10基本初等函数知识点总结
初等基本函数知识点总结

初等基本函数知识点总结函数是数学中最基本的概念之一,它在数学的各个分支中都有着重要的应用。
初等基本函数是指在初等数学范围内常见的基本函数,包括常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。
本文将对这些初等基本函数的概念、性质等进行总结和介绍。
一、常数函数常数函数的定义是f(x) = c (c为常数)。
这里的c就是常数函数的函数值,它是一个常数,和x的取值无关。
在坐标系中,常数函数的图象是一条水平的直线,它的斜率为0。
常数函数的性质有:1. 常数函数的图象是一条水平的直线。
2. 常数函数的定义域是全体实数集R,值域为{c}。
3. 常数函数的导数为0,即f'(x) = 0。
4. 常数函数是一个一一对应的函数。
5. 常数函数是奇函数,偶函数,周期函数,增函数,减函数等的特殊情况。
二、一次函数一次函数的定义是f(x) = kx + b (k和b为常数,k≠0)。
在坐标系中,一次函数的图象是一条通过点P(k,b)的直线,它的斜率为k,截距为b。
一次函数的性质有:1. 一次函数的图象是一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。
2. 一次函数的定义域是全体实数集R,值域是一切实数集R。
3. 一次函数的导数为k,即f'(x) = k。
4. 当k>0时,一次函数是增函数;当k<0时,一次函数是减函数;当k=0时,一次函数是常数函数。
5. 一次函数是一个奇函数,因为f(-x) = -kx + b = -f(x)。
三、二次函数二次函数的定义是f(x) = ax^2 + bx + c (a、b和c为常数,a≠0)。
二次函数的图象是一个开口向上或者向下的抛物线,它的开口方向由a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二次函数的性质有:1. 二次函数的图象是一个抛物线,它关于y轴对称,对称轴方程为x = -b/2a。
10基本初等函数知识点总结

基本初等函数知识点总结一、指数函数的概念(1)、指数函数的定义一般地,函数xy a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。
(2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。
(3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。
2、指数:自变量x 。
3、系数:1。
二、指数函数的图象与性质一般地,指数函数xy a =(0a >,且1a ≠)的图象与性质如下表:三、幂的大小比较方法比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法:要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。
四、底数对指数函数图象的影响(1)、对函数值变化快慢的影响1、当底数1a >时,指数函数xy a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。
2、当底数01a <<时,指数函数xy a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。
(2)、对函数图象变化的影响指数函数x y a =与x y b =的图象的特点:1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当0x >时,总有1x x a b >>。
2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当0x >时,总有01x x a b <<<。
基本初等函数知识总结

1
0
x
y loga x
y log2 x
y log3 x y log1 x x
3
y log1 x
2
性 质
底数互为倒数的两个指数
一 函数的图象关于y轴对称。
底数互为倒数的两个对数 函数的图象关于x轴对称。
性
质 在 y轴的右边看图象,图象 二 越高底数越大.即底大图高
在 x=1的右边看图象,图象 越高底数越小.即底小图高
幂函数
函数y=xα叫做幂函数, 其中x是自变量, α是常 数.
对于幂函数,我们只
讨论 1, 2, 3, 1 , 1
2
时的情形
y y x3
y x2
1 -1
O1
-1
yx
1
y x2
y1 x
x
幂函数的性质
函数 性质
定义域 值域
奇偶性
单调性
公共点
y=x y=x2
R
R
R [0,+∞) 奇偶
增
[0,+∞)增
n am
同时: 0的正分数指数幂等于0; 0的负分数指数幂
没有意义
2.有理数指数幂的运算性质
a a a r s
r s(a 0,r, s Q) 同底数幂相乘,底数不变指数相加
r
a a r -s (a 0,r, s Q) 同底数幂相除, 底数不变指数相减 as
(a ) a r s
rs (a 0,r, s Q) 幂的乘方底数不变,指数相乘
o
x
①x∈ (0,+∞) ; ② y∈ R;
③过定点(1, 0)
性 ④当x> 1时,y> 0, 质 0< x< 1时, y< 0
基本初等函数知识点归纳

