仪器分析紫外可见分光光度法

合集下载

仪器分析课件 第3章 紫外分光光度法

仪器分析课件 第3章 紫外分光光度法

检流计、数字显示、微机进行仪器自动控制
和结果处理
记录装置
二、分光光度计的类型
(一)单光束分光光度计
光源 单色器
参比 样品
检测器
显示器
• 只有一条光路,通过变换参比池和样品池的位 置,使它们分别置于光路来进行测定
国产751型、752型、721型、722型、UV-1100 型、英国SP-500型
E2a ca E2b
(3) 图计算法----两组分吸收光谱完全重叠--混合样品测定 (3)图中,a,b 吸收光谱双向重迭,互相干扰,在最大波长处互相
吸收。处理方法如下:
解线性方程组 过程:
(三)示差分光光度法(示差法)
普通分光光度法一般只适于测定微量组分,当待测组分含量 较高时,将产生较大的误差。需采用示差法。
第三节 紫外-可见分光光度计
依据朗伯-比尔定律,测定待测液吸光度A的仪器。(选择不同波
长单色光λ、浓度) 分光光度计外观 分光光度原理图:
0.575
光源
单色器
吸收池
检测器 信号处理及显示
信号处理 显示器
单色器
分光光度计外观
吸收池 检测器
光源
721型可见分光光度计
一、主要部件
1. 光源 在整个紫外光区或可见光谱区可以发射连续光
浓度C及液层厚度L的乘积成正比。
注意! 适用范围
①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。 ③吸光度A具有加和性。Aa+b+c= Aa &光系数
A=k c L
k = A /c L
1、摩尔吸光系数或Em: 在一定λ下,c=1mol/L,L=1cm时的吸光度。单位:L/(mol.cm)

仪器分析 10.1紫外可见分光光度法 图文

仪器分析 10.1紫外可见分光光度法 图文

61-19
二、UV光谱的有关知识和概念
2、物质吸光的程度表达
辐射功率P:单位时间内所传输的能量, 光度法中用光强 I 代替。 透过率 T:透过光与入射光强度的比值 吸光度 A :
I T
I0
A lgT lg IO I
2020年9月13日星期日 上一内容 下一内容
61-20
3、UV吸收光谱——吸收曲线
镧系元素:f-f 跃迁
二、UV光谱的有关知识和概念
1、物质吸光的选择性
M h I0 M * It h
ΔΕ ΔΕe ΔΕv ΔΕr
分子轨道包括三种: 分子轨道能级的量子化:光吸收具有选择性 电子能级差:约为1~20ev(1250~60nm)
2020年9月13日星期日 上一内容 下一内容
一、分子轨道中的电子跃迁类型 二、UV光谱的常用概念 三、吸收带及其与分子结构的关系 四、影响吸收带的因素 五、物质对光的吸收与吸收曲线 五、朗伯-比尔定律
2020年9月13日星期日 上一内容 下一内容
61-3
练习:
下面五个电磁辐射区域
A:X射线区
B:红外区
C:无线电波
D:可见光区
E:紫外光区
请指出:
61-22
4、有关概念:
① 吸收带:吸收峰位置 ② 红移或长移 ③ 蓝移或短移 ④ 增色效应
减色效应
⑤ 强带 ε ≥104
弱带 ε ≤102
2020年9月13日星期日 上一内容 下一内容
61-23
⑥ 生色团(chromophore ):含π→π* 、 n →π* 等跃迁的基团,即能产生UV吸收的 基团
61-12
5、电荷迁移跃迁
Charge transfer transition

