算法。
遗传算法是一种模拟生物进化过程的优化算法,通过基因编码、选择、交叉和变异等操作来不断迭代演化一组个体,最终找到全局最优解。
4. 多目标优化问题的优化算法:多目标优化问题是一类存在多个目标函数并且目标函数之间存在冲突的优化问题。
Matlab中有很多优化算法可以解决多目标优化问题,如多目标粒子群优化算法、多目标遗传算法等。
下面以多目标粒子群优化算法为例介绍多目标优化问题的优化算法。
多目标粒子群优化算法是一种基于粒子群优化算法的多目标优化算法,通过在粒子的速度更新过程中考虑多个目标函数来实现多目标优化。
5. 其他优化算法:除了上述提到的优化算法,Matlab还提供了很多其他的优化算法,如模拟退火算法、蚁群算法等。
这些算法可以根据具体的问题选择合适的算法进行求解。
综上所述,Matlab提供了丰富的优化算法,可以解决不同类型的优化问题。
(完整word版)基本粒子群算法的原理和matlab程序.doc

基本粒子群算法的原理和matlab 程序作者—— niewei120 (nuaa)一、粒子群算法的基本原理粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy 和 Eberhart 提出,是一种通用的启发式搜索技术。
一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远,那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。
PSO 算法利用这种模型得到启示并应用于解决优化问题。
PSO 算法中,每个优化问题的解都是粒子在搜索空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。
PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。
每个粒子有了初始位置与初始速度。
然后通过迭代寻优。
在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。
第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。
另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。
上述的方法叫全局粒子群算法。
如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。
速度、位置的更新方程表示为:每个粒子自身搜索到的历史最优值p i,p i=(p i1 ,p i2 ,....,p iQ ), i=1,2,3,....,n 。
所有粒子搜索到的最优值p g, p g=(p g1 ,p g2,....,p gQ ),注意这里的p g只有一个。
是保持原来速度的系数,所以叫做惯性权重。
是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。
通常设置为 2 。
是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。
MATLAB中的非线性优化算法详解

MATLAB中的非线性优化算法详解在计算机科学和工程领域,非线性优化是一个非常重要的问题。
它涉及到在给定一些约束条件下,寻找使得目标函数取得最优值的变量取值。
MATLAB作为一种强大的数值计算工具,提供了多种非线性优化算法来解决这个问题。
本文将详细介绍一些常用的非线性优化算法,并探讨它们的特点和适用场景。
1. 数学背景在介绍非线性优化算法之前,我们先来了解一下非线性优化的基本数学背景。
一个非线性优化问题可以表示为以下形式:minimize f(x)subject to g(x) ≤ 0h(x) = 0其中,f(x)是目标函数,g(x)是不等式约束条件,h(x)是等式约束条件。
x是优化变量。
目标是找到x使得f(x)取得最小值,并且满足约束条件。
2. 黄金分割法黄金分割法是一种经典的非线性优化算法。
它基于一个简单的原则:将搜索区间按照黄金分割比例分为两段,并选择一个更优的区间进行下一次迭代。
该算法的思想简单明了,但是它的收敛速度比较慢,特别是对于高维问题。
因此,该算法在实际应用中较少使用。
3. 拟牛顿法拟牛顿法是一类比较常用的非线性优化算法。
它通过近似目标函数的梯度信息来进行迭代优化。
拟牛顿法的核心思想是构造一个Hessian矩阵的近似矩阵,来更新搜索方向和步长。
其中,DFP算法和BFGS算法是拟牛顿法的两种典型实现。
DFP算法是由Davidon、Fletcher和Powell于1959年提出的,它通过不断迭代来逼近最优解。
该算法的优点是收敛性比较好,但是它需要存储中间结果,占用了较多的内存。
BFGS算法是由Broyden、Fletcher、Goldfarb和Shanno于1970年提出的。
它是一种变种的拟牛顿法,通过逼近Hessian矩阵的逆矩阵来求解最优解。
BFGS算法在存储方面比DFP算法更加高效,但是它的计算复杂度相对较高。
4. 信赖域法信赖域法是一种迭代优化算法,用于解决非线性优化问题。
它将非线性优化问题转化为一个二次规划问题,并通过求解这个二次规划问题来逼近最优解。
matlab 离散粒子群算法

matlab 离散粒子群算法离散粒子群算法(Discrete Particle Swarm Optimization,简称DPSO)是一种基于群体智能的优化算法,依据群体协作的思想,模拟粒子在搜索空间中的行为,通过不断地更新粒子的位置和速度,寻找最优解。
与连续粒子群算法相比,离散粒子群算法主要应用于离散变量优化问题,如组合优化、布尔函数优化等。
离散粒子群算法的基本思想是通过模拟粒子在解空间中的搜索过程,寻找到最优解。
