数学讲义:第一部分 专题二 基本初等函数、函数与方程

合集下载

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第8节函数与方程课件新人教A版

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第8节函数与方程课件新人教A版

D.[1,2)
解析 依题意直线y=a与y=f(x)的图象有两个交点. 作出y=a,y=f(x)的图象,如图所示. 又当 x≤1 时,f(x)=12|x|∈(0,1]; 当x>1时,f(x)=-x2+4x-2=-(x-2)2+2, ∴当x=2时,f(x)有最大值f(2)=2. 结合图象,当 a∈0,12∪[1,2)时,两图象有 2 个交点. 此时,方程a=f(x)有两个不同实根. 答案 B
【训练3】 (1)(角度1)(202X·全国Ⅲ卷)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零
点,则a=( )
A.-12
1 B.3
1
C.2
D.1
(2)(角度2)若函数y=x+log2(a-2x)+2在R上有零点,则实数a的最小值为________.
解析 (1)f(x)=(x-1)2-1+a(ex-1+e1-x),则f(2-x)=(2-x-1)2-1+a[e2-x-1+ e1-(2-x)]=(1-x)2-1+a(ex-1+e1-x)=f(x),即f(x)的图象关于直线x=1对称. 若 f(x)有唯一的零点,则只有 f(1)=0,∴a=12. 或:作出y=a(ex-1+e-x+1)与y=-x2+2x的图象.
x0 所在的区间是________.
解析 (1)由函数 f(x)=x-1 a为奇函数,可得 a=0, 则 g(x)=ln x-2f(x)=ln x-2x. 又 g(2)=ln 2-1<0,g(3)=ln 3-23>0,
所以g(2)·g(3)<0. 故函数g(x)的零点所在区间为(2,3).
(2)设 f(x)=x3-12x-2,则 x0 是函数 f(x)的零点,在同一坐 标系下画出函数 y=x3 与 y=12x-2的图象如图所示. 因为 f(1)=1-12-1=-1<0,f(2)=8-120=7>0, 所以f(1)·f(2)<0,所以x0∈(1,2). 答案 (1)C (2)(1,2)

函数与基本初等函数教学课件

函数与基本初等函数教学课件

点的横坐标分别是x1,x2,x3,则x1,x2,
x3的大小关系是( )
• A.x2<x3<x1
B.x1<x3<x2
• C.x1<x2<x3
D.x3<x2<x1
• 【答案】 B
• 【答案】 C
题型四 综合应用
• 【答案】 (1)单调递增区间是(-∞,1),单 调递减区间是(3,+∞)
• (2)a值不存在
• 答案 B
• 2.(2013·陕西文)设a,b,c均为不等于1的 正实数,则下列等式中恒成立的是( )
• A.logab·logcb=logca • B.logab·logca=logcb • C.loga(bc)=logab·logac • D.loga(b+c)=logab+logac • 答案 B
• (3)(log32+log92)·(log43+log83).
题型二 利用对数函数的性质比较大小
• (3)由指数函数的性质: • ∵0<0.9<1,而5.1>0,∴0<0.95.1<1,即0<m<1 • 又∵5.1>1,而0.9>0,∴5.10.9>1,即n>1. • 由对数函数的性质: • ∵0<0.9<1,而5.1>1,∴log0.95.1<0. • 即p<0.综上,p<m<n.
• 探究4 利用对数函数的性质,求与对数函 数有关的复合函数的值域和单调性问题时, 必须弄清三方面的问题:一是定义域,所有 问题都必须在定义域内讨论;二是底数与1 的大小关系;三是复合函数的构成,即它是 由哪些基本初等函数复合而成的.