紫外可见分光光度法

紫外可见分光光度法

光子能量与它的频率成正比,与波长成 反比,与光强度无关。光的波长越短
(频率越高),其能量越大。
单色光: 同一波长的光称为单色光; 复合光: 不同波长的光组成的光称为复合光; 可见光: 凡是被肉眼感受到的光称为可见光; 波长范围为400-780nm
复合光
单色光
物质颜色的产生
固体
反射蓝色光 吸收黄色光
互补色
液体
透过紫色光 吸收绿色光
二、 物质对光的选择性吸收
M + h 基态 E0 (△E) M* 激发态 E1
E1
激发态
E2
E = E1 - E0 = h =h c/λ λ=hc/ E
物质对光选择性吸收
E0
基态
E
例题
某分子中两个电子能级之间的能级差为1eV, 若要电子在两个能级之间发生跃迁,需要
是指分子中的一些带有非成键电子对的基团本身在紫外-可 见光区不产生吸收,但是当它与生色团连接后,增强生色团的 生色能力,使生色团的吸收带向长波移动,且吸收强度增大。 助色团为含有未共用电子对的杂原子基团:-OH、-Cl、-Br
C.红移与蓝移
有机化合物的吸收谱带常
常因引入取代基或改变溶剂使
最大吸收波长λmax和吸收强度 发生变化:
π→π*跃迁的λmax为170nm 。
(4)n→π*跃迁:分子中孤对电子和π键同 时存在时发生n→π* 跃迁。丙酮n→π* 跃迁的λmax为275nm。
(5)电荷迁移跃迁:分子本身具有电子给予
体和电子接受部分,外来辐射照射,电子从
具有给予体特性的部分转移到具有电子接受
体特性的部分所发生的跃迁。其谱带较宽,
思考
1、庚烷、环己烷等烷烃在200-400nm内有无吸收?

仪器分析 (第三版 魏培海)第一章 紫外可见分光光度法

仪器分析 (第三版 魏培海)第一章 紫外可见分光光度法

讨 论 T: 0.00%~100.0%。T=0.00%表示光全 部被吸收;T=100.0%表示光全部透过。 A: 0.00 ~ ∞ 。 A=0.00 表示光全部通过; A→∞表示光全部被吸收。
2. 朗伯-比尔吸收定律
当一束平行单色光垂直通过溶液时, 溶液对光的吸收程度与溶液浓度和液层 厚度的乘积成正比。
T = 0.398 摩尔吸光系数: A 0.400 3 1.33 10 L / mol cm 3 cb 0.15 10 2.00 1.33 103 5.30 L / g cm 质量吸光系数: a M 251
4. 朗伯-比尔定律的偏离现象
原 因 朗伯-比尔定律的局限性: 浓度不高的溶液; 非单色入射光引起的偏离: 仪器因素; 溶液本身发生化学变化引起的偏离 。
第一章
紫外可见分光光度法
利用物质对紫外可见光的吸收特征和 吸收强度,对物质进行定性和定量分析的 一种仪器分析方法。在化工、医药、冶金、 环境监测等领域广泛应用。
“十二五”职业教育国家规划教材
仪器分析
(第三版)
魏培海 曹国庆 主编
第一章 紫外可见分光光度法
“十二五”职业教育国家规划教材
知识目标
• • • • • 了解紫外可见吸收光谱的产生 理解化合物电子能级跃迁的类型和特点 熟悉紫外可见分光光度计的工作原理 掌握光吸收定律的应用及测量条件的选择 掌握紫外可见分光光度法在定量分析中的 应用
1. 光强度、透光率和吸光度
术语 光强度 透光率 定义 单位时间(s)、单位面积(1cm2)上辐射 光的能量,与光子的数目有关。 透射光强度与入射光强度的比值(It/I0) 符号 I0:入射 It:透射 T
吸光度
透光率的负对数 -lg(It/I0)

仪器分析:紫外-可见分光光度法-影响显色反应的因素与反应条件

仪器分析:紫外-可见分光光度法-影响显色反应的因素与反应条件
平行操作空白—用溶剂代替试液,以与试样完全相同的分析 步骤进行平行操作,用所得溶液作空白
仪器分析
紫外-可见分光光度法(三)
测量条件的选择 A的测定范围
当T%=36.8%即A=0.434时,△c/c最小
当T%在15-65%之间,即A在0.2-0.8范围内,
△c/c较小
实际测定时,可通过控制溶液的c及b使得A在0.2-0.8
仪器分析