在离散变量优化问题中,每个粒子代表一个解,粒子的位置表示解的取值,速度表示解的变化方向。
粒子群中的每个粒子根据自身的经验和群体的经验进行位置的更新,以逐步靠近最优解。
离散粒子群算法的具体步骤如下:1. 初始化粒子群:设置粒子数目、速度范围、位置范围等参数,并随机生成初始位置和速度。
2. 计算适应度函数:根据问题的具体情况,设计适应度函数来评估每个粒子的解的优劣程度。
3. 更新粒子的速度和位置:根据粒子的当前位置、速度和适应度,通过更新公式计算新的速度和位置。
4. 更新群体的最优解:根据每个粒子的适应度,更新群体的最优解。
5. 终止条件判断:判断是否满足终止条件,如达到迭代次数、适应度达到阈值等。
6. 返回最优解:返回群体中适应度最高的解作为最优解。
离散粒子群算法的优点在于可以在较短的时间内找到较好的解,同时具有较好的全局搜索能力和收敛性。
离散粒子群算法在组合优化、布尔函数优化等离散变量优化问题中得到了广泛的应用。
在实际应用中,离散粒子群算法需要根据具体问题进行参数的设置和适应度函数的设计。
合理的参数设置和适应度函数设计可以提高算法的性能,加快收敛速度,并得到更好的解。
此外,离散粒子群算法也可以与其他优化算法进行结合,以进一步提高求解效果。
离散粒子群算法是一种基于群体智能的优化算法,通过模拟粒子在解空间中的搜索过程,寻找最优解。
它具有全局搜索能力和收敛性,适用于离散变量优化问题。
在实际应用中,离散粒子群算法需要根据具体问题进行参数的设置和适应度函数的设计,以得到更好的解。
Matlab粒子群算法(PSO)进行空间-变压器局部放电定位

%% Particle Swarm Optimization(PSO),粒子群优化算法计算局放源位置%%%% Clear Screenclc;close all;clear all;%% InitializationLx=4;Ly=4;Lz=4; % 变压器长宽高Sensor_xyz0=[1,0,1]';Sensor_xyz1=[0,1.5,0.5]';Sensor_xyz2=[2,3,0.5]';S ensor_xyz3=[3,1.5,0.7]';%四个传感器位置Source=[2,2,2]'; % PD位置t=linspace(0,50e-9,1001);tc=10e-9;c=3e8;delta_t0=sqrt(sum((Source-Sensor_xyz0).^2))/c;delta_t1=sqrt(sum((Source-Sensor_xyz1).^2))/c;delta_t2=sqrt(sum((Source-Sensor_xyz2).^2))/c;delta_t3=sqrt(sum((Source-Sensor_xyz3).^2))/c;y0=-(exp(-(t-tc-delta_t0)/0.2e-9)-exp(-(t-tc-delta_t0)/3e-9)).*stepfun(t,tc+delta_t0).*sin(2*pi*1e9*(t-tc-delta_t0)); %传感器0接收到PD信号y1=-(exp(-(t-tc-delta_t1)/0.2e-9)-exp(-(t-tc-delta_t1)/3e-9)).*stepfun(t,tc+delta_t1).*sin(2*pi*1e9*(t-tc-delta_t1)); %传感器1接收到PD信号y2=-(exp(-(t-tc-delta_t2)/0.2e-9)-exp(-(t-tc-delta_t2)/3e-9)).*stepfun(t,tc+delta_t2).*sin(2*pi*1e9*(t-tc-delta_t2)); %传感器2接收到PD信号y3=-(exp(-(t-tc-delta_t3)/0.2e-9)-exp(-(t-tc-delta_t3)/3e-9)).*stepfun(t,tc+delta_t3).*sin(2*pi*1e9*(t-tc-delta_t3)); %传感器3接收到PD信号% plot(y0)% hold on% plot(y1)% plot(y2)% plot(y3)tic; %程序运行计时% [~,R]=gccphat(y1',y0');[~,YI]=max(R);t10=(YI-length(t))*diff(t(1:2)); % GCCPHAT计算时延1% [~,R]=gccphat(y2',y0');[~,YI]=max(R);t20=(YI-length(t))*diff(t(1:2)); % GCCPHAT计算时延2% [~,R]=gccphat(y3',y0');[~,YI]=max(R);t30=(YI-length(t))*diff(t(1:2)); % GCCPHAT计算时延3[~,YI]=max(xcorr(y1,y0));t10=(YI-length(t))*diff(t(1:2)); % GCCPHAT计算时延1[~,YI]=max(xcorr(y2,y0));t20=(YI-length(t))*diff(t(1:2)); % GCCPHAT计算时延2[~,YI]=max(xcorr(y3,y0));t30=(YI-length(t))*diff(t(1:2)); % GCCPHAT计算时延3t10=delta_t1-delta_t0;t20=delta_t2-delta_t0;t30=delta_t3-delta_t0;% Lx=1;Ly=1;Lz=0.8; % 变压器长宽高%Sensor_xyz0=[0,0.2,0.4]';Sensor_xyz1=[0,0.6,0.3]';Sensor_xyz2=[0.3,1,0 .2]';Sensor_xyz3=[0.6,1,0.5]';%四个传感器位置% Source=[0.61,0.32,0.35]'; % PD位置% t10=0.036;t20=0.1;t30=0.053;%PSO 