思考题4 若函数f(x)=loga(ax-3)在[1,3

高中数学专题讲义:函数概念与基本初等函数1

高中数学专题讲义:函数概念与基本初等函数1

⾼中数学专题讲义:函数概念与基本初等函数1⾼中数学专题讲义:函数概念与基本初等函数1第1讲函数及其表⽰最新考纲 1.了解构成函数的要素,会求⼀些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的⽅法(如图象法、列表法、解析法)表⽰函数;3.了解简单的分段函数,并能简单地应⽤(函数分段不超过三段).知识梳理1.函数与映射的概念函数映射两个集合A,B 设A,B是两个⾮空数集设A,B是两个⾮空集合对应关系f:A→B如果按照某种确定的对应关系f,使对于集合A中的任意⼀个数x,在集合B中都有唯⼀确定的数f(x)和它对应如果按某⼀个确定的对应关系f,使对于集合A中的任意⼀个元素x,在集合B中都有唯⼀确定的元素y与之对应名称称f:A→B为从集合A到集合B的⼀个函数称f:A→B为从集合A到集合B的⼀个映射记法函数y=f(x),x∈A 映射:f:A→B2.(1)在函数y=f(x),x∈A中,x叫做⾃变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全⼀致,则这两个函数为相等函数.3.函数的表⽰法表⽰函数的常⽤⽅法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同⼦集上,因对应关系不同⽽分别⽤⼏个不同的式⼦来表⽰,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由⼏个部分组成,但它表⽰的是⼀个函数.诊断⾃测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展⽰(1)函数y =1与y =x 0是同⼀个函数.( )(2)与x 轴垂直的直线和⼀个函数的图象⾄多有⼀个交点.( ) (3)函数y =x 2+1-1的值域是{y |y ≥1}.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( )解析 (1)函数y =1的定义域为R ,⽽y =x 0的定义域为{x |x ≠0},其定义域不同,故不是同⼀函数.(3)由于x 2+1≥1,故y =x 2+1-1≥0,故函数y =x 2+1-1的值域是{y |y ≥0}. (4)若两个函数的定义域、对应法则均对应相同时,才是相等函数. 答案 (1)× (2)√ (3)× (4)×2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析 A 中函数定义域不是[-2,2],C 中图象不表⽰函数,D 中函数值域不是[0,2]. 答案 B3.(2017·青岛⼀模)函数y =1-x 22x 2-3x -2的定义域为( )A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.-1,-12∪? ????-12,1解析由题意,得1-x 2≥0,2x 2-3x -2≠0.解之得-1≤x ≤1且x ≠-12. 答案 D4.(2015·陕西卷)设f (x )=?1-x ,x ≥0,2x ,x <0,则f (f (-2))等于( )A.-1B.14C.12D.32解析因为-2<0,所以f (-2)=2-2=14>0,所以f (f (-2))=f ? ????14=1-14=1-12=12,故选C.答案 C5.(2015·全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 答案-2考点⼀求函数的定义域【例1】 (1)(2017·郑州调研)函数f (x )=ln xx -1+x 12的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)(2)若函数y =f (x )的定义域是[1,2 017],则函数g (x )=f (x +1)x -1的定义域是____________.解析 (1)要使函数f (x )有意义,应满⾜x x -1>0,x ≥0,解得x >1,故函数f (x )=ln xx -1+x 12的定义域为(1,+∞).(2)∵y =f (x )的定义域为[1,2 017], ∴g (x )有意义,应满⾜1≤x +1≤2 017,x -1≠0.∴0≤x ≤2 016,且x ≠1.因此g (x )的定义域为{x |0≤x ≤2 016,且x ≠1}. 答案 (1)B (2){x |0≤x ≤2 016,且x ≠1} 规律⽅法求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.【训练1】 (1)(2015·湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6](2)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析(1)要使函数f (x )有意义,应满⾜4-|x |≥0,x 2-5x +6x -3>0,∴|x |≤4,x -2>0且x ≠3,则2(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成⽴,则x 2+2ax -a ≥0恒成⽴.因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 答案 (1)C (2)[-1,0] 考点⼆求函数的解析式【例2】 (1)已知f ? ??2x +1=lg x ,则f (x )=________;(2)已知f (x )是⼆次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f1x ·x -1,则f (x )=________.解析 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1, 则2ax +a +b =x -1,∴2a =1,a +b =-1,即a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ? ??1x ·x -1中,将x 换成1x ,则1x 换成x , 得f ? ??1x =2f (x )·1x -1,由f (x )=2f ? ????1x ·x -1,f ? ????1x =2f (x )·1x -1,解得f (x )=23x +13.答案 (1)lg 2x -1(x >1) (2)12x 2-32x +2 (3)23x +13规律⽅法求函数解析式的常⽤⽅法(1)待定系数法:若已知函数的类型,可⽤待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可⽤换元法,此时要注意新元的取值范围. (3)构造法:已知关于f (x )与f ? ???? 1x 或f (-x )的表达式,可根据已知条件再构造出另外⼀个等式,通过解⽅程组求出f (x ).(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.【训练2】 (1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满⾜f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满⾜2f (x )-f (-x )=lg(x +1),则f (x )=__________. 解析 (1)令x +1=t ,则x =(t -1)2(t ≥1),代⼊原式得 f (t )=(t -1)2+2(t -1)=t 2-1, 所以f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1). (3)当x ∈(-1,1)时, 有2f (x )-f (-x )=lg(x +1).①将x 换成-x ,则-x 换成x , 得2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1). 答案 (1)x 2-1(x ≥1) (2)-12x (x +1) (3)23lg(x +1)+13lg(1-x )(-1【例3-1】 (2015·全国Ⅱ卷)设函数f (x )=1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12解析根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.⼜log 212>1 ∴f (log 212)=2(log 212-1)=2log 26=6, 因此f (-2)+f (log 212)=3+6=9. 答案 C命题⾓度⼆求参数的值或取值范围【例3-2】 (1)(2015·⼭东卷)设函数f (x )=3x -b ,x <1,2x ,x ≥1.若f ? ????f ? ????56=4,则b =( )A.1B.78C.34D.12(2)(2014·全国Ⅰ卷)设函数f (x )=e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成⽴的x 的取值范围是________.解析 (1)f ? ????56=3×56-b =52-b ,若52-b <1,即b >32时,则f f ? ????56=f ? ????52-b =3? ????52-b -b =4,解之得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b =4,解得b =12. (2)当x <1时,e x -1≤2,解得x ≤1+ln 2,所以x <1.当x ≥1时,x 13≤2,解得x ≤8,所以1≤x ≤8. 综上可知x 的取值范围是(-∞,8]. 答案 (1)D (2)(-∞,8]规律⽅法 (1)根据分段函数解析式求函数值.⾸先确定⾃变量的值属于哪个区间,其次选定相应的解析式代⼊求解.(2)已知函数值或函数的取值范围求⾃变量的值或范围时,应根据每⼀段的解析式分别求解,但要注意检验所求⾃变量的值或范围是否符合相应段的⾃变量的取值范围. 提醒当分段函数的⾃变量范围不确定时,应分类讨论.【训练3】 (1)(2015·全国Ⅰ卷)已知函数f (x )=2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A.-74 B.-54 C.-34D.-14(2)(2017南京、盐城模拟)已知函数f (x )=x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是________.解析 (1)当a ≤1时,f (a )=2a -1-2=-3, 即2a -1=-1,不成⽴,舍去;当a >1时,f (a )=-log 2(a +1)=-3, 即log 2(a +1)=3,解得a =7,此时f (6-a )=f (-1)=2-2-2=-74.故选A.(2)当x ≤0时,由题意得x2+1≥-1, 解之得-4≤x ≤0.当x >0时, 由题意得-(x -1)2≥-1, 解之得0综上f (x )≥-1的解集为{x |-4≤x ≤2}. 答案 (1)A (2){x |-4≤x ≤2}[思想⽅法]1.在判断两个函数是否为同⼀函数时,要紧扣两点:⼀是定义域是否相同;⼆是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们⼀定要树⽴函数定义域优先意识.3.函数解析式的⼏种常⽤求法:待定系数法、换元法、配凑法、构造解⽅程组法.4.分段函数问题要⽤分类讨论思想分段求解.[易错防范]1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不⼀定是函数,从A到B的⼀个映射,A,B若不是数集,则这个映射便不是函数.3.分段函数⽆论分成⼏段,都是⼀个函数,求分段函数的函数值,如果⾃变量的范围不确定,要分类讨论.基础巩固题组(建议⽤时:30分钟)⼀、选择题1.(2017·唐⼭质检)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)解析使函数f(x)有意义需满⾜x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).答案 D2.(2017·衡⽔中学⽉考)设f,g都是由A到A的映射,其对应法则如下:映射f的对应法则x 123 4f(x)342 1则f [g (1)]的值为( ) A.1B.2C.3D.4解析由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 A3.已知f (x )是⼀次函数,且f [f (x )]=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -1解析设f (x )=kx +b (k ≠0),⼜f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 A4.(2017·湖南衡阳⼋中⼀模)f (x )=???? ????13x (x ≤0),log 3x (x >0),则ff ? ????19=()A.-2B.-3C.9D.-9解析∵f ? ????19=log 319=-2,∴f f ? ????19=f (-2)=? ????13-2=9.答案 C5.某学校要召开学⽣代表⼤会,规定各班每10⼈推选⼀名代表,当各班⼈数除以10的余数⼤于6时再增选⼀名代表.那么,各班可推选代表⼈数y 与该班⼈数x 之间的函数关系⽤取整函数y =[x ]([x ]表⽰不⼤于x 的最⼤整数)可以表⽰为( ) A.y =x 10 B.y =??x +310 C.y =??x +410D.y =??x +510 解析取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B.答案 B6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A.y =x B.y =lg x C.y =2xD.y =1x解析函数y =10lg x 的定义域、值域均为(0,+∞),⽽y =x ,y =2x 的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ,故选D. 答案 D7.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R . 若f ? ????-52=f ? ????92,则f (5a )的值是( )A.12B.14C.-25D.18解析由题意f ? ????-52=f ? ????-12=-12+a , f ? ????92=f ? ????12=25-12=110, ∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25. 答案 C8.(2017·铜陵⼀模)设P (x 0,y 0)是函数f (x )图象上任意⼀点,且y 20≥x 20,则f (x )的解析式可以是( )A.f (x )=x -1xB.f (x )=e x -1C.f (x )=x +4xD.f (x )=tan x解析对于A 项,当x =1,f (1)=0,此时02≥12不成⽴.对于B 项,取x =-1,f (-1)=1e -1,此时? ????1e -12≥(-1)2不成⽴.在D 项中,f ? ????54π=tan 54π=1,此时12≥? ????54π2不成⽴.∴A ,B ,D 均不正确.选C.事实上,在C 项中,对?x 0∈R ,y 20=?x 0+4x 02有y 20-x 20=16x 20+8>0,有y 20≥x 20成⽴. 答案 C ⼆、填空题9.(2016·江苏卷)函数y =3-2x -x 2的定义域是________. 解析要使函数有意义,则3-2x -x 2≥0, ∴x 2+2x -3≤0,解之得-3≤x ≤1. 答案 [-3,1]10.已知函数f (x )=2x 3,x <0,-tan x ,0≤x <π2,则f ?f ? ????π4=________. 解析∵f ? ????π4=-tan π4=-1.∴ff ? ????π4=f (-1)=2×(-1)3=-2.答案-211.已知函数f (x )满⾜f ? ????2x +|x |=log 2x |x |,则f (x )的解析式是________.解析根据题意知x >0,所以f ? ????1x =log 2x ,则f (x )=log 21x =-log 2x .答案 f (x )=-log 2 x12.设函数f (x )=2x ,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.解析由题意知,若x ≤0,则2x=12,解得x =-1;若x >0,则|log 2x |=12,解得x =212或x =2-12,故x的集合为-1,2,22.答案-1,2,22能⼒提升题组 (建议⽤时:15分钟)13.(2015·湖北卷)设x ∈R ,定义符号函数sgn x =1,x >0,0,x =0,-1,x <0.则()A.|x |=x |sgn x |B.|x |=x sgn|x |C.|x |=|x |sgn xD.|x |=x sgn x解析当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ;当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ;当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 D14.设函数f (x )=3x -1,x <1,2x ,x ≥1,则满⾜f (f (a ))=2f (a )的a 的取值范围是( )A.23,1B.[0,1]C.23,+∞D.[1,+∞)解析由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1. 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23. 答案 C15.函数f (x )=ln ? ?1+1x +1-x 2的定义域为________.解析要使函数f (x )有意义,则1+1x >0,x ≠0,1-x 2≥0x <-1或x >0,x ≠0,-1≤x ≤1答案 (0,1]16.(2015·浙江卷)已知函数f(x)=x+2x-3,x≥1,lg(x2+1),x<1,则f(f(-3))=________,f(x)的最⼩值是________.解析∵f(-3)=lg[(-3)2+1]=lg 10=1,∴f(f(-3))=f(1)=0,当x≥1时,f(x)=x+2x-3≥22-3,当且仅当x=2时,取等号,此时f(x)min=22-3<0;当x<1时,f(x)=lg(x2+1)≥lg 1=0,当且仅当x=0时,取等号,此时f(x)min=0.∴f(x)的最⼩值为22-3.答案022-3第2讲函数的单调性与最值最新考纲 1.理解函数的单调性、最⼤(⼩)值及其⼏何意义;2.会运⽤基本初等函数的图象分析函数的性质.知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义⼀般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个⾃变量的值x1,x2当x1数f(x)在区间D上是增函数当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述⾃左向右看图象是上升的⾃左向右看图象是下降的(2)如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这⼀区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满⾜条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最⼤值M为最⼩值1.判断正误(在括号内打“√”或“×”)精彩PPT展⽰(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在区间D 上是增函数.()(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).()(3)对于函数y=f(x),若f(1)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).()解析(2)此单调区间不能⽤并集符号连接,取x1=-1,x2=1,则f(-1)<f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)<f(x2)成⽴才可以.(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间可以是R.答案(1)√(2)×(3)×(4)×2.(2017·合肥调研)下列函数中,在区间(0,+∞)内单调递减的是()A.y=1x-x B.y=x2-xC.y=ln x-xD.y=e x-x解析对于A,y1=1x在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=1x-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y′=e x-1,⽽当x∈(0,+∞)时,y′>0,所以函数y=e x-x在(0,+∞)上是增函数.答案 A3.如果⼆次函数f(x)=3x2+2(a-1)x+b在区间(-∞,1)上是减函数,那么()A.a=-2B.a=2C.a≤-2D.a≥2解析⼆次函数的对称轴⽅程为x=-a-1 3,由题意知-a-13≥1,即a≤-2.答案 C4.函数f(x)=lg x2的单调递减区间是________.解析f(x)的定义域为(-∞,0)∪(0,+∞),y=lg u在(0,+∞)上为增函数,u=x2在(-∞,0)上递减,在(0,+∞)上递增,故f(x)在(-∞,0)上单调递减.答案(-∞,0)5.(2016·北京卷)函数f(x)=xx-1(x≥2)的最⼤值为________.解析易得f(x)=xx-1=1+1x-1,当x≥2时,x-1>0,易知f(x)在[2,+∞)是减函数,∴f(x)max=f(2)=1+12-1=2.答案 2考点⼀确定函数的单调性(区间)【例1】(1)函数f(x)=log12(x2-4)的单调递增区间为() A.(0,+∞) B.(-∞,0) C.(2,+∞) D.(-∞,-2)(2)试讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.(1)解析由x2-4>0,得x>2或x<-2.∴f(x)的定义域为(-∞,-2)∪(2,+∞).令t=x2-4,则y=log12t(t>0).∵t=x2-4在(-∞,-2)上是减函数,且y=log12t在(0,+∞)上是减函数,∴函数f(x)在(-∞,-2)上是增函数,即f(x)单调递增区间为(-∞,-2).答案 D(2)解法⼀设-1x -1+1x -1=a ? ?1+1x -1, f (x 1)-f (x 2)=a ? ?1+1x 1-1-a ? ????1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减;当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.规律⽅法 (1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1). (2)函数单调性的判断⽅法有:①定义法;②图象法;③利⽤已知函数的单调性;④导数法. (3)函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.【训练1】判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性,并给出证明. 解 f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数. 证明如下:法⼀设x 1,x 2是任意两个正数,且0x 1+a x 1-? ????x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x="" 2≤a="" 时,0<x="" 1x="" 2<a="" ,⼜x="" 1-x="" 2<0,="" 所以f="" (x="" 1)-f="" 2)="" bdsfid="559">0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数. a ≤x 1a ,⼜x 1-x 2<0,。