Contents
1 2 3
紫外-可见分光光度法(三) 光度法分析中的显/褪 色反应
判断波长
光度法的运用
仪器分析
影响显色反应的因素与反应条件
紫外-可见分光光度法(三)
显色剂用量
参比溶液
溶液酸度
测定时波长
显色时间
பைடு நூலகம்
显色温度
仪器分析
紫外-可见分光光度法(三)
影响显色反应的因素与反应条件
显色剂的用量
影响显色反应的因素与反应条件 显色温度:
显色反应一般在室温下进行,但反应速度太慢或常温下不易
进行的显色反应需要升温或降温;
选择方法:作A-T(℃)曲线,选择在A较大的时间进行。
溶剂:实验确定—选择合适的溶剂(多为有机溶剂),提高
反应的灵敏度及加快反应速度。
仪器分析
紫外-可见分光光度法(三)
测量条件的选择 测量波长的选择—根据吸收光谱一般选择Amax测定,考虑 到此波长下灵敏度高、A随波长变化小。若有干扰,根据 “
M + R ⇋ MR
合适的CR通过实验确定
仪器分析
紫外-可见分光光度法(三)
影响显色反应的因素与反应条件 显色时间: 各种显色反应的速度不同,反应完全所需时间不同;有些

紫外仪器分析实验报告

紫外仪器分析实验报告

一、实验目的1. 熟悉紫外分光光度计的仪器结构和工作原理。

2. 掌握紫外-可见吸收光谱法的基本原理和应用。

3. 通过实验掌握紫外-可见分光光度计的操作方法。

4. 学习利用紫外-可见吸收光谱法进行定量分析。

二、实验原理紫外-可见分光光度法是一种基于物质分子对紫外-可见光的选择性吸收而建立的分析方法。

该方法广泛应用于有机化合物的定性、定量分析以及物质的纯度检验。

紫外-可见光波长范围一般为200-800nm,其中200-400nm为紫外区,400-800nm为可见光区。

当物质分子吸收紫外-可见光时,分子中的电子从基态跃迁到激发态。

不同物质的分子结构不同,吸收光的波长和强度也不同。

因此,通过测定物质的吸收光谱,可以实现对物质的定性和定量分析。

朗伯-比尔定律(Lambert-Beer Law)是紫外-可见分光光度法的基础。

该定律表明,在一定波长下,溶液的吸光度(A)与溶液的浓度(c)和光程(l)成正比,即A= εcl,其中ε为摩尔吸光系数。

三、实验仪器与试剂1. 仪器:紫外-可见分光光度计、移液管、容量瓶、比色皿、洗耳球等。

2. 试剂:待测样品、标准溶液、溶剂等。

四、实验步骤1. 标准溶液的配制:根据待测样品的浓度,配制一系列标准溶液。

2. 吸收光谱的绘制:将标准溶液和待测样品分别置于比色皿中,在紫外-可见分光光度计上测定其在不同波长下的吸光度值。

3. 标准曲线的制作:以吸光度值为纵坐标,浓度为横坐标,绘制标准曲线。

4. 待测样品的定量分析:将待测样品的吸光度值代入标准曲线,计算其浓度。

五、实验结果与分析1. 标准曲线的制作:以吸光度值为纵坐标,浓度为横坐标,绘制标准曲线。

根据实验数据,标准曲线的线性关系良好,相关系数R²大于0.99。

2. 待测样品的定量分析:将待测样品的吸光度值代入标准曲线,计算其浓度。

实验结果表明,待测样品的浓度为X mg/L。

六、实验总结1. 通过本次实验,我们掌握了紫外-可见分光光度计的基本原理和操作方法。

仪器分析-第五章-紫外-可见分光光度法精选全文完整版

远紫外区:200 - 400 nm 可见光区:400-750 nm
2. 物质对光的选择性吸收及吸收曲线