初始化error=1e-6; %允许误差MaxNum=50; %粒子最大迭代次数nvars=3; %目标函数的自变量个数particlesize=30; %粒子群规模c1=2; %每个粒子的个体学习因子,也称为加速常数1c2=2; %每个粒子的社会学习因子,也称为加速常数2w=0.6; %惯性因子a=1; %约束因子,控制速度的权重vmax=0.8; %粒子的最大飞翔速度% x=3*rand(particlesize,nvars); %粒子的所在位置x(:,1)=Lx*rand(particlesize,1); %初始化x(:,2)=Ly*rand(particlesize,1);x(:,3)=Lz*rand(particlesize,1);% x=2*ones(particlesize,nvars);v=2*rand(particlesize,nvars); %粒子的飞翔速度%% Objective Function%用inline定义适应度函数以便将子函数文件与主程序文件放在一起%目标函数为:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)) 注意不同于原始目标函数%inline命令定义适应度函数如下% fitness=inline('1./(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');%inline定义的适应度函数会使程序运行速度大大降低%% Particle swarm optimizationf=zeros(particlesize,1);for i=1:particlesize% for j=1:nvars% f(i)=fitness(x(i,j));% endf(i)=Fitness1(x(i,:),Sensor_xyz0',Sensor_xyz1',Sensor_xyz2',Sensor_xyz 3',t10,t20,t30,c);endpersonalbest_x=x;personalbest_faval=f;[globalbest_faval,YI]=min(personalbest_faval);globalbest_x=personalbest_x(YI,:);k=1;Trace_error=[];Trace_pos=[];while k<=MaxNumfor i=1:particlesize% for j=1:nvars% f(i)=fitness(x(i,j));% endf(i)=Fitness1(x(i,:),Sensor_xyz0',Sensor_xyz1',Sensor_xyz2',Sensor_xyz 3',t10,t20,t30,c);if f(i)<personalbest_faval(i) %判断当前位置是否是历史上的最佳位置personalbest_faval(i)=f(i);personalbest_x(i,:)=x(i,:);endend[globalbest_faval,i]=min(personalbest_faval);globalbest_x=personalbest_x(i,:);for i=1:particlesize %更新粒子群里的每个个体的最新位置v(i,:)=w*v(i,:)+c1*rand*(personalbest_x(i,:)-x(i,:))+c2*rand*(globalbest_x-x(i,:));for j=1:nvars %判断每个粒子的飞翔速度是否超过了最大飞翔速度if v(i,j)>vmaxv(i,j)=vmax;elseif v(i,j)<-vmaxv(i,j)=-vmax;endendx(i,:)=x(i,:)+a*v(i,:);if x(i,1)>Lxx(i,1)=Lx*rand;endif x(i,2)>Lyx(i,2)=Ly*rand;endif x(i,3)>Lzx(i,3)=Lz*rand;endendTrace_error=[Trace_error,globalbest_faval];Trace_pos=[Trace_pos;globalbest_x];if abs(globalbest_faval)<errorbreak;endk=k+1;end%% Post Processingsubplot(2,1,1)plot(Trace_error,'k--','LineWidth',2)grid onsubplot(2,1,2)plot3(Trace_pos(:,1),Trace_pos(:,2),Trace_pos(:,3),'--','LineWidth',2) hold onplot3(Trace_pos(end,1),Trace_pos(end,2),Trace_pos(end,3),'r*') xlim([0,Lx])ylim([0,Ly])zlim([0,Lz])plot3(Source(1),Source(2),Source(3),'ok')grid onValue2=globalbest_x;Value2=num2str(Value2);disp(strcat('The corresponding coordinate =',Value2))% Value1=1/globalbest_faval-1;% Value1=num2str(Value1);%% Post Processing% %strcat指令可以实现字符的组合输出% disp(strcat('The maximum value = ',' ',Value1))% %输出最大值所在的横坐标位置% Value2=globalbest_x;% Value2=num2str(Value2);% disp(strcat('The corresponding coordinate =',Value2))% x=-5:0.01:5;% y=2.1*(1-x+2*x.^2).*exp(-x.