OTML R75-2002《热量表》
热量表配对铂热电阻校准规范

北京市、天津市、河北省地方计量技术规范JJF(京、津、冀)XXX-20XX 热量表配对铂热电阻校准规范(征求意见稿)本规范主要起草人:参加起草人:目录引言为了确保京津冀地区热量表配对铂热电阻的量值溯源的统一、准确、可靠,保证其计量检测有章可循,在充分考虑了技术和经济的合理性前提下,制定了本规范。
本规范参照了国家计量技术规范JJF1001—2011《通用计量术语及定义》、JJF 1059.1—2012《测量不确定度评定与表示》以及JJF1071—2010《国家计量校准规范编写规则》中规定的相关术语、定义和编写规则。
本规范采用了JJG229—2010《工业铂、铜热电阻检定规程》、JJG225-2001《热能表检定规程》、GB/T 32224—2015《热量表》和JB/T 8622—1997《工业铂电阻技术条件及分度表》中规定的相关术语、定义和技术内容。
本规范系首次起草。
热量表配对铂热电阻校准规范(征求意见稿)1范围本校准规范适用于热量表配对铂热电阻的温度、温差计量性能的校准,包括其配套使用的计算器温度参数的校准。
其他类似配对铂热电阻也可以参照本规范。
2引用文件GB/T 32224—2015《热量表》JB/T 8622—1997《工业铂电阻技术条件及分度表》JJG225-2001《热能表检定规程》JJG229—2010《工业铂、铜热电阻检定规程》JJF1001—2011《通用计量术语及定义》JJF 1059.1—2012《测量不确定度评定与表示》JJF1071—2010《国家计量校准规范编写规则》EN 1434-1: 2015 Heat meters Part 1:General requirementsEN 1434-2: 2015 Heat meters Part 2:Constructional requirementsEN 1434-4: 2015 Heat meters Part 4: Pattern approval testsEN 1434-5 : 2015Heat meters Part 5: Initial verification tests凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。
亿林热量表使用说明书.

亿林热量表技术路线框图热量表是多功能、智能化热计量装置,属于机电一体化技术亿林一、工作原理通过测量流过热交换系统的介质流量和进出口温度而得到耗热量,计算公式如下:式中:Q—释放或吸收的热量(J 或Wh。
q m —流经热量表的水的质量流量(kg/h。
Δh—在热交换系统的入口和出口温度下,水的焓值差(J/kg。
τ——时间(h。
二、结构领域。
该产品由流量计、流量信号采集器、计算器、显示器、温度传感器五大部件构成。
技术路线框图如下:∫Δ=1τττhd qQ m亿林热量表使用说明书亿林热量表主要型号热量表主要规格三、应用范围适用于以水为媒体的热交换系统的热(冷量计量。
主要用于计量居民住宅和公共建筑采暖耗热量,也可用于中央空调系统计量供冷量,还可用于化工、发电、制药等工业领域。
该产品适应了国家推行供热体制改革,实行采暖分户热计量的需要。
四、产品执行标准与准确度等级产品执行标准:中华人民共和国城镇建设行业标准《热量表》(CJ 128-2000。
产品检定规程:中华人民共和国国家计量检定规程《热能表》(JJG 225-2001计量准确度:产品计量准确度为《热量表》(CJ 128-2000规定的3级标准。
五、规格型号规格:公称直径DN(毫米15 20 2532 40 50 65 80 100150 200 250300普通型热/冷兼用型数据通讯型JHM -P JHM -RL JHM -I JHM -R JHM -M 无数据通讯接口既可计热,又可计冷脉冲式接口RS485接口 M -BUS 接口亿林六、主要技术特性1.主要技术参数300 公称口径/Norminal Calibermm15 20 25 32 40 50 65 80 100125150200250 1200 最大流量/Max.Flow-rate Qmaxm3/h 3 5 7 12 20 30 50 80 120200300500800600 常用流量/the Permanent Flow-rate Qpm3/h 1.5 2.5 3.5 6 10 15 25 40 60 10015025040048 最小流量/Min.Flow-rate Qminm3/h 0.030.050.070.120.20.45 0.75 1.2 1.8 4 4.57.532 最大工作压力/MAPMPa 1.6最大压力损失/Max.Preasure lossMPa ≤0.025温度上限/the highest temperature Tmax℃ 95温度下限/the lowest temperature Tmin℃ 4最大温差/Max.temperature difference ΔTmax ℃ 75最小温差/Min.temperature difference ΔTmin ℃ 3温度传感器电缆长度m ≥1.5Cable Length Of Temperature Sensor使用环境/Working EnvironmentB类温度: -5℃~55℃相对湿度:≤80%保护等级/Protection ClassIP54电池工作年限/Battery Service Year年 >6- 3 -2、压力损失特性0.000.010.020.030.040.050.060.070.080.09 0.10压力损失△P(M P a 瞬时流量Q (m 3/h0.0000.0050.0100.0150.0200.0250.030压力损失△P (M P a 瞬时流量Q (×100 m 3 /h压力损失特性曲线七、显示功能按压薄膜开关,显示内容按下列图示依序前进:全屏显示累积热量累积流量瞬时流量进水温度回水温度进回水温差累积工作时间累积脉冲数进水温度传感器正常(左)、故障状态(右)回水温度传感器正常(左)、故障状态(右)流量传感器正常(左)、故障状态(右)电池电压状态(左正常,右欠压)当前日期当前时间热量校验流量校验 -6-2、安装使用说明(1)热量表运抵施工现场后,在安装前应存放于包装箱内,避 -7-免雨林、重压和摔橦。
热量表是一种机电一体组合式产品,对供暖、热量进行精确测量的精