M + h M*
M +热
基态
激发态
M + 荧光或磷光
E1 (△E) E2
E = E2 - E1 = h :量子化 ;选择性吸收 吸收曲线与最大吸收波长 max
用不同波长的单色光照射,测吸光度
光的互补:蓝➢ 黄
助色团:
有一些含有n电子的基团(如—OH、—OR
、—NH2、—NHR、—X等),它们本身没有
生色功能(不能吸收λ>200nm的光),但 当它们与生色团相连时,就会发生n—π
共轭作用,增强生色团的生色能力(吸收 波长向长波方向移动,且吸收强度增加) ,这样的基团称为助色团。
红移与蓝移
有机化合物的吸收谱带常常因 引入取代基或改变溶剂使最大吸收
羰基化合物含有C=O基团。 C=O基团 主要可产生*、 n* 、n*三个吸 收带, n*吸收带又称R带,落于近紫外 或紫外光区。醛、酮、羧酸及羧酸的衍生物, 如酯、酰胺等,都含有羰基。由于醛酮这类 物质与羧酸及羧酸的衍生物在结构上的差异, 因此它们n*吸收带的光区稍有不同。
羧酸及羧酸的衍生物虽然也有n*吸 收带,但是, 羧酸及羧酸的衍生物的羰基 上的碳原子直接连结含有未共用电子对的 助色团,如-OH、-Cl、-OR等,由于这些助 色团上的n电子与羰基双键的电子产生 n共轭,导致*轨道的能级有所提高, 但这种共轭作用并不能改变n轨道的能级, 因此实现n* 跃迁所需的能量变大,使 n*吸收带蓝移至210nm左右。
⑴配位体微扰的金属离子d一d电子跃迁和f 一f电子跃迁
摩尔吸收系数ε很小,对定量分析意义
不大。

仪器分析:紫外-可见分光光度法-定量分析



Conten点 方法原理
紫外分光光度法的分析应用
三、紫外分光光度法的分析应用 对照品 比较法
定量分析
比色法
定量 分析
吸收系 数法
计算分 光光度

三、紫外分光光度法的分析应用
定量分析 对照品比较法
按各品种项下的方法,分别配制供试品溶液和对照品溶液,对照品溶液 中所含被测成分的量应为供试品溶液中被测成分规定量的100%±10%, 所用溶剂也应完全一致,在规定的波长测定供试品溶液和对照品溶液的 吸光度后,按公式计算供试品中被测溶液的浓度
求得cb。
对于(3),需要解方程组
感谢观看
三、紫外分光光度法的分析应用
定量分析 对照品比较法
计算供试品中被测溶液的浓度∶ cx=(Ax/Ar)cr
式中 cx为供试品溶液的浓度; Ax为供试品溶液的吸光度; cr为对照品溶 液的浓度; Ar为对照品溶液的吸光度。
三、紫外分光光度法的分析应用
定量分析 吸收系数法
按各品种项下的方法配制供试品溶液,在规定的波长处测定其 吸光度,再以该品种在规定条件下的吸收系数计算含量。用本 法测定时,吸收系数通常应大于100,并注意仪器的校正和检 定。
三、紫外分光光度法的分析应用 定量分析-单组分定量分析方法
标准曲线法:配制一系列(5-9)个不同c的标准溶液,在 适当λ-通常为λmax下,以适当的空白溶液作参比,分别测定 A,做出A-c曲线,在相同测定条件下测得试液吸光度Ax, 计算出对应的Ax。
三、紫外分光光度法的分析应用 定量分析-单组分定量分析方法
三、紫外分光光度法的分析应用
定量分析 计算分光光度法
计算分光光度法有多种,使用时应按各品种项下规定的方法进 行。当吸光度处在吸收曲线的陡然上升或下降的部位测定时, 波长的微小变化可能对测定结果造成显著影响,故对照品和供 试品的测试条件应尽可能一致。

紫外可见分光光度法(食品仪器分析课件)