高考数学二轮课件:专题2函数的概念与基本初等函数I

高考数学二轮课件:专题2函数的概念与基本初等函数I

函数f(2x)的定义域为[0,1].所以函数g(x)有意义的条件是
0≤x≤1,
x-1≠0,
解得0≤x<1.故函数g(x)的定义域是[0,1).
【答案】[0,1)
考点一 函数的概念 方法2 求函数的解析式
求函数解析式的常见方法:
(1)待定系数法.若已知函数的类型(如一次函数、二次函数等),可直接设出 函数解析式.例如,二次函数可设为f(x)=ax2+bx+c(a≠0),其中a,b,c 是待定系数,根据题设条件列出方程组,解出a,b,c即可. (2)换元法.已知f(h(x))=g(x),求f(x)时,可设h(x)=t,从中解出x(用t 表示x),代入g(x)中进行换元得到f(t),最后将t换成x即可.
考点一 函数的概念例5 Nhomakorabea[陕西西安高新一中2019届月考]已知函数f(x) =
2x-1,x≤1,
则f f37=________.
考点一 函数的概念
方法4 分段函数的应用
(3)判断分段函数满足的性质 已知分段函数的解析式,可以画出函数的图像,从而判断出函数的 值域、单调性、奇偶性、周期性等;也可以根据函数有关性质的判定方 法,一步步进行判断,此时要注意定义域中不同段上的解析式是不同的, 代入时不要出错. 判断函数解析式满足的条件的题目一般为选择题,可以根据选项逐 一代入、变形化简,从而判断对应选项是否正确,也可以考虑利用赋值 的方法解决问题.
求函数的值域时,应根据解析式的结构特点,选择适当的方法,常
见的方法: (1)配方法.将形如y=ax2+bx+c(a≠0)的函数配方,转化为顶点
式,利用二次函数值域的求法求解.
(2)单调性法.先判断函数的单调性,利用单调性确定函数的最值, 进而求得值域.若f(x)在[a,b]上单调递增,则x∈[a,b]时,

高中数学专题02函数的概念与基本初等函数 (2)

高中数学专题02函数的概念与基本初等函数 (2)

专题02函数的概念与基本初等函数1.【2019年天津文科05】已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log27>log24=2,b=log38<log39=2,c=0.30.2<1,∴c<b<a.故选:A.2.【2019年天津文科08】已知函数f(x)若关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,] B.(,] C.(,]∪{1} D.[,]∪{1}【解答】解:作出函数f(x)的图象,以及直线y x的图象,关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,即为y=f(x)和y x+a的图象有两个交点,平移直线y x,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a或a,考虑直线与y在x>1相切,可得ax x2=1,由△=a2﹣1=0,解得a=1(﹣1舍去),综上可得a的范围是[,]∪{1}.故选:D.3.【2019年新课标3文科12】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年新课标2文科06】设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1 B.e﹣x+1 C.﹣e﹣x﹣1 D.﹣e﹣x+1【解答】解:设x<0,则﹣x>0,∴f(﹣x)=e﹣x﹣1,∵设f(x)为奇函数,∴﹣f(x)=e﹣x﹣1,即f(x)=﹣e﹣x+1.故选:D.5.【2019年新课标1文科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y【解答】解:在(0,+∞)上单调递增,和在(0,+∞)上都是减函数.故选:A.7.【2018年新课标2文科12】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.8.【2018年新课标1文科12】设函数f(x),则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1] B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)【解答】解:函数f(x),的图象如图:满足f(x+1)<f(2x),可得:2x<0<x+1或2x<x+1≤0,解得x∈(﹣∞,0).故选:D.9.【2018年新课标3文科07】下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)【解答】解:首先根据函数y=lnx的图象,则:函数y=lnx的图象与y=ln(﹣x)的图象关于y轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).即所求得解析式为:y=ln(2﹣x).故选:B.10.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.11.【2018年天津文科05】已知a,b,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:∵a,b,c,且5,∴,则b,∴c>a>b.故选:D.12.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.13.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.14.【2017年天津文科06】已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f (20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【解答】解:奇函数f(x)在R上是增函数,∴a=﹣f()=f(log25),b=f(log24.1),c=f(20.8),又1<20.8<2<log24.1<log25,∴f(20.8)<f(log24.1)<f(log25),即c<b<a.故选:C.15.【2017年天津文科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[﹣2,2] B.C.D.【解答】解:根据题意,函数f(x)的图象如图:令g(x)=|a|,其图象与x轴相交与点(﹣2a,0),在区间(﹣∞,﹣2a)上为减函数,在(﹣2a,+∞)为增函数,若不等式f(x)≥|a|在R上恒成立,则函数f(x)的图象在g(x)上的上方或相交,则必有f(0)≥g(0),即2≥|a|,解可得﹣2≤a≤2,故选:A.16.【2018年新课标1文科13】已知函数f(x)=log2(x2+a),若f(3)=1,则a=.【解答】解:函数f(x)=log2(x2+a),若f(3)=1,可得:log2(9+a)=1,可得a=﹣7.故答案为:﹣7.17.【2018年新课标3文科16】已知函数f(x)=ln(x)+1,f(a)=4,则f(﹣a)=.【解答】解:函数g(x)=ln(x)满足g(﹣x)=ln(x)ln(x)=﹣g(x),所以g(x)是奇函数.函数f(x)=ln(x)+1,f(a)=4,可得f(a)=4=ln(a)+1,可得ln(a)=3,则f(﹣a)=﹣ln(a)+1=﹣3+1=﹣2.故答案为:﹣2.18.【2018年天津文科14】已知a∈R,函数f(x).若对任意x∈[﹣3,+∞),f (x)≤|x|恒成立,则a的取值范围是.【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,在射线y=x的下方或在y=x上,由﹣x2+2x﹣2a≤x,即x2﹣x+2a≥0,由判别式△=1﹣8a≤0,得a,综上a≤2,故答案为:[,2].19.【2017年新课标2文科14】已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=.【解答】解:∵当x∈(﹣∞,0)时,f(x)=2x3+x2,∴f(﹣2)=﹣12,又∵函数f(x)是定义在R上的奇函数,∴f(2)=12,故答案为:1220.【2017年新课标3文科16】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).21.【2017年北京文科11】已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x,开口向上,所以函数的最小值为:f().最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].1.【山西省晋城市2019届高三第三次模拟考试】若函数的图象关于y轴对称,则实数a的值为()A.2 B.4 C.2±D.4±【答案】C【解析】f x为偶函数.由于为奇函数,故也为奇函数.而依题意,函数(),故,即,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式的解集为( )A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( ) A . B . C .D .【答案】C 【解析】∵f (x )为偶函数∴∵f (x )在[0,+∞)内单调递减,∴,即故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】且即a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】 因为故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】 由题意知:当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误;当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;,则()f x 不关于1x =对称,C 错误;,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足,当01x ≤≤时,2()f x x =,则( )A .2019B .0C .1D .-1【答案】B 【解析】 由得:()f x 的周期为4又()f x 为奇函数()11f ∴=,,,即:本题正确选项:B8.【天津市红桥区2019届高三一模】若方程有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .【答案】D 【解析】 解:y,画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4, ①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】在R 上递减,∴若充分性成立,若112m n-⎛⎫> ⎪⎝⎭,则,必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

专题02 函数的概念与基本初等函数I (解析版) (1)

专题02 函数的概念与基本初等函数I (解析版) (1)