基本初等函数知识点归纳1.常值函数:常值函数是指在定义域上的值始终相同的函数。
常见的常值函数有恒等于0的零函数和恒等于1的单位函数。
常值函数的图像是一条与x轴平行的直线。
2.幂函数:幂函数是指形如y=x^n的函数,其中n是一个实数。
当n 为正偶数时,函数的图像在原点右侧递增;当n为正奇数时,图像在全定义域递增;当n为负数时,图像在全定义域递减。
特殊地,当n为0时,函数为常值函数13.指数函数:指数函数是形如y=a^x的函数,其中a为正实数且a≠1、指数函数的图像可以是递增或递减的曲线,具体取决于底数a的大小关系。
当a>1时,函数递增;当0<a<1时,函数递减。
指数函数特点是它们的图像都经过点(0,1)。
4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a为正实数且a ≠ 1、对数函数是指数函数的反函数,因此它们的图像是关于y = x对称的。
对数函数的图像在定义域上递增,对数函数的唯一一个特殊点是(1,0)。
5. 三角函数:三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
这些函数在三角学中起着重要的作用,并且它们的图像都是周期性的。
正弦函数和余弦函数的图像是一条在[-1,1]之间往复的波浪线,而正切函数和余切函数的图像是一条通过原点的无数个波浪线。
6. 反三角函数:反三角函数是三角函数的反函数。
反三角函数包括反正弦函数asin(x)、反余弦函数acos(x)、反正切函数atan(x)等。
它们的定义域和值域与所对应的三角函数的范围正好相反。
反三角函数的图像和所对应的三角函数的图像关于y = x对称。
以上是基本初等函数的主要内容,它们是数学中最常见的函数,不仅在实际问题中有着广泛的应用,而且还在高中数学的教学中起到了重要的作用。
通过对这些函数的学习与理解,可以更好地掌握数学知识,提高数学解题的能力。
专题10 基本初等函数(知识梳理)(新高考地区专用)(解析版)

专题10 基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂; ③化小数为分数; ④注意运算的先后顺序。
提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。
2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂。
例1-1.已知41<a ,则化简42)14(-a 的结果是( )。
A 、a 41-- B 、14--a C 、14-a D 、a 41- 【答案】D【解析】a a a 41)41()14(4242-=-=-,故选D 。
变式1-1.化简3a a ⋅-的结果是( )。
A 、65a - B 、65a -- C 、65a - D 、52a -【答案】B【解析】∵0≤a ,则656565312131213)()()()()(a a a a a a a a a --=--=--=-⋅--=⋅-=⋅-,故选B 。
变式1-2.已知31=+-x x ,求下列各式的值:(1)2121-+xx ;(2)22-+x x ;(3)2323-+xx 。
【解析】(1)∵52)(2)()(1221212122122121=++=+⋅+=+----x x xxx x xx ,∴52121±=+-x x ,又由31=+-x x 得0>x ,∴52121=+-xx ;(2)72)(2122=-+=+--x x x x ; (3)]1))[((])())[(()()(12121221212122121213213212323-++=+⋅-+=+=+-------x x xx xxx x xx xx xx52)13(5=-=。
(二)指数函数的图像和性质1、定义:一般地,函数x a x f =)((0>a 且1≠a )叫做指数函数,其中x 是自变量。
基本初等函数定义及性质知识点归纳