^2/2);% plot(x,y,'m-','LineWidth',3)% hold on% plot(globalbest_x,1/globalbest_faval-1,'kp','LineWidth',4) % legend('Objective Function','The maximum value')% xlabel('x')% ylabel('y')% grid ontoc;适应度函数:%% PDLocationPSO1适应度函数functionF1=Fitness1(Source,Sensor_xyz0,Sensor_xyz1,Sensor_xyz2,Sensor_xyz 3,t10,t20,t30,v)% Source 局放源位置% Sensor_xyz 传感器位置% t10 时延(相对于传感器0)% v 传播速度d0=sqrt(sum((Source-Sensor_xyz0).^2));F1=norm(sqrt(sum((Source-Sensor_xyz1).^2))-d0-v*t10)+norm(sqrt(sum((Source-Sensor_xyz2).^2))-d0-v*t20)+...norm(sqrt(sum((Source-Sensor_xyz3).^2))-d0-v*t30);结果:。
MATLAB优化算法与工具介绍

MATLAB优化算法与工具介绍引言近年来,计算机科学和工程领域取得了快速发展,求解优化问题变得越来越重要。
MATLAB是一种功能强大的高级计算软件,提供了丰富的数学和工程计算工具。
本文将介绍MATLAB中的优化算法和工具,帮助读者对其有更深入的了解和运用。
一、MATLAB优化工具箱MATLAB优化工具箱是MATLAB软件的一个重要组件,它集成了多种优化算法和工具,为用户提供了高效且灵活的求解优化问题的能力。
优化工具箱包括了线性规划、非线性规划、整数规划、二次规划等多种优化算法。
1. 线性规划线性规划是一类特殊的优化问题,其目标函数和约束条件都是线性的。
MATLAB提供了函数linprog来求解线性规划问题。
通过指定目标函数的系数、约束条件的矩阵和边界,linprog可以找到满足约束条件下使目标函数最小或最大化的解。
2. 非线性规划非线性规划是指目标函数和/或约束条件中至少存在一个非线性函数的优化问题。
MATLAB提供了函数fmincon用于求解非线性规划问题。
fmincon可以接受不等式和等式约束条件,并且可以指定变量的边界。
通过调用fmincon,用户可以有效地求解各种非线性规划问题。
3. 整数规划整数规划是一类在决策变量上加上整数约束的优化问题。
MATLAB提供了两种用于求解整数规划的函数,分别是intlinprog和bintprog。
这两个函数使用了不同的求解算法,可以根据问题的特点来选择合适的函数进行求解。
4. 二次规划二次规划是目标函数和约束条件都是二次的优化问题。
MATLAB提供了函数quadprog来求解二次规划问题。
用户需要指定目标函数的二次项系数、线性项系数和约束条件的矩阵。
通过调用quadprog,用户可以高效地求解各类二次规划问题。
二、MATLAB优化算法除了优化工具箱提供的算法,MATLAB还提供了一些其他的优化算法,用于求解特定类型的优化问题。
1. 递归算法递归算法是一种通过将问题拆分为较小的子问题并逐步解决的优化方法。
Matlab中的均匀设计与优化实验方法介绍
Matlab中的均匀设计与优化实验方法介绍引言在科学研究和工程实践中,实验设计和优化方法是不可或缺的工具。
Matlab作为一种强大的数值计算和可视化软件,是科学家和工程师常用的工具之一。
在Matlab中,有许多方法可以用于设计均匀实验和进行优化。
本文将介绍Matlab中的一些常见的均匀设计和优化实验方法。
一、均匀设计实验方法1.1 背景均匀设计实验是一种将样本分布在整个实验空间中的方法,以确保样本之间的差异性最小化。
在科学研究中,均匀设计实验常用于确定因素对响应变量的影响,并评估其主效应和交互作用。
在Matlab中,有几种方法可以实现均匀设计实验。
1.2 完全随机设计完全随机设计是最简单的均匀设计实验方法之一。
在Matlab中,可以使用rand函数生成随机数,然后将其映射到实验空间的范围。
例如,rand(100,2)将生成一个100行2列的随机矩阵,其中每个元素均匀地分布在0到1之间。
为了将这些随机数映射到实验空间的范围,可以使用线性变换。
1.3 拉丁超立方设计拉丁超立方设计是一种常用的均匀设计实验方法。
在Matlab中,可以使用lhsdesign函数生成拉丁超立方设计。
该函数的输入参数包括实验空间的维数和样本点的个数。
例如,X = lhsdesign(10,2)将生成一个10行2列的拉丁超立方设计矩阵,其中每个元素均匀地分布在0到1之间。
二、优化实验方法2.1 背景优化实验是一种通过系统地变化实验条件来最大化或最小化某个目标函数的方法。
在Matlab中,有几种方法可以用于优化实验。
2.2 泛化回归神经网络泛化回归神经网络是一种基于人工神经网络的优化实验方法。
在Matlab中,可以使用fitnet函数创建一个泛化回归神经网络模型,并使用该模型进行优化实验。
该函数的输入参数包括输入数据和目标数据。
例如,net = fitnet(10)将创建一个包含10个隐藏层节点的泛化回归神经网络模型。
2.3 粒子群优化算法粒子群优化算法是一种基于群体智能的优化实验方法。
粒子群算法matlab代码(PDF)
粒子群算法(1)----粒子群算法简介一、粒子群算法的历史粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。
CAS理论于1994年正式提出,CAS中的成员称为主体。
比如研究鸟群系统,每个鸟在这个系统中就称为主体。