专题02 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.20.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A.【名师点睛】本题考查比较大小问题,关键是选择中间量和利用函数的单调性进行比较. 3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确. 故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.5.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .2sin cos ++x xx xC .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )ay x =+(a >0,且a ≠1)的图象可能是 【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=所以.r R α== 故选D.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-, 如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.【名师点睛】本题考查了函数与方程,二次函数.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值. 11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b 1−a,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解. 12.【2019年高考江苏】函数y =的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________. 【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.14.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.15.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 16.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫=⎪⎝⎭,所以x 的最大值为15. 综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养. 17.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】1,34⎡⎪⎢⎪⎣⎭【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数()f x =的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则()(0,2]f x x =∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为11=,解得0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴134k ≤<, 综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为134⎡⎫⎪⎢⎪⎣⎭,. 【名师点睛】本题考查分段函数,函数的图象,函数的性质,函数与方程,点到直线的距离,直线的斜率等,考查知识点较多,难度较大.正确作出函数()f x ,()g x 的图象,数形结合求解是解题的关键因素.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23xf x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)【答案】B【解析】易知函数()23xf x x =+在定义域上单调递增且连续, 且2(2)260f --=-<,1(1)230f --=-<,f (0)=1>0,所以由零点存在性定理得,零点所在的区间是(-1,0). 故选B.【名师点睛】本题考查函数的单调性和零点存在性定理,属于基础题.19.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B 【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B.【名师点睛】本题考查函数的奇偶性和单调性,属于基础题. 20.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .15【答案】B【解析】∵函数()()2log 1,04,0x x x f x x ⎧-<=⎨≥⎩,∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B .【名师点睛】本题考查分段函数、函数值的求法,考查对数函数的运算性质,是基础题.21.【山东省济宁市2019届高三二模数学】已知f(x)是定义在R 上的周期为4的奇函数,当x ∈(0,2)时,f(x)=x 2+lnx ,则f(2019)= A .−1 B .0 C .1D .2【答案】A【解析】由题意可得:f(2019)=f(505×4−1)=f(−1)=−f(1)=−(12+ln1)=−1. 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.22.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为 A .(,1)-∞- B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数()()22log 34f x x x =--,则2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-, 故函数()f x 的定义域为4x >或1x <-,由2log y x =是单调递增函数,可知函数()f x 的单调减区间即234y x x =--的单调减区间, 当3(,)2x ∈-∞时,函数234y x x =--单调递减,结合()f x 的定义域,可得函数()()22log 34f x x x =--的单调减区间为(),1-∞-.故选A.【名师点睛】本题考查了复合函数的单调性,要注意的是必须在定义域的前提下,去找单调区间. 23.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+,∴211log 2144f m m ⎛⎫-=+=-+=- ⎪⎝⎭, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.24.【北京市房山区2019届高三第一次模拟测试数学】关于函数f(x)=x −sinx ,下列说法错误的是A .f (x )是奇函数B .f (x )在(−∞,+∞)上单调递增C .x =0是f (x )的唯一零点D .f (x )是周期函数【答案】D【解析】f (−x )=−x −sin (−x )=−x +sinx =−f (x ),则f (x )为奇函数,故A 正确; 由于f ′(x )=1−cosx ≥0,故f (x )在(−∞,+∞)上单调递增,故B 正确;根据f (x )在(−∞,+∞)上单调递增,f (0)=0,可得x =0是f (x )的唯一零点,故C 正确; 根据f (x )在(−∞,+∞)上单调递增,可知它一定不是周期函数,故D 错误. 故选D.【名师点睛】本题考查函数性质的综合应用,关键是能够利用定义判断奇偶性、利用导数判断单调性、利用单调性判断零点.25.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()441x x f x =-的图象大致是A .B .C .D .【答案】D【解析】因为函数()441x x f x =-,44()()()4141xx x x f x f x ----==≠--, 所以函数()f x 不是偶函数,图象不关于y 轴对称,故排除A 、B 选项; 又因为9256(3),(4),7255f f ==所以(3)(4)f f >, 而选项C 在0x >时是递增的,故排除C. 故选D.【名师点睛】本题考查了函数的图象和性质,利用函数的奇偶性和取特值判断函数的图象是解题的关键,属于基础题.26.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是 A .()e e x xxf x -=+B .()e e x xxf x -=-C .()e e x xf x x-+=D .()e e x xf x x--=【答案】C【解析】当x →0时,f (x )→±∞,而A 中的f (x )→0,排除A ; 当x <0时,f (x )<0,而选项B 中x <0时,()e ex xxf x -=->0, 选项D 中,()e e x xf x x--=>0,排除B ,D , 故选C .【名师点睛】本题考查了函数的单调性、函数值的符号,考查数形结合思想,利用函数值的取值范围可快速解决这类问题.27.【天津市北辰区2019届高考模拟考试数学】已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,则三个数a =f (−log 313),b =f (log 1218),c =f (20.6)的大小关系为A .a >b >cB .a >c >bC .b >a >cD .c >a >b【答案】C【解析】∵2=log 39<log 313<log 327=3,log 1218=log 28=3,0<20.6<21=2,∴0<20.6<log 313<log 1218,∵f (x )为偶函数,∴a =f (−log 313)=f (log 313), 又f (x )在[0,+∞)上单调递增,∴f (log 1218)>f (log 313)>f (20.6),即b >a >c .故选C.【名师点睛】本题考查利用函数的单调性比较大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.28.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是 A .[1,+∞) B .[−1,4) C .[−1,+∞) D .[−1,6]【答案】C【解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x−2(y x )2对于x ∈[1,2],y ∈[2,3]恒成立,令t =yx ,则1≤t ≤3,∴a ≥t −2t 2在[1,3]上恒成立,∵y =−2t 2+t =−2(t −14)2+18,∴t =1时,y max =−1,∴a ≥−1,故a 的取值范围是[−1,+∞). 故选C .【名师点晴】本题主要考查二次函数的性质以及不等式恒成立问题,不等式恒成立问题的常见解法:①分离参数,a ≥f (x )恒成立,即a ≥f (x )max ,或a ≤f (x )恒成立,即a ≤f (x )min ; ②数形结合,f (x )>g (x ),则y =f (x )的图象在y =g (x )图象的上方; ③讨论最值,f (x )min ≥0或f (x )max ≤0恒成立.29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x af x x x a⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是 A .(),0-∞ B .(),1-∞ C .()1,+∞D .()0,+∞【答案】D【解析】函数2,(),x x af x x x a⎧≥=⎨-<⎩的图象如图:若函数()f x 存在零点,则实数a 的取值范围是(0,+∞). 故选D .【名师点睛】本题考查分段函数,函数的零点,考查数形结合思想以及计算能力.30.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为 A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞【答案】A【解析】因为对121x x ∀<≤,满足()()01212<--x x x f x f ,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于直线1x =对称,所以函数()y f x =当1>x 时,是单调递增函数,又因为(3)1f =,所以有1)1(=-f , 当2log 1x ≤,即当02x <≤时,()()222log 1log (11lo 1g ,22)12f x f x x x f x <⇒<-⇒>-⇒>∴<≤;当2log 1x >,即当2x >时,()()222log 1log (3)log 38,28x x f x f x x f <<⇒⇒<∴<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫ ⎪⎝⎭. 故选A .【名师点睛】本题考查了抽象函数的单调性、对称性、分类讨论思想. 对于()y f x =来说,设定义域为I ,D I ⊆,1212,,x x D x x ∀∈≠, 若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅->>-,则()y f x =是D 上的增函数;若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅-<<-,则()y f x =是D 上的减函数.31.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是 A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,, 【答案】D【解析】因为(2)f x +是偶函数,所以()f x 的图象关于直线2x =对称, 因此,由(0)0f =得(4)0f =,又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增,所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<,解得23x >, 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 故选D.【名师点睛】本题考查函数的奇偶性和单调性,不等式的求解,先根据函数的奇偶性得到函数在定义域上的单调性,从而分类讨论求解不等式.32.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是 A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞【答案】C【解析】根据题意,()1y f x =-的图象关于直线1x =对称,则函数()f x 的图象关于y 轴对称,即函数()f x 为偶函数,又由函数()f x 在区间)[0+∞,上单调递增, 可得()()2log 2||f a f <,则2log |2|a <, 即22log 2a -<<,解得144a <<, 即a 的取值范围为1,44⎛⎫ ⎪⎝⎭. 故选C .【名师点睛】本题考查函数的单调性与奇偶性的应用,考查对数不等式的解法.33.【陕西省西安市2019届高三第三次质量检测数学】若定义在R 上的函数f (x )满足f(x +2)=f(x)且x ∈[−1,1]时,f (x )=|x |,则方程f (x )=log 3|x |的根的个数是A .4B .5C .6D .7【答案】A【解析】因为函数f (x )满足f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数. 又x ∈[−1,1]时,f (x )=|x|,所以函数f (x )的图象如图所示. 再作出y =log 3|x |的图象,如图, 易得两函数的图象有4个交点, 所以方程f(x)=log 3|x|有4个根. 故选A .【名师点睛】本题考查函数与方程,函数的零点、方程的根、函数图象与x 轴交点的横坐标之间是可以等价转化的.34.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭ C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤-⎥⎝⎦【答案】A【解析】因为()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩, 所以当0x ≥时,()12x f x +=单调递增,故()122x f x +=≥;当0x <时,()()21112x f x x x x x x ⎡⎤+⎛⎫⎛⎫=-=-+=-+-≥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当且仅当1x x-=-,即1x =-时,取等号, 综上可得,f(x)∈[2,+∞).又因为存在实数a ,使得g(b)+f(a)=2成立,所以只需g(b)≤2−f(a)min ,即g(b)=b 2−b −2≤0, 解得−1≤b ≤2. 故选A.【名师点睛】本题主要考查分段函数的值域,将存在实数a ,使得g(b)+f(a)=2成立,转化为g(b)≤2−f(a)min 是解题的关键,属于常考题型.35.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()f x =,则()f x 的定义域为____________. 【答案】1(,0)2-【解析】要使函数有意义,需12210log (21)0x x +>⎧⎪⎨+>⎪⎩,解得102x -<<. 则()f x 的定义域为1(,0)2-. 【名师点睛】本题考查函数的定义域,属于基础题.36.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数f(x)=x 2−(a −2)x +1(x ∈R)为偶函数,则log a 27+log 1a87=__________.【答案】-2【解析】函数f(x)为偶函数,则f(x)=f(−x), 即:x 2−(a −2)x +1=x 2+(a −2)x +1恒成立, ∴a −2=0,a =2.则log a 27+log 1a87= log 227+log 278=log 2(27×78)=log 214=−2.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.37.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________. 【答案】2【解析】由()(2)2f x f a x b +-=知“准奇函数”()f x 关于点),(b a 对称. 因为1)(-=x x x f =111x +-关于(1,1)对称,所以1a =,1b =, 则2a b +=.故答案为2.【名师点睛】本题考查新定义的理解和应用,考查了函数图象的对称性,属于基础题.38.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学】函数()211log 1ax f x x x +=+-为奇函数,则实数a =__________.【答案】1 【解析】函数()211log 1ax f x x x+=+-为奇函数,()()f x f x ∴-=-, 即()()0f x f x -+=, 则221111log log 011ax ax x x x x -+-+++=+-,即211log 011ax ax x x +-⎛⎫⋅= ⎪-+⎝⎭, 2221111111ax ax a x x x x+--∴⋅==-+-,则22211a x x -=-, 21a ∴=,则1a =±.当1a =-时,()211log 1x f x x x-=+-, 则()f x 的定义域为:{0x x ≠且}1x ≠,此时定义域不关于原点对称,为非奇非偶函数,不满足题意;当1a =时,()211log 1x f x x x+=+-,满足题意, 1a .【名师点睛】本题主要考查利用函数的奇偶性求解函数解析式,根据条件建立方程关系是解决本题的关键,易错点是忽略定义域关于原点对称的前提,造成求解错误.39.【东北三省三校(辽宁省实验中学、东北师大附中、哈师大附中)2019届高三第三次模拟考试数学】若函数f (x )={2x +1mx +m −1 ,x ≥0,x <0在(−∞,+∞)上单调递增,则m 的取值范围是__________. 【答案】(0,3]【解析】∵函数f (x )={2x +1mx +m −1 ,x ≥0,x <0在(−∞,+∞)上单调递增, ∴函数y =mx +m −1在区间(−∞,0)上为增函数,∴{m >0m −1≤20+1=2,解得0<m ≤3, ∴实数m 的取值范围是(0,3].故答案为(0,3].【名师点睛】解答此类问题时要注意两点:一是根据函数f (x )在(−∞,+∞)上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.40.【河南省濮阳市2019届高三5月模拟考试数学】已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31i i i x y =+=∑__________.【答案】3【解析】由题意,函数3y x x =-是奇函数,则函数3y x x =-的图象关于原点对称,所以函数31y x x =-+的函数图象关于点(0,1)对称,因为直线l 与曲线31y x x =-+有三个不同的交点()()()112233,,,,,A x y B x y C x y ,且||||AB AC =, 所以点A 为函数的对称点,即(0,1)A ,且,B C 两点关于点(0,1)A 对称,所以1231230,3x x x y y y ++=++=,于是()313i ii x y =+=∑. 【名师点睛】本题主要考查了函数对称性的判定及应用,其中解答中根据函数的基本性质,得到函数图象的对称中心,进而得到点A 为函数的对称点,且,B C 两点关于点(0,1)对称是解答的关键,着重考查了推理与运算能力,属于中档试题.。