二者关系为: A = lg(1/T) = -lgT
二、朗伯-比尔定律
当一束平行单色光通过含有吸光物质的稀溶液 时,溶液的吸光度与吸光物质浓度、液层厚度乘积成 正比,即
A= κbc 式中比例常数κ与吸光物质的本性,入射光波长
及温度等因素有关。K可用a(吸光系数)或ε(摩尔 吸光系数)表示。 c为吸光物质浓度,b为透光液层
厚度。 朗伯-比尔定律是紫外-可见分光光度法的理论基础。
朗伯和比尔分别研究了吸光度与液层厚度和吸光
度与浓度之间的定量关系,合称朗伯-比尔定律,其
数学表达式为:
吸光质点浓度
A=lg(I0/It)=κbc
吸光度
吸收层厚度(cm)
物理意义: 当一束平行单色光通过均匀、透明的吸光 介质时,其吸光度与吸光质点的浓度和吸收层厚度的 乘积成正比——分光光度法定量分析的理论基础
分光光度计只能获得近乎单色的狭窄光带,而复合 光可导致对朗伯—比耳定律的正或负偏离。
在实际工作中,为了避免非单色光带来的影响,一般 选用峰值波长进行测定。
选用峰值波长,也可以得到较高的灵敏度。
三、溶液本身发生化学变化
❖ 溶液中存在着离解、聚合、互变异构、配合物的形成等化 学平衡时,使吸光质点的浓度发生变化,影响吸光度。
h
(片)
红敏管 625-1000 nm 蓝敏管 200-625 nm
五、指示器(数据处理) 低档仪器:刻度显示
中高档仪器:数字显示,自动扫描记录
紫外-可见分光光度法定量分析
一、单组分的定量分析 1、吸光系数法(绝对法)
2、标准对照法(直接比较法) As=kbCs Ax=kbCs
Cs=AsCx/Ax
❖ 当溶液浓度c >10-2 mol/L 时,吸光质点间可能发生缔合等 相互作用,直接影响了对光的吸收。

【仪器分析】紫外-可见分光光度法


用紫外-可见分光光度计测定物质对紫外-可
见光的吸收程度并进行定性、定量分析。
一、光的基本性质
波动性
1、光的波粒二象性
粒子性
光的波动性
光以波的形式传播,可用波长、频率来表示。 波长 :两个相邻波峰或波谷间的距离(nm) 频率 :单位时间里通过一固定点处波的数目(S-1) = c/ c = 3×1010 cm/s
六、紫外-可见分光光度法的应用
一、定性分析
定性分析的方法


无机物、有机物吸收光谱的特点
定性分析的方法

纯物质对照

与标准谱图对照
返回
back
标准吸收光谱谱图
Sadtler. Sdandard Spectra (Ultraviolet).
Heyden, London, 1978. 共收集了46000种化合物的紫外吸收光谱 Aromatic Compounds, Wiley, New York, 1951. 共收集了 579种芳香化合物的紫外吸收光谱
返回
光的粒子性 光由光子组成,具有能量。
△E = h = hc/
h为普朗克常数 6.63×10-34J.s根据Fra bibliotek=hc/ 可知
E越大,越小。
E越小,越大。
波谱分区 能量 大

紫、蓝、青、绿、黄、橙、红 书上P5
可见光波长范围400-760nm
光谱分区
能 波 量 长 大 200nm 400nm 小 760nm 2.5um 25um 中红外
1、朗伯—比耳定律 吸光度A:表征物质对光吸收程度的量。
A = lgI0/It = -lgT = kbc
T--透过率
A--吸光度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
quantitative analysis?
第十章 紫外-可见分光光度法
仪器分析
I0
I
样品
第十章 紫外-可见分光光度法
Absorption
仪器分析
Incoming photon is absorbed by the atom
第十章 紫外-可见分光光度法
仪器分析
orbital
*orbital
orbital
* orbital
n (p) electron
第十章 紫外-可见分光光度法
仪器分析
Electronic transitions
* * E n
* * n* n*
anti-bonding anti-bonding
non-bonding bonding
bonding
* >n* *> n*
第十章 紫外-可见分光光度法