主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。
整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。
所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据):首先,主体是主动的、活动的。
主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。
环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。
最后,整个系统可能还要受一些随机因素的影响。
粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。
粒子群算法(Particle Swarm Optimization,PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。
设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。
在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。
Reynolds对鸟群飞行的研究发现。
粒子群算法解决VRP代码(matlab)
粒子群算法解决VRP代码(matlab)particle_swarm_optimization.m文件:function PSOforTSP%初始化Alpha=0.25; %个体经验保留概率Beta=0.25; %全局经验保留概率NC_max=100; %最大迭代次数m=80; %微粒数CityNum=14; %问题的规模(城市个数)[dislist,Clist]=tsp(CityNum);NC=1;%迭代计数器R_best=zeros(NC_max,CityNum); %各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度%产生微粒的初始位置for i=1:mx(i,:)=randperm(CityNum);L(i)=CalDist(dislist,x(i,:));endp=x; %p为个体最好解pL=L;[L_best(1,1) n_best]=min(L);R_best(1,:)=x(n_best,:);L_ave(1,1)=mean(L);%初始交换序v=ones(CityNum-1,2,m)*(round(rand*(CityNum-1))+1);figure(1);while NC<=NC_max %停止条件之一:达到最大迭代次数for i=1:mxnew(i,:)=changeFun(x(i,:),v(:,:,i));A=changeNum(x(i,:),p(i,:));Arand=randFun(A,Alpha);xnew(i,:)=changeFun(xnew(i,:),Arand);B=changeNum(x(i,:),R_best(NC,:));Brand=randFun(B,Beta);xnew(i,:)=changeFun(xnew(i,:),Brand);v(:,:,i)=changeNum(x(i,:),xnew(i,:));L(i)=CalDist(dislist,xnew(i,:));if L(i)<pl(i)< p="">p(i,:)=xnew(i,:);pL(i)=L(i);endend[L_bestnew n_best]=min(L);R_bestnew=xnew(n_best,:);L_ave(NC+1,1)=mean(L);if L_bestnew<l_best(nc,1)< p="">L_best(NC+1,1)=L_bestnew;R_best(NC+1,:)=R_bestnew;elseL_best(NC+1,1)=L_best(NC,1);R_best(NC+1,:)=R_best(NC,:);endx=xnew;drawTSP10(Clist,R_best(NC,:),L_best(NC,1),NC,0); %pause;NC=NC+1;end%输出结果Pos=find(L_best==min(L_best));Shortest_Route=R_best(Pos(1),:);Shortest_Length=L_best(Pos(1)); figure(2);plot([L_best L_ave]);legend('最短距离','平均距离'); endfunction xnew=changeFun(x,C); changeLen=size(C,1);xnew=x;for i=1:changeLena=xnew(C(i,1));xnew(C(i,1))=xnew(C(i,2));xnew(C(i,2))=a;endendfunction C=changeNum(x,y); CityNum=size(x,2);C=ones(CityNum-1,2);for i=1:CityNum-1pos=find(x==y(i));C(i,:)=[i pos];x=changeFun(x,C(i,:));endendfunction v=randFun(v,w);randLen=size(v,1);for i=1:randLenif rand>wv(i,2)=v(i,1);endendendfunction F=CalDist(dislist,s)%计算回路路径距离DistanV=0;n=size(s,2);for i=1:(n-1)DistanV=DistanV+dislist(s(i),s(i+1));endDistanV=DistanV+dislist(s(n),s(1));F=DistanV;endfunction [DLn,cityn]=tsp(n)city14=[0 