根本函数图像及性质一、根本函数图像及其性质: 1、一次函数:(0)y kx b k =+≠2、正比例函数:(0)y kx k =≠3、反比例函数:(0)ky x x=≠4、二次函数:2(0)y ax bx c a =++≠〔1〕、作图五要素:2124(,0),(,0),(0,),(),(,)()224b b ac b x x c x a a a -=--对称轴顶点 〔2〕、函数与方程:2=4=00b ac >⎧⎪∆-⎨⎪<⎩两个交点一个交点没有交点〔3〕、根与系数关系:12b x x a +=-,12c x x a⋅=5、指数函数:(0,1)x y a a a =>≠且 〔1〕、图像与性质:〔i 〕1()(0,1)x xy a y a a a==>≠与且关于y 轴对称。
〔ii 〕1a >时,a 越大,图像越陡。
(2)、应用:〔i 〕比拟大小: 〔ii 〕解不等式: 1、回忆:〔1〕()mmmab a b =⋅ 〔2〕()mm m a a b b=2、根本公式:〔1〕m n m na a a+⋅= 〔2〕m m n n a a a-= 〔3〕()m n m na a ⨯=3、特殊:〔1〕01(0)a a =≠ 〔2〕11(0)aa a-=≠ 〔3〕1;0)na n a R n a =∈≥为奇数,为偶数,(4;0;0||a n aa aa a n ≥⎧⎧==⎨⎨-<⎩⎩为奇其中,为偶例题1:〔1〕22232[()()]3x x y xy y x x y x y ---÷;32235()()(5)x xy xy ÷(2)112032170.027()(2)1)79----+-;20.520371037(2)0.1(2)392748π--++-+(3例题2:〔1〕化简:212212)9124()144(+-+++a a a a(2)方程016217162=+⨯-xx 的解是 。
基本初等函数知识点总结

基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。
它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。
下面将对基本初等函数的知识点进行总结。
一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。
它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。
多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。
二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。
指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。
三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。
对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。
四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。
三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。
五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。
它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。
反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。
基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。
基本初等函数知识总结