243nm 305nm
迁移
长移 短移
π*
π*
△E非<△E极
n
△E非>△E极
非极性溶剂中
π
极性溶剂中
非极性溶剂中 极性溶剂中
第十章 紫外-可见分光光度法
4. pH的影响
仪器分析
例如苯胺在酸性环境形成阳离子,n电子减少,
氨基的助色作用减弱;苯酚在碱性环境形成阴离
子,n电子增加,氧的助色作用增强。
OH
Lambert-Beer Law
仪器分析
Lambert’s Law
(A vs. thickness)
Beer’s Law
(A vs. concentration)
第十章 紫外-可见分光光度法
吸光系数
吸光度 A= ECl 厚度
仪器分析
浓度
吸光系数(absorptivity, E)
吸光物质在单位浓度及单位厚度时的吸光度
第十章 紫外-可见分光光度法
常用术语
仪器分析
助色团(auxochrome) :含有非键电子的杂原子饱
和基团,当它们与生色团或饱和烃相连时,能使该生 色团或饱和烃的吸收峰向长波方向移动,并使吸收强 度增加的基团。 例:—OH,—OR,—NH—,—NH2,—X
苯max 254nm, max 205 苯胺max 280nm,max 1450
特点:① 一般出现在较短波长区,210~250nm。 ② 为强吸收,εmax>104 ③ 共轭双键增加,吸收峰长移,强度增加。 溶剂极性增大,λmax长移。
第十章 紫外-可见分光光度法
3.B带
仪器分析
是芳香族(包括杂芳香族)化合物的特征吸收带。
λmax =256nm,εmax=200,宽带,具有精细结构;
仪器分析
Lamber-Beer定律的适用条件
1、入射光为单色光 2、溶液是稀溶液 3、该定律适用于固体、液体和气体样品 4、在同一波长下,各组分吸光度具有加和性
A总 Aa Ab Ac
第十章 紫外-可见分光光度法
(单组分)样品的定量方法
仪器分析
(一) 吸光系数法 (二) 标准曲线法 (三) 对照法
第十章 紫外-可见分光光度法
紫外-可见分光光度法
仪器分析
四大光谱之一
灵敏度较高(10-6g/ml)
应用广泛
定量分析(定性鉴别, 结构鉴定)
第十章 紫外-可见分光光度法
仪器分析
What is UV-Vis spectrophotometry? Basic principles of UV-Vis? How UV-Vis is applied in
第十章 紫外-可见分光光度法
(一)吸光系数法
依据:Lambert-Beer 定律 波长选择依据:
最大吸收峰 无其他吸收干扰
A= ECl
Ci
[g /100mL]
A El
Ci mi
或Ci
[mol / L] A
l
i% mi 100% m样
仪器分析
第十章 紫外-可见分光光度法
仪器分析
例 维生素B12的水溶液在361nm处的 值是207,盛于1cm吸收池中,测得溶液 的吸光度为0.414,则溶液浓度为:
第十章 紫外-可见分光光度法
仪器分析
2.跨环效应
在环状体系中,分子中非共轭的两个发色团因为空间 位置上的接近,发生轨道间的交盖作用,使得吸收带长移, 同时吸光强度增强,这种作用即为跨环效应。
CH2
O
λmax 214 ε 1500
284 30
O
C
λ max
(K带)
238
ε
2535
S
第十章 紫外-可见分光光度法
第十章 紫外-可见分光光度法
仪器分析
I0
I
样品
I T=
I0
透射光强 入射光强
透光率 (transmittance, T)
第十章 紫外-可见分光光度法
仪器分析
I0
I
样品
I
A = -lgT = -lg
I0
吸光度 (absorbance, A)
第十章 紫外-可见分光光度法
吸收光谱(吸收曲线) (absorption spectrum)
O
OH -
H+
NH2
N+ H3
H+
OH -
λ max 270 nm 287 nm
λ max 280