0;0.3 0.334;0.08 0.433;0.166 0.456;0.5 0.4439;0.2439 0.1463;0.1207 0.2293;0.2293 0.761;0.6171 0.9414;0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];for i=1:14for j=1:14DL14(i,j)=((city14(i,1)-city14(j,1))^2+(city14(i,2)-city14(j,2))^2)^0.5;endendDLn=DL14;cityn=city14;enddrawTSP10.m文件:function m=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);for i=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(BSF(i +1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');hold on;endaxis([0,1,0,1]);plot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNu m),2),Clist(BSF(1), 2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');title([num2str(CityNum),'城市TSP']);if f==0text(0.1,0.1,['第',int2str(p),' 步',' 最短距离为',num2str(bsf)]);elsetext(0.1,0.1,['最终搜索结果:最短距离',num2str(bsf)]);endhold off;pause(0.05);</l_best(nc,1)<></pl(i)<>。
pso算法 matlab程序
pso算法 matlab程序PSO算法,即粒子群优化算法(Particle Swarm Optimization),是一种启发式优化算法,常用于解决搜索和优化问题。
在Matlab中实现PSO算法可以通过以下步骤:步骤1,初始化粒子群。
首先,需要初始化一群粒子,每个粒子都代表了搜索空间中的一个候选解。
每个粒子都有自己的位置和速度。
可以使用随机数函数在搜索空间内随机生成粒子的初始位置和速度。
步骤2,计算适应度。
接下来,需要计算每个粒子的适应度,适应度函数根据具体问题而定。
适应度函数可以是需要最小化或最大化的目标函数。
步骤3,更新粒子的速度和位置。
根据PSO算法的原理,需要根据当前位置和速度以及个体最优位置和全局最优位置来更新粒子的速度和位置。
这个过程可以通过一些数学公式来实现,通常包括学习因子、惯性权重等参数。
步骤4,更新个体和全局最优位置。
在更新粒子的过程中,需要不断更新个体最优位置和全局最优位置。
如果某个粒子找到了比之前更好的位置,就需要更新个体最优位置;如果整个粒子群中出现了更好的位置,就需要更新全局最优位置。
步骤5,重复迭代。
以上步骤需要进行多次迭代,直到满足停止迭代的条件。
通常可以设置迭代次数或者适应度达到某个阈值时停止迭代。
在Matlab中,可以使用循环结构来实现迭代过程,同时根据上述步骤编写相应的代码来实现PSO算法。
常用的Matlab函数和工具包如“fmincon”、“Global Optimization Toolbox”等也可以用来实现PSO算法。
总结来说,实现PSO算法的关键在于理解其基本原理,正确地编写粒子的更新规则和适应度函数,并进行合适的迭代和终止条件设置。
希望这些信息能帮助你在Matlab中实现PSO算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Particle swarm is a population-based algorithm. In this respect it is similar to the genetic algorithm. A collection of individuals called particles move in steps throughout a region. At each step, the algorithm evaluates the objective function at each particle. After this evaluation, the algorithm decides on the new velocity of each particle. The particles move, then the algorithm reevaluates. The inspiration for the algorithm is flocks of birds or insects swarming. Each particle is attracted to some degree to the best location it has found so far, and also to the best location any member of the swarm has found. After some steps, the population can coalesce around one location, or can coalesce around a few locations, or can continue to move. The particleswarm function attempts to optimize using a Particle Swarm Optimization Algorithm.