基本初等函数讲义(超级全)

一、一次函数之相礼和热创作二、二次函数(1)二次函数解析式的三种方式 ①一样平常式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法①已知三个点坐标时,宜用一样平常式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常运用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性子①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a-- ②当0a >时,抛物线开口向上,函数在(,]2ba -∞-上递减,在[,)2b a-+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a-+∞上递减,当2b x a =-时,2max 4()4ac b f x a-=.三、幂函数(1)幂函数的定义一样平常地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象过定点:全部的幂函数在(0,)+∞都有定义,而且图象都经过点(1,1). 四、指数函数(1)根式的概念:假如,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.(2)分数指数幂的概念①负数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②负数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没故意义.(3)运算性子①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r=>>∈ab a b a b r R(4)指数函数五、对数函数(1)对数的定义①若(0,1)x且,则x叫做以a为底N的对数,记作=>≠a N a alog a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个紧张的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)经常运用对数与自然对数经常运用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性子 假如0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a MM N N-=③数乘:log log ()n a a n M M n R =∈④log aNa N =⑤log log (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.假如对于y 在C 中的任何一个值,经过式子()x y ϕ=,x 在A 中都有独一确定的值和它对应,那么式子()x y ϕ=暗示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,风俗上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性子 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一样平常地,函数()y f x =要有反函数则它必须为单调函数.例题一、求二次函数的解析式244y x x =--的顶点坐标是()A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知抛物线的顶点为(-1,-2),且经过(1,10),则这条抛物线的表达式为()A .()2312y x =-- B .()2312y x =-+C. ()2312y x =+- D.()2312y x =-+-例3.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范围是()A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的两根立方和等于17求()f x 的解析式 二、二次函数在特定区间上的最值成绩例5. 当22x -≤≤时,求函数223y x x =--的最大值和最小值. 例6.当0x ≥时,求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数).三、幂函数(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -={}0x x >的是()A.23y x = B.32y x = C.23y x -= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的表示图.例10.已知函数y =42215x x --.(1)求函数的定义域、值域; (2)判别函数的奇偶性; (3)求函数的单调区间. 四、指数函数的运算122(2)-⎡⎤-⎣⎦的结果是()A、12C 、D 、—12例12.44等于() A 、16a B 、8a C 、4a D 、2a53,83==ba,则b a233-=___________五、指数函数的性子 例14.{|2},{|xM y y P y y ====,则M∩P ()A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 例15.求下列函数的定义域与值域: (1)442x y -=(2)||2()3x y =()2301x y a a a -=+>≠且的图像必经过点 ()A .(0,1)B .(1,1)C .(2,3)D .(2,4) 例17求函数y=2121x x -+的定义域和值域,并讨论函数的单调性、奇偶性.五、对数函数的运算32a =,那么33log 82log 6-用a 暗示是()A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a -例19.2log (2)log log a a a M N M N -=+,则NM 的值为()A 、41B 、4 C 、1 D 、4或1732log [log (log )]0x =,那么12x-等于()A 、13B D 例21.2log 13a <,则a 的取值范围是()A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭五、对数函数的性子例22.下列函数中,在()0,2上为增函数的是() A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于() A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称 )()lg f x x =是(奇、偶)函数.课下作业1.已知二次函数y=ax2+bx+c,假如a>b>c,且a+b+c=0,则它的图象可能是图所示的( )2.对抛物线y=22(2)x --3与y=-22(2)x -+4的说法不正确的是()A .抛物线的外形相反B .抛物线的顶点相反C .抛物线对称轴相反D .抛物线的开口方向相反3. 二次函数y=221x x --+图像的顶点在()A .第一象限B .第二象限C .第三象限D .第四象限4. 如图所示,满足a >0,b <0的函数y=2ax bx +的图像是()5.假如抛物线y=26x x c ++的顶点在x 轴上,那么c 的值为()A .0B .6C .3D .96.一次函数y =ax +b 与二次函数y =ax2+bx +c 在同一坐标系中的图象大致是( )7.在下列图象中,二次函数y=ax2+bx +c 与函数y=(ab)x 的图象可能是 ()8.若函数f(x)=(a -1)x2+(a2-1)x +1是偶函数,则在区间[0,+∞)上f(x)是( )A .减函数B .增函数C .常函数D .可能是减函数,也可能是常函数9.已知函数y =x2-2x +3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .[1,2]D .(-∞,2]10、使x2>x3成立的x 的取值范围是( )A 、x <1且x≠0B 、0<x <1C 、x >1D 、x <111、若四个幂函数y =a x ,y =b x ,y =c x ,y =d x 在同一坐标系中的图象如右图,则a 、b 、c 、d 的大小关系是( )A 、d >c >b >aB 、a >b >c >dC 、d >c >a >bD 、a >b >d >c12.若幂函数()1m f x x -=在(0,+∞)上是减函数,则 ( )A .m >1B .m <1C .m =lD .不克不及确定13.若点(),A a b 在幂函数()n y x n Q =∈的图象上,那么下列结论中不克不及成立的是A .00a b >⎧⎨>⎩B .00a b >⎧⎨<⎩C.00a b <⎧⎨<⎩ D .00a b <⎧⎨>⎩14.若函数f(x)=log 12(x2-6x +5)在(a ,+∞)上是减函数,则a 的取值范围是( )A .(-∞,1]B .(3,+∞)C .(-∞,3)D .[5,+∞)15、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是()A 、∅B 、TC 、SD 、无限集16、函数22log (1)y x x =+≥的值域为()A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 17、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则()A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>18、在(2)log (5)a b a -=-中,实数a 的取值范围是()A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<19、计算lg52lg2)lg5()lg2(22•++等于() A 、0 B 、1 C 、2 D 、320、已知3log 2a =,那么33log 82log 6-用a 暗示是()A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a --21、已知幂函数f(x)过点(2),则f(4)的值为()A 、12B 、 1C 、2D 、8二、填空题1.抛物线y =8x2-(m -1)x +m -7的顶点在x 轴上,则m =________.23-=x y 的定义域为___________.()()12m f x m x +=-,假如()f x 是反比例函数,则m=____ ,假如()f x 是反比例函数,则m=______,假如f(x)是幂函数,则m=____. 14(1)x --故意义,则x ∈___________.35x y <=___________.25525x x y ⋅=,则y 的最小值为___________. 7、若2log 2,log 3,m n a a m n a +===.8、函数(-1)log (3-)x y x =的定义域是.9、2lg 25lg 2lg50(lg 2)++=.1622<-+x x 的解集是__________________________.282133x x --⎛⎫< ⎪⎝⎭的解集是__________________________.103,104x y ==,则10x y -=__________________________.13、已知函数3x log x (x 0)1f (x),f[f ()]2(x 0)9>⎧=⎨≤⎩,则,的值为 14、函数2)23x (lg )x (f +-=恒过定点三、简答题2、已知幂函数f (x )=23221++-p p x (p ∈Z )在(0,+∞)上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x )、222(3)lg 6x f x x -=-,(1)求()f x 的定义域;(2)判别()f x 的奇偶性. a R ∈,22()()21x x a a f x x R ⋅+-=∈+,试确定a 的值,使()f x 为奇函数. 5. 已知函数x 121f (x)log[()1]2=-,(1)求f(x)的定义域;(2)讨论函数f(x)的增减性.。

专题2函数与基本初等函数

精锐教育学科教师辅导讲义 讲义编号: 年 级: 辅导科目:数学 课时数:

课 题 函数与基本初等函数(一) 教学目的 教学内容 一、 知识网络

二、命题分析 1.知识点的考查情况 (1)函数:以考查概念与运算为主,部分涉及新定义运算; (2)定义域、值域、解析式是考查的重点,而且较稳定,有时结合其他知识点(以本单元内容为背景),分段函数较多、花样翻新; (3)函数单调性在历年考试中久考不衰,且比例有上升趋势,和导数联系较多; (4)函数的奇偶性主要和单调性、不等式、最值、三角函数等综合,与对称性、抽象函数等问题联系较多; (5)由于分段函数自身所具有的特殊性,比其他函数形式具有更重要的功能,更能全面地考查学生的素质和能力,所以在2012年高考试题中,分段函数应该是函数命题的热点内容,一般会以选择题和填空题的形式进行考查,如果出现在解答题中,会和方程、不等式的知识联系起来,综合考查各种能力. 2.常考题型及分值情况 函数在选择、填空、解答三种题型中每年都有考题,所占分值在30分以上,占全卷的20%以上,在高考中占有重要地位.