254nm
第十章 紫外-可见分光光度法
仪器分析
What is UV-Vis spectrophotometry?
Basic principles of UV-Vis?
How UV-Vis is applied in quantitative analysis?
丙酮
(max=279nm =10-30)
第十章 紫外-可见分光光度法
仪器分析
常用术语
生色团(chromophore) :有机化合物分子结
构中含有*或n*跃迁的基团,能在紫外
可见光范围内产生吸收的原子团。
如C=C;C=O;C=N;N=N
注:当出现几个发色团共轭,则几个发色团所产生的 吸收带将消失,代之出现新的共轭吸收带,其波 长将比单个发色团的吸收波长长,强度也增强
极性溶剂中,或苯环连有取代基,其精细结构消失。
4.E带
也是芳香族的特征吸收峰,由苯环中三个乙烯组成的环 状共轭系统引起的*跃迁所产生,分为E1带(180nm)和 E2带(200nm),均属强吸收。
第十章 紫外-可见分光光度法
仪器分析
第十章 紫外-可见分光光度法 苯的B带吸收光谱
仪器分析
(左上)苯蒸气; (左下)苯的己烷溶液; (右上)苯的乙醇溶液
3. 溶剂效应
仪器分析
溶剂的影响:吸收峰位置、吸收强度、光谱形状
溶剂极性的影响: 极性增大:n π* 跃迁产生的吸收峰短移 π π* 跃迁产生的吸收峰长移
第十章 紫外-可见分光光度法
仪器分析
跃迁类型
π π* n π*
正己烷 氯仿
230nm 238nm 329nm 315nm
甲醇
237nm 309nm
计算分光光度法
ቤተ መጻሕፍቲ ባይዱ
仪器分析
计算分光光度法是运用数学、统计学与计 算机科学的方法,通过试验设计与数据的变换和 解析,对物质进行定性定量的方法,属于化学计 量学(Chemometrics)的范畴。
第十章 紫外-可见分光光度法
1、解线性方程组法
仪器分析
A1ab A1a A1b E1aCa E1bCb
第十章 紫外-可见分光光度法
仪器分析
红移(red shift):亦称长移,由于化合物
的结构改变,如发生共轭作用,引入助色团以
及溶剂改变等,使吸收峰向长波方向移动。
蓝(紫)移(blue shift):亦称短移,当化
合物的结构改变或受溶剂影响使吸收峰向短波 方向移动。
第十章 紫外-可见分光光度法
仪器分析
第十章 紫外-可见分光光度法
仪器分析
紫外-可见分光光度法
Ultraviolet & Visible Spectrophotometry (UV-Vis)
第十章 紫外-可见分光光度法
仪器分析
Ultraviolet Light (200~380nm) +
Visible Light (380~800nm)
A 0.414 C = El = 207×1 = 0.002(g/100ml)
第十章 紫外-可见分光光度法
(二) 标准曲线法
max
仪器分析
A
200 240 280 320 360 400 440nm
第十章 紫外-可见分光光度法
仪器分析
A
标准曲线 (A=aC+b,r)
Ax
0
Cx
Concentration
第十章 紫外-可见分光光度法
仪器分析
分光光度法的基本定律 ——朗伯-比尔定律
第十章 紫外-可见分光光度法
朗伯-比尔定律
仪器分析
描述物质对单色光的吸收(absorbance, A) 与 它 的 浓 度 (concentration) 和 厚 度 (thickness)间关系的定律。
A
第十章 紫外-可见分光光度法
要 求 1. r > 0.999 2. n = 5-7 3.待测浓度尽量在标准曲线中间位置
第十章 紫外-可见分光光度法
(三)对照法
仪器分析
标准样品
待测样品
(Reference sample) (Unknown sample)
第十章 紫外-可见分光光度法
A标 A样
相关文档
最新文档