This update uses a weighted sum of: • • • The previous velocity v The difference between the current position and the best position the particle has seen p-x The difference between the current position and the best position in the current neighborhood g-x
Algorithm Outline
particleswarm is based on the algorithm described in Kennedy and Eberhart [1], using modifications suggested in Mezura-Montes and Coello Coello [2] and in Pedersen [3]. The particle swarm algorithm begins by creating the initial particles, and assigning them initial velocities. It evaluates the objective function at each particle location, and determines the best (lowest) function value and the best location. It chooses new velocities, based on the current velocity, the particles’ individual best locations, and the best locations of their neighbors. It then iteratively updates the particle locations (the new location is the old one plus the velocity, modified to keep particles within bounds), velocities, and neighbors. Iterations proceed until the algorithm reaches a stopping criterion. Here are the details• Optimize Using Particle Swarm
More About
• Particle Swarm Optimization Algorithm
Particle Swarm Optimization Algorithm
• • • • Algorithm Outline Initialization Iteration Steps Stopping Criteria
Iteration Steps
The algorithm updates the swarm as follows. For particle i, which is at position x(i): 1. Choose a random subset S of N particles other than i. 2. Find fbest(S), the best objective function among the neighbors, and g(S), the position of the neighbor with the best objective function. 3. For u1 and u2 uniformly (0,1) distributed random vectors of length nvars, update the velocity v = W*v + y1*u1.*(p-x) + y2*u2.*(g-x).
4. Update the position x = x + v. 5. Enforce the bounds. If any component of x is outside a bound, set it equal to that bound. 6. Evaluate the objective function f = fun(x). 7. If f < fun(p), then set p = x. This step ensures p has the best position the particle has seen. 8. If f < b, then set b = f and d = x. This step ensures b has the best objective function in the swarm, and d has the best location. 9. If, in the previous step, the best function value was lowered, then set flag = true. Otherwise, flag = false. The value of flag is used in the next step. 10. Update the neighborhood. If flag = true: a. Set c = max(0,c-1). b. Set N to minNeighborhoodSize. c. If c < 2, then set W = 2*W. d. If c > 5, then set W = W/2. e. Ensure that W is in the bounds of the InertiaRange option. If flag = false: a. Set c = c+1. b. Set N = min(N + minNeighborhoodSize,SwarmSize).
Initialization
By default, particleswarm creates particles at random uniformly within bounds. If there is an unbounded component, particleswarm creates particles with a random uniform distribution from –1000 to 1000. If you have only one bound, particleswarm shifts the creation to have the bound as an endpoint, and a creation interval 2000 wide. Particle i has position x(i), which is a row vector with nvars elements. Control the span of the initial swarm using the InitialSwarmSpan option. Similarly, particleswarm creates initial particle velocities v at random uniformly within the range [-r,r], where r is the vector of initial ranges. The range of component i is min(ub(i) - lb(i),InitialSwarmSpan(i)). particleswarm evaluates the objective function at all particles. It records the current position p(i) of each particle i. In subsequent iterations, p(i) will be the location of the best objective function that particle i has found. And b is the best over all particles: b = min(fun(p(i))). d is the location such that b = fun(d). particleswarm initializes the neighborhood size N to minNeighborhoodSize = max(1,floor(SwarmSize*MinNeighborsFraction)). particleswarm initializes the inertia W = max(InertiaRange), or if InertiaRange is negative, it sets W = min(InertiaRange). particleswarm initializes the stall counter c = 0. For convenience of notation, set the variable y1 = SelfAdjustmentWeight, and y2 = SocialAdjustmentWeight, where SelfAdjustmentWeight and SocialAdjustmentWeight are options.