三、复习建议 1.函数的基本概念在应用时要把重点放在它的三要素上,复习函数的定义域除了要注意使解析式有意义的自变量的取值范围外,还要根据题中的实际意义来确定它的取值范围. 2.求值域时要熟悉几种基本的解题方法,通常化归为求函数的最值问题,要注意利用均值不等式、二次函数及函数的单调性在确定函数最值中的作用,还要注意对应法则,特别是定义域的制约作用. 3.求函数解析式根据实际问题建立函数关系,或根据题中所给条件利用待定系数法解题,或对于f[g(x)]=h(x)求

f(x)的问题可以用换元法解题,或若式中含有f(-x),f

1

x等,常根据已知等式再构造其他等式组成方程组,通过

解方程组求解. 4.利用函数的基本性质解题时要充分挖掘函数的单调性、奇偶性、对称性等,但要注意函数的基本性质只能在函数的定义域内讨论. 5.在研究函数的性质时要注意结合图像,在解方程和不等式时,有时利用数形结合能得到十分快捷的效果.研究函数与方程的问题时,尤其要用好图像.恒成立问题,区间解问题都可得到较好的解决.

高考数学专题 基本初等函数、函数与方程及函数的应用讲学案理数(解析)

【2016考纲解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【重点知识梳理】1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0, 这个c也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.应用函数模型解决实际问题的一般程序读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.3.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f(x),g(x),即把方程写成f(x)=g(x)的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系.【高频考点突破】 考点一 函数的零点例1、(1)(2015·海南)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)(2)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4 (1)答案:C(2)答案:B解析:函数h (x )=f (x )-g (x )的零点个数可转化为函数f (x )与g (x )图象的交点个数,作出函数f (x )=x -[x ]=⎩⎪⎨⎪⎧…,x +1,-1≤x <0,x ,0≤x <1,x -1,1≤x <2,…与函数g (x )=log 4(x -1)的大致图象,如图,由图知,两函数图象的交点个数为2,即函数h (x )=f (x )-g (x )的零点个数是2.【规律方法】1.判断函数零点个数的方法(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.2.判断函数零点所在区间的方法判断函数在某个区间上是否存在零点,要根据具体题目灵活处理.当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时可画出图象判断.【变式训练】函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3 答案:B解析:函数f (x )=2x +x 3-2在(0,1)上递增.又f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.考点二 函数与方程的综合应用例2、(1)设函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a 的取值范围是________.(2)设函数f (x )=x +a ,若曲线y =sin x 上存在点(x 0,y 0)使得f (f (y 0))=y 0,则a 的取值范围是________. (1)答案:(log 32,1)解析:因为x ∈(1,2),所以x +2x ∈(2,3),log 3x +2x ∈(log 32,1),故要使函数f (x )在(1,2)内存在零点,只要a ∈(log 32,1)即可.(2)答案:⎣⎡⎦⎤-14,0 解析:由已知点(x 0,y 0)在曲线y =sin x 上,得y 0=sin x 0,y 0∈[0,1]. 即存在y 0∈[0,1]使f (f (y 0))=y 0成立. 因为(f (y 0),y 0)满足方程f (f (y 0))=y 0,由于函数f (x )=x +a 在其定义域内是增函数, 所以f (y 0)=y 0.即方程x +a =x 在[0,1]内有解, 即a =x 2-x ,x ∈[0,1].当x ∈[0,1]时,x 2-x ∈⎣⎡⎦⎤-14,0,故a 的取值范围是⎣⎡⎦⎤-14,0. 【规律方法】利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 【变式训练】(2015·湖南卷)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.答案:(-∞,0)∪(1,+∞)综上知,a<0或a>1.图①图②图③考点三 函数的实际应用例3、如图,现在要在边长为100 m 的正方形ABCD 内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为x m(x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为15x 2 m 的圆形草地.为了保证道路畅通,岛口宽不小于60 m ,绕岛行驶的路宽均不小于10 m.(1)看到求x 的取值范围(运算中2取1.4);(2)若中间草地的造价为a 元/m 2,四个花坛的造价为433ax 元/m 2,其余区域的造价为12a11元/m 2,当x 取何值时,可使“环岛”的整体造价最低?解:(1)由题意,得⎩⎪⎨⎪⎧x ≥9,100-2x ≥60,1002-2x -2×15x 2≥2×10,解得⎩⎪⎨⎪⎧x ≥9,x ≤20,-20≤x ≤15,即9≤x ≤15.故x 的取值范围为[9,15].【规律方法】1.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答2.与函数有关的应用题的常见类型及解题关键(1)常见类型:与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.【变式训练】某人想开一家服装专卖店,经过预算,该门面需要门面装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系式是R =R (x )=⎩⎪⎨⎪⎧400x -x 22,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是( ) A .100 B .150 C .200 D .300 答案:D【经典考题精析】【2015高考浙江,理7】存在函数()f x 满足,对任意x R ∈都有( ) A.(sin 2)sin f x x = B.2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D.2(2)1f x x x +=+ 【答案】D. 【解析】A :取0=x ,可知0sin )0(sin =f ,即0)0(=f ,再取2π=x ,可知2sin)(sin ππ=f ,即1)0(=f ,矛盾,∴A 错误;同理可知B 错误,C :取1=x ,可知2)2(=f ,再取1-=x ,可知0)2(=f ,矛盾,∴C 错误,D :令)0(|1|≥+=t x t ,∴1)()0()1(2+=⇔≥=-x x f t t t f ,符合题意,故选D. 【2015高考湖南,理15】已知32,(),x x af x x x a ⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是.【答案】),1()0,(+∞-∞.【2015高考江苏,13】已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为【答案】4【解析】由题意得:求函数()y f x =与1()y g x =-交点个数以及函数()y f x =与1()y g x =--交点个数之和,因为221,011()7,21,12x y g x x x x x <≤⎧⎪=-=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =-有两个交点,又221,011()5,23,12x y g x x x x x -<≤⎧⎪=--=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =--有两个交点,因此共有4个交点【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )(A )7,4⎛⎫+∞ ⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭ 【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩,所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【2015高考浙江,理10】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -=,()f x 的最小值是.【答案】0,3-22.【解析】0)1())3((==-f f f ,当1≥x 时,322)(-≥x f ,当且仅当2=x 时,等号成立,当1<x 时,0)(≥x f ,当且仅当0=x 时,等号成立,故)(x f 最小值为322-.【2015高考四川,理13】某食品的保鲜时间y (单位:小时)与储存温度x (单位:C)满足函数关系b kx e y +=( 718.2=e 为自然对数的底数,k 、b 为常数)。