基本初等函数1.根式的运算性质:①当n 为任意正整数时,(n a )n =a②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a2.分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m a a Q n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+ 3.指数式与对数式的互化:log b a a N N b =⇔=4.重要公式: 01log =a ,1log =a a 对数恒等式N aNa =log5.对数的运算法则:如果0,1,0,0a a N M >≠>>有log ()log log a a a MN M N =+;log log log aa a MM N N=-;log log n a a M n M = 6.对数换底公式:aNN m m a log log log =( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)7.指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a x y a的图象与性质x=1x=1y=1y=1在(0,+∞)内是 减函数在(0,+∞)内是 增函数在(- ∞,+∞)内是 减函数在(- ∞,+∞)内是 增函数0<x<1时,y<0;x>1时,y>0.0<x<1时,y>0;x>1时,y<0.x<0时,0<y<1;x>0时,y>1.x<0时,y>1;x>0时,0<y<1.(1,0),即x=1时,y=0.(0,1),即x =0时,y=1.(0,+∞)(0,+∞)(- ∞,+∞)(- ∞,+∞) 单调性y 值区域过定点值 域定义域图象a>10<a<1a>10<a<1a y=log a xy=a x函数11O O OO1axy1a xy1axy1a xy8.同底的指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a x y a 互为反函数,其图象关于直线x y =对称9.幂函数y x α=的概念、图像和性质:结合函数y=x,y=x 2 ,y=x 3,y=12,y x y x--==,y=12x 的图像,了解它们的变化情况.①α>0时,图像都过(0,0)、(1,1)点,在区间(0,+∞)上是增函数; 注意α>1与0<α<1的图像与性质的区别.②α<0时,图像都过(1,1)点,在区间(0,+∞)上是减函数;在第一象限内,图像向上无限接近y 轴,向右无限接近x 轴.③当x>1时,指数大的图像在上方.幂 函 数 复 习一、幂函数定义:形如)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数知识点总结
一、指数函数的概念
(1)、指数函数的定义
一般地,函数x
y a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。
(2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。
(3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。
2、指数:自变量x 。
3、系数:1。
二、指数函数的图象与性质
一般地,指数函数x
y a =(0a >,且1a ≠)的图象与性质如下表:
三、幂的大小比较方法
比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法:
要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。
四、底数对指数函数图象的影响
(1)、对函数值变化快慢的影响
1、当底数1a >时,指数函数x
y a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。
2、当底数01a <<时,指数函数x
y a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。
(2)、对函数图象变化的影响
指数函数x y a =与x y b =的图象的特点:
1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当
0x >时,总有1x x a b >>。
2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当
0x >时,总有01x x a b <<<。
五、对数的概念
(1)、对数:一般地,如果x a N =(0a >,且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数。
(2)、常用对数:我们通常把以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N 。
(3)、自然对数:我们通常把以无理数e ( 2.71828e =)为底的对数称为自然对数,
为了简便,N 的自然对数log e N 简记为ln N 。
六、对数的基本性质
根据对数的定义,对数log a N (0a >,1a ≠)具有如下性质: 1、0和负数没有对数,即0N >; 2、1的对数是0,即log 10a =; 3、底数的对数等于1,即log 1a a =;
4、对数恒等式:如果把b a N =中的b 写成log a N ,则log a N
a
N =。
七、对数运算性质
如果0a >且1a ≠,0M >,0N >,那么 (1)、()log log log a a a MN M N =+; (2)、log log log a
a a M
M N N
=-; (3)、log log n a a M n M =(n R ∈)。
八、换底公式
设log a N x =,则x a N =,两边取以b 为底的对数,则有
log log log log log x b b b a b N a x a N a ===⋅,又log 0b a ≠,log log log b a b N
N a
=
,由此得
到对数的换底公式。
换底公式的两个推论:
log log m n a a n N N m =
,1
log log a b b a
=。
九、对数函数
(1)、对数函数的定义
一般地,我们把函数log a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,
函数的定义域为()0+∞,。
(2)、一个函数是对数函数的条件
1、系数为1;
2、自变量x 出现在真数的位置上,且0x >;
3、底数0a >,且1a ≠。
(3)、常用对数函数与自然对数函数 1、常用对数函数:以10为底的对数函数lg y x =为常用对数函数。
2、自然对数函数:以无理数e 为底的对数函数ln y x =为自然对数函数。
十、对数函数的图象与性质
一般地,对数函数log a y x =(0a >,且1a ≠)图象与性质如下表:
十一、幂函数
一般地,函数y x α
=叫做幂函数,其中x 是自变量,α是常数。
十二、幂函数的图象
幂函数y x α=在第一象限的图象特征:
(1)、1α>,图象过点()00,,()11,,下凸递增,如3y x =。
(2)、01α<<,图象过点()00,,()11,,上凸递增,如1
2
y x =。
(3)、0α<,图象过点()11,,下凸递减,且向两坐标轴无限逼近,如1
y x -=。
十三、常见的幂函数的性质
(1)、所有的幂函数在()0+∞,上都有定义,并且图象都通过点()11,; (2)、若0α>,则幂函数的图象过原点,并且在区间[)0+∞,上为增函数; (3)、若0α<,则幂函数图象在区间()0+∞,
上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋向于+∞时,图象在x 轴上方无限地逼近x 轴;
(4)、当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数。
十四、函数零点的概念
对于函数()y f x =,我们把使()0f x =得实数x 叫做函数()y f x =的零点。
由函数零点的概念可知,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标。
十五、函数零点的判定(存在性定理)
一般地,如果函数()y f x =在区间[]a b ,上的图象是连续不断的一条曲线,并且有
()()0f a f b ⋅<,那么,函数()y f x =在区间()a b ,内有零点,即存在()c a b ∈,,使
得()0f c =,这个c 也就是方程()0f x =的根。
以上结论称为零点存在性定理,它是判断函数()y f x =的零点是否存在的方法。
十六、二分法
一般地,对于图象在区间[]a b ,上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而
得到零点近似值的方法叫做二分法。