2018届高三理科数学二轮复习讲义:模块二 专题一 第三讲 基本初等函数、函数与方程及函数的应用

专题一 集合、常用逻辑用语、不等式、函数与导数 第三讲 基本初等函数、函数与方程及函数的应用 高考导航对基本初等函数的考查形式主要是选择题、填空题,也有可能以解答题中某一小问的形式出现,考查其图象与性质.2.函数零点主要考查零点所在区间、零点个数的判断以及由函数零点的个数求解参数的取值范围.3.函数的实际应用常以实际生活为背景,与最值、不等式、导数、解析几何等知识交汇命题.(对应学生用书P022)1.(2016·全国卷Ⅲ)已知a =243 ,b =425 ,c =2513,则()A .b <a <cB .a <b <cC .b <c <aD .c <a <b[解析]∵b =425 =(22) 25=245 ,又a =243,∴a >b .∵a =243 =(22) 23 =4 23 ,c =(25) 13 =(52) 13=523 ,∴a <c ,∴b <a <c .[答案] A2.(2017·昆明一模)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若函数f (x ),g (x )的零点分别为a ,b ,则有( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0[解析] 易知函数f (x ),g (x )在定义域上都是单调递增函数,且f (0)=-1<0,f (1)=e -1>0,g (1)=-2<0,g (2)=ln2+1>0,所以a ,b 存在且唯一,且a ∈(0,1),b ∈(1,2),从而f (1)<f (b )<f (2),g (0)<g (a )<g (1),于是f (b )>0,g (a )<0,即g (a )<0<f (b ).[答案] A3.(2017·北京卷)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与MN 最接近的是( )(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093 [解析] 因为lg3≈0.48,所以3≈100.48, 所以M N =33611080≈(100.48)3611080=100.48×3611080=10173.281080=1093.28≈1093.故选D.[答案] D4.(2017·浙江卷)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关[解析] ∵f (x )=x 2+ax +b =⎝ ⎛⎭⎪⎫x +a 22+b -a 24,对称轴为x =-a 2,下面分情况讨论:①若1<-a2,即a <-2时,f (x )max =f (0)=b ,f (x )min =f (1)=a +b +1,此时M -m =b -(a +b +1)=-a -1;②若12<-a2≤1,即-2≤a <-1时,f (x )max =f (0)=b, f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=b -a 24,此时M -m =b -⎝ ⎛⎭⎪⎫b -a 24=a 24;③若0<-a 2≤12,即-1≤a <0时, f (x )max =f (1)=a +b +1,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=b -a24,此时M -m =a +b +1-⎝ ⎛⎭⎪⎫b -a 24=1+a +a24;④若-a2≤0,即a ≥0时,f (x )max =f (1)=a +b +1,f (x )min =f (0)=b ,此时M -m =a +b +1-b =1+a .综上,M -m 与a 有关,但与b 无关.故选B. [答案] B5.(2016·山东卷)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m的取值范围是________.[解析] f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,当x >m 时,f (x )=x 2-2mx+4m =(x -m )2+4m -m 2,其顶点为(m,4m -m 2);当x ≤m 时,函数f (x )的图象与直线x =m 的交点为Q (m ,m ).①当⎩⎪⎨⎪⎧m >0,4m -m 2≥m ,即0<m ≤3时,函数f (x )的图象如图1所示,易得直线y =b 与函数f (x )的图象有一个或两个不同的交点,不符合题意;②当⎩⎪⎨⎪⎧4m -m 2<m ,m >0,即m >3时,函数f (x )的图象如图2所示,则存在实数b 满足4m -m 2<b ≤m ,使得直线y =b 与函数f (x )的图象有三个不同的交点,符合题意.综上,m 的取值范围为(3,+∞).[答案] (3,+∞)考点一 指数函数、对数函数及幂函数1.指数与对数式的运算公式 (1)a m ·a n =a m +n ,(2)(a m )n =a mn ,(3)(ab )m =a m b m .其中,a >0,b >0. (4)log a (MN )=log a M +log a N , (5)log a MN =log a M -log a N , (6)log a M n =n log a M , (7)a log a N =N ,(8)log a N =log b Nlog b a .其中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.2.指数函数对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况:当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.[对点训练]1.(2017·咸宁二模)已知a >0,且a ≠1,函数y =a x 与y =log a (-x )的图象可能是图中的( )[解析] 解法一:因为y =a x 与y =log a x 互为反函数,而y =log a x 与y =log a (-x )的图象关于y 轴对称,根据图象特征可知选B.解法二:首先,曲线y =a x 只可能在x 轴上方,曲线y =log a (-x )只可能在y 轴左边,从而排除A ,C ;其次,y =a x 与y =log a (-x )的增减性正好相反,排除D ,选B.[答案] B2.(2017·江西九江七校联考)幂函数f(x)=(m2-4m+4)x m2-6m+8在(0,+∞)上为增函数,则m的值为()A.1或3 B.1 C.3 D.2[解析]由题意得m2-4m+4=1,m2-6m+8>0,解得m=1,选B.[答案] B3.(2017·全国卷Ⅰ)设x,y,z为正数,且2x=3y=5z,则() A.2x<3y<5z B.5z<2x<3yC.3y<5z<2x D.3y<2x<5z[解析]设2x=3y=5z=k>1,所以x=log2k,y=log3k,z=log5k.因为2x-3y=2log2k-3log3k=2log k2-3log k3=2log k3-3log k2log k2·log k3=log k32-log k23 log k2·log k3=log k98log k2·log k3>0,所以2x>3y;因为3y-5z=3log3k-5log5k=3log k3-5log k5=3log k5-5log k3log k3·log k5=log k53-log k35log k3·log k5=log k125243log k3·log k5<0,所以3y<5z;因为2x-5z=2log2k-5log5k=2log k2-5log k5=2log k5-5log k2 log k2·log k5=log k52-log k25log k2·log k5=log k2532log k2·log k5<0,所以5z>2x.所以5z>2x>3y.[答案] D4.(2017·江西九江七校联考)若函数f(x)=log2(x2-ax-3a)在区间(-∞,-2]上是减函数,则实数a的取值范围是________.[解析]由题意得x2-ax-3a>0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a2≥-2且(-2)2-(-2)a-3a >0,解得实数a 的取值范围是[-4,4).[答案] [-4,4)指数、对数函数图象与性质的应用技巧(1)利用指数函数与对数函数的性质比较大小注意两点: ①底数相同、指数不同的幂用指数函数的单调性进行比较;底数相同、真数不同的对数值用对数函数的单调性进行比较.②底数不同、指数也不同,或底数不同、真数也不同的两个数,可以引入中间量或结合图象进行比较.(2)对于含参数的指数、对数问题,在应用单调性时,要注意对底数进行讨论,解决对数问题时,首先要考虑定义域,其次再利用性质求解.考点二 函数的零点1.函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.2.确定函数零点的常用方法 (1)解方程法;(2)利用零点存在性定理;(3)数形结合,利用两个函数图象的交点求解.角度1:确定函数的零点个数或其存在范围[解析]当x≤0时,由f(x)=0,即x2+2017x-2018=0,得(x-1)(x+2018)=0,解得x=1(舍去)或x=-2018;当x>0时,设g(x)=x-2,h(x)=ln x,如图,分别作出两个函数的图象,由图可知,两函数图象有两个交点,所以函数f(x)在x>0时有两个零点.综上,函数f(x)有3个零点,故选C.[答案]C角度2:应用零点求参数的值(范围)[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图,而函数y =mx -12恒过定点⎝⎛⎭⎪⎫0,-12,设过点⎝⎛⎭⎪⎫0,-12与函数y =ln x 的图象相切的直线为l 1,切点坐标为(x 0,ln x 0).因为y =ln x 的导函数y ′=1x ,所以图中y =ln x 的切线l 1的斜率为k =1x 0,则1x 0=ln x 0+12x 0-0,解得x 0=e ,所以k =1e.又图中l 2的斜率为12,故当方程f (x )=mx -12恰有四个不相等的实数根时,实数m 的取值范围是⎝ ⎛⎭⎪⎫12,e e .[答案] ⎝ ⎛⎭⎪⎫12,e e[探究追问] 将例1-2中“方程f (x )=mx -12恰有四个不相等的实数根”改为“方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实数根”,结果如何?[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图.函数y =m ⎝⎛⎭⎪⎫x -54恒过定点⎝⎛⎭⎪⎫54,0,设过点⎝⎛⎭⎪⎫54,0与函数y =1-x 2的图象相切的直线为l 1,设切点坐标为(x 0,1-x 20),因为y =1-x 2(x ≤1)的导函数y ′=-2x 0,所以切线l 1斜率k =-2x 0,则-2x 0=1-x 2x 0-54,解得x 0=12或x 0=2(舍).所以直线l 1的斜率为-1,结合图可知,当方程f (x )=m ⎝⎛⎭⎪⎫x -54恰有三个不相等的实根时,实数m 的取值范围是(-1,0).[答案] (-1,0)利用函数零点求参数值(范围)的3种方法(1)直接法:直接根据题设条件构建关于系数的方程或不等式,再通过解方程或不等式确定参数的值或取值范围.(2)分离参数法:先将参数分离,转化成求函数最值问题加以解决.(3)数形结合法:在同一平面直角坐标系中画出函数的图象,然后数形结合求解.[对点训练]1.[角度1]函数f (x )=2x -1+ln 1x 的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(0,1),(2,3)[解析] 解法一:求函数f (x )=2x -1+ln 1x 的零点所在的大致区间,等价于求2x -1+ln 1x =0的解所在的大致区间,等价于求2x -1=-ln 1x 的解所在的大致区间,等价于求2x -1=ln x 的解所在的大致区间,等价于求y =2x -1与y =ln x 的图象在(0,+∞)上的交点的横坐标所在的大致区间(如图所示),由图可得,选D.解法二:由f (x )=2x -1+ln 1x 可得其定义域为(0,1)∪(1,+∞),且f (x )的单调递减区间为(0,1),(1,+∞),因为f ⎝ ⎛⎭⎪⎫1e 3=21e 3-1+ln 11e 3=2e 31-e 3+3=3-e 31-e 3>0, f ⎝ ⎛⎭⎪⎫1e =21e -1+ln 11e =2e 1-e +1=1+e 1-e<0,所以函数f (x )=2x -1+ln 1x 在区间(0,1)内有零点.因为f (2)=22-1+ln 12=2-ln2>0,f (3)=23-1+ln 13=1-ln3<0,所以函数f (x )=2x -1+ln 1x 在区间(2,3)内有零点.综上所述,函数f (x )=2x -1+ln 1x 的零点所在的大致区间为(0,1),(2,3).故选D.[答案] D2.[角度2](2017·洛阳统考)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)[解析] f (x )=⎩⎪⎨⎪⎧x -1,x ≥2,3-x ,x <2.如图,作出y =f (x )的图象,其中A (2,1),则k OA =12.要使方程f (x )=g (x )有两个不相等的实根,则函数f (x )与g (x )的图象有两个不同的交点,由图可知,12<k <1.[答案] B考点三 函数的实际应用解决函数实际应用题的关键(1)认真读题,缜密地审题,确切地理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题.(2)合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解.[对点训练]1.(2017·湖南衡阳、长郡中学等十三校联考)某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)( )A .2017年B .2018年C .2019年D .2020年[解析] 设从2016年起,过了n (n ∈N *)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg 2013lg1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2016=2020.故选D.[答案] D2.(2017·湖北八校联考(一))有一组试验数据如表所示:A .y =2x +1-1B .y =x 2-1C .y =2log 2xD .y =x 3[解析] 由表格数据可知,函数的解析式应该是指数函数类型、二次函数类型、幂函数类型,选项C 不正确.取x =2.01,代入A 选项,得y =2x +1-1>4,代入B 选项,得y =x 2-1≈3,代入D 选项,得y =x 3>8;取x =3,代入A 选项,得y =2x +1-1=15,代入B 选项,得y =x 2-1=8,代入D 选项,得y =x 3=27,故选B.[答案] B3.(2017·开封质检)用长度为24米的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3米B .4米C .6米D .12米[解析] 设隔墙的长为x (0<x <6)米,矩形的面积为y 平方米,则y =x ×24-4x2=2x (6-x )=-2(x -3)2+18,所以当x =3时,y 取得最大值.[答案] A4.如图,某小区有一边长为2的正方形地块OABC ,其中阴影部分是一个游泳池,计划在地块OABC 内修一条与池边AE 相切的直路l (宽度不计),切点为M ,并把该地块分为两部分.现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立如图所示的平面直角坐标系,若池边AE 为函数y =-x 2+2(0≤x ≤2)的图象,且点M 到边OA 的距离为t ⎝ ⎛⎭⎪⎫23≤t ≤43,则地块OABC 在直路l 不含泳池那侧的面积的最大值为________.[解析] M (t ,-t 2+2),过切点M 的切线l :y -(-t 2+2)=-2t (x-t ),即y =-2tx +t 2+2,令y =2得x =t2,故切线l 与AB 交于点⎝ ⎛⎭⎪⎫t 2,2;令y =0,得x =t 2+1t ,故切线l 与OC 交于点⎝ ⎛⎭⎪⎫t 2+1t ,0,又x =t 2+1t 在⎣⎢⎡⎦⎥⎤23,43上单调递减,所以x =t 2+1t ∈⎣⎢⎡⎦⎥⎤1712,116,所以地块OABC 在切线l 右上部分区域为直角梯形,面积S =12⎝ ⎛⎭⎪⎫2-t 2-1t +2-t 2×2=4-t -1t=4-⎝⎛⎭⎪⎫t +1t ≤2,当且仅当t =1时等号成立,故地块OABC 在直路l不含泳池那侧的面积的最大值为2.[答案] 2应用函数模型解决实际问题的一般程序读题文字语言⇨建模数学语言⇨求解数学应用⇨反馈检验作答热点课题3 数形结合在函数与方程中的应用[感悟体验]1.(2017·银川模拟)已知直线y =mx 与函数y =f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2+1,x >0的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A .(3,4)B .(2,+∞)C .(2,5)D .(3,22)[解析] 作出函数的图象,如图所示.由图可知,当直线y =mx (m ∈R )与函数的图象相切时,设切点A ⎝ ⎛⎭⎪⎫x 0,12x 20+1,则f ′(x )=x ,∴k =m =x 0,即直线y =mx 过切点A ⎝⎛⎭⎪⎫x 0,12x 20+1时,有两个解,此时m = 2.结合图象得,当直线y =mx 与函数y =f (x )的图象恰好有3个不同的公共点时,实数m 的取值范围是m > 2.故选B.[答案] B2.(2017·陕西省宝鸡市高三一检)设函数f (x )=⎩⎪⎨⎪⎧2-x,x <1,log 2x ,x ≥1,若函数y =f (x )-k 有且只有两个零点,则实数k 的取值范围是________.[解析] ∵当x <1时,2-x>12;当x ≥1时,log 2x ≥0,依题意函数y =f (x )的图象和直线y =k 的交点有两个,∴k >12.[答案] ⎝ ⎛⎭⎪⎫12,+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我告诉皇上要雨露均沾 我告诉皇上要雨露均沾 专题二  基本初等函数、函数与方程

卷Ⅰ 卷Ⅱ 卷Ⅲ 2018 分段函数的零点问题·T9 _______

利用对数的性质比较大

小·T12

2017 指数与对数的互化、对数运算、比较大小·T11 _________ 函数的零点问题·T11

2016 利用幂函数、指数函数、对数函数单调性比较大小·T8 __________ 利用指数函数与幂函数的单调性比较大小·T6

纵向把握趋势 卷Ⅰ3年3考,涉及幂函数、指数函数、对数函数的单调性以及分段函数的零点问题,题型为选择题,难度适中,预计2019年会以对数的运算、对数函数的图象与性质为考查重点 卷Ⅱ3年0考,预计2019年会以选择题的形式考查幂函数、指数函数、对数函数的有关性质或大小比较问题

卷Ⅲ3年3考,涉及由函数零点个数确定参数问题以及指数、对数、幂函数的性质、比较大小问题.题型为选择题,难度偏大,预计2019年仍会考查指数函数、对数函数、幂函数性质的应用

横向把握重点 1.基本初等函数作为高考的命题热点,多考查指数式与对数式的运算,利用函数的性质比较大小,一般出现在第5~12题的位置,有时难度较大. 2.函数的应用问题多体现在函数零点与方程根的综合问题上,题目可能较难,应引起重视.

基本初等函数的图象与性质 [由题知法] [典例] (1)(2019届高三·辽宁五校联考)设a=2 01712018,b=log2 0172 018,c=log

2

01812 017,则( )

A.c>b>a B.b>c>a C.a>c>b D.a>b>c (2)已知f (x)=ax-2,g(x)=loga|x|(a>0且a≠1),若f (4)g(-4)<0,则y=f (x),y=g(x)在同一坐标系内的大致图象是( ) 我告诉皇上要雨露均沾 我告诉皇上要雨露均沾 (3)(2018·信阳二模)设x,y,z为正实数,且log2x=log3y=log5z>0,则x2,y3,z5的大小关系不可能是( ) A.x2

C.z5[解析] (1)∵a=2 01712018>2 0170=1, 0

c=log2 01812 017b>c.故选D. (2)∵f (x)=ax-2>0恒成立,又f (4)·g(-4)<0,∴g(-4)=loga|-4|=loga4<0=loga1,∴0在(-∞,0)上单调递增,故B正确. (3)设log2x=log3y=log5z=k>0, 则x=2k>1,y=3k>1,z=5k>1.

∴x2=2k-1,y3=3k-1,z5=5k-1. ①若0∴x2>y3>z5;

②若k=1,则函数f (x)=xk-1=1,∴x2=y3=z5; ③若k>1,则函数f (x)=xk-1在定义域上单调递增, ∴x2

∴x2,y3,z5的大小关系不可能是 D.因此A、B、C正确,D错误.故选D. [答案] (1)D (2)B (3)D [类题通法] 1.幂、指数、对数式比较大小的方法 (1)利用幂、指数、对数函数的单调性,这就需要观察要比较大小的数和式的结构特征,寻找共同点(如指数相同,底数相同等),构造相应函数; (2)媒介法,即利用中间值(特别是0和1)作媒介传递,达到比较其大小的目的. 我告诉皇上要雨露均沾 我告诉皇上要雨露均沾 2.基本初等函数的图象与性质的应用技巧 (1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和01时,两函数在定义域内都为增函数;当0时,两函数在定义域内都为减函数. (2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断. (3)对于幂函数y=xα的性质要注意α>0和α<0两种情况的不同. [应用通关]

1.(2018·厦门一模)已知a=120.3,b=log120.3,c=ab,则a,b,c的大小关系是( ) A.aC.a

解析:选B ∵b=log120.3>log1212=1,a=120.3<120=1,∴c=abB. 2.已知幂函数f (x)=(m-1)2 xm2-4m+2在(0,+∞)上单调递增,函数g(x)=2x-t,∀x1

∈[1,6)时,总存在x2∈[1,6)使得f (x1)=g(x2),则t的取值范围是( ) A.∅ B.(-∞,1]∪[28,+∞) C.(-∞,1)∪(28,+∞) D.[1,28] 解析:选D 由f (x)是幂函数得m=0或2, 当m=0时,f (x)=x2;当m=2时,f (x)=x-2. 而f (x)=(m-1)2xm2-4m+2在(0,+∞)上单调递增, 则f (x)=x2, 当x∈[1,6)时,f (x)∈[1,36). 当x∈[1,6)时,g(x)∈[2-t,64-t). 若∀x1∈[1,6)时,总存在x2∈[1,6)使得f (x1)=g(x2),则[1,36)⊆[2-t,64-t),

故 2-t≤1,64-t≥36,解得1≤t≤28,故选D. 3.若函数f (x)=xa满足f (2)=4,那么函数g(x)=|loga(x+1)|的图象大致为( ) 我告诉皇上要雨露均沾

我告诉皇上要雨露均沾 解析:选C 法一:由函数f (x)=xa满足f (2)=4,得2a=4,∴a=2,则g(x)=|loga(x+1)|=|log2(x+1)|,将函数y=log2x的图象向左平移1个单位长度(纵坐标不变),然后将x轴下方的图象翻折上去,即可得g(x)的图象,故选C. 法二:由函数f (x)=xa满足f (2)=4,得2a=4,∴a=2,即g(x)=|log2(x+1)|,由g(x)的定义域为{x|x>-1},排除B、D;由x=0时,g(x)=0,排除A.故选C. 函数的实际应用问题

[由题知法] [典例] (1)(2018·开封模拟)李冶(1192~1279),真定栾城(今河北省石家庄市)人,

金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( ) A.10步,50步 B.20步,60步 C.30步,70步 D.40步,80步 (2)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P(毫克/升)与时间t(小时)的关系为P=P0e-kt.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时. [解析] (1)设圆池的半径为r步,则方田的边长为(2r+40)步,由题意,得(2r+40)2-3r2=13.75×240,解得r=10或r=-170(舍去),所以圆池的直径为20步,方田的边长为60步,故选B. (2)前5小时污染物消除了10%,此时污染物剩下90%,即t=5时,P=0.9P0,代入,得(e-k)5=0.9,

∴e-k=0.915,∴P=P0e-kt=P00.915t.当污染物减少19%时,污染物剩下81%,此时P

=0.81P0,代入得0.81=0.915t,解得t=10,即需要花费10小时. [答案] (1)B (2)10 [类题通法] 1.解决函数实际应用题的2个关键点 (1)认真读题,缜密审题,准确理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题. (2)要合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解. 我告诉皇上要雨露均沾 我告诉皇上要雨露均沾 2.构建函数模型解决实际问题的常见类型与求解方法 (1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解. (2)构建分段函数模型,应用分段函数分段求解的方法.

(3)构建f (x)=x+ax(a>0)模型,常用基本不等式、导数等知识求解. [应用通关] 1.某电脑公司在甲、乙两地各有一个分公司,甲分公司现有某型号电脑6台,乙分公司现有同一型号的电脑12台.现A地某单位向该公司购买该型号的电脑10台,B地某单位向该公司购买该型号的电脑8台.已知从甲地运往A,B两地每台电脑的运费分别是40元和30元,从乙地运往A,B两地每台电脑的运费分别是80元和50元.若总运费不超过1 000元,则调运方案的种数为( ) A.1 B.2 C.3 D.4 解析:选C 设甲地调运x台电脑至B地,则剩下(6-x)台电脑调运至A地;乙地应调运(8-x)台电脑至B地,运往A地12-(8-x)=(x+4)台电脑(0≤x≤6,x∈N).则总运费y=30x+40(6-x)+50(8-x)+80(x+4)=20x+960,∴y=20x+960(x∈N,0≤x≤6).若y≤1 000,则20x+960≤1 000,得x≤2.又0≤x≤6,x∈N,∴x=0,1,2,即有3种调运方案. 2.某工厂某种产品的年固定成本为250万元,每生产x千件该产品需另投入的成本为

G(x)(单位:万元),当年产量不足80千件时,G(x)=13x2+10x;当年产量不小于80千件时,

G(x)=51x+10 000x-1 450.已知每件产品的售价为0.05万元.通过市场分析,该工厂生产的产品能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是________万元. 解析:∵每件产品的售价为0.05万元,∴x千件产品的销售额为0.05×1 000x=50x万元.

①当02+950,∴当x=60时,L(x)取得最大值,且最大值为L(60)=950万元; ②当x≥80时,L(x)=50x-51x-10 000x+1 450-250=1 200-x+10 000x≤1 200-2

x·10 000x=1 200-200=1 000,当且仅当x=10 000x,即x=100时,L(x)取得最大值1 000万元. 由于950<1 000,∴当产量为100千件时,该工厂在这一产品的生产中所获年利润最大,最大年利润为1 000万元.

相关文档
最新文档