正确使用德宝牌热量表热量表是机电一体化的产品,是热计量或冷计量的精密仪表。
它是由流量传感器、积分仪和配对温度传感器组成,是不可分解的一个整体。
CJ-128-2000国家行业标准和DBJ01-605-2000分户热计量设计技术规程中对热量表安装环境、条件、水质都提出了具体的要求。
认真学习热量表国家规定的标准和规程,正确的选择产品型号,正确的安装使用维护,才能提高计量精度,延长使用寿命。
为供暖部门正确取费提供精确可靠的计量数据,为国家对供暖制度的改革——进行分户计量,提供了有力的保证。
综上所述,德宝牌热量表的选型、安装、使用、维护、维修特提出下列具体要求:一、热量表选型:热量表的选型工作十分重要,它关系到热量表在使用中的计量精度、使用寿命、查表、检修等问题。
1、供暖或制冷系统的实际流量一般小于设计流量:户用热量表DN15 实际流量为0.2~0.3立方米/小时;户用热量表DN20 实际流量为0.3~0.5立方米/小时;户用热量表DN25 实际流量为0.5~1.0立方米/小时;热量表选型应参照以上数据,尤其大口径热量表定货前需认真填写使用技术征询单。
2、对于管井狭窄、黑暗,查表、维修困难的环境下,应选择分体式热量表。
3、当安装尺寸达不到安装说明的要求时,使用方可向厂方另提要求(包括电缆长度、流量传感器安装方式等)。
二、热量表安装对环境的要求热量表是机电一体化精密仪表,在国家行业标准、北京市技术规程文件中对安装环境都提出了具体的要求:1、严禁室外露天安装。
2、安装热量表的区域要做好防水、防尘处理工作。
3、按国家A类标准,环境温度控制在+5℃~55℃;湿度不超过90%。
4、热量表要安装在干燥、易于观察、读取数据与维修方便的环境。
5、安装热量表区域附近不应有腐蚀性强的物质。
6、远离磁场三、安装热量表的管路要求热水中的杂质会堵塞流量计,杂质中的铁锈渣、细棉纱等杂物吸入流量计中,附在叶轮上,影响计量精度。
按国家行业有关规定,应符合下列要求:1、水质要求:①溶解氧<0.1mg/L②碳酸盐硬度<0.6mg/L③悬浮物<5mg/L④PH:8.5~10⑤含铁量<0.1mg/L—摘自《供暖锅炉设计手册》99版2、要求热量表安装前加压冲洗管网(使用短管替代热量表)。
热量表检定装置计量标准技术报告

比较测量法
计量器具名称:热能表
测量范围:流量测量范围:(0.015~7)m3/h;
下
口径:DN15-DN25;
一 级
载热液体温度范围:室温~95℃;
计
配对温度传感器及计算器:
量 器
温度测量范围:(5~95)℃;
具
温差测量范围:≥3k。
不确定度或准确度等级或最大允许误差:2 级
6
七、计量标准的稳定性考核
本
载热液体温度范围:室温~95℃;
级 计
配对温度传感器及计算器:温度测量范围:(5~95)℃;温差测量范围:
量
≥3k
器 具
不确定度或准确度等级或最大允许误差:热水流量标准装置:U=0.17% k=2;
数字测温仪:U=0.050℃ k=2 ;
恒温水槽:温差:U=1mk,k=2;波动度:U=2mk,k=2
数字测温仪:U=0.050℃ k=2 ; 恒温水槽:温差:U=1mk,k=2;波动度:U=2mk,k=2
五、环境条件
序号
项目
1
温度
2
湿度
3
4
5
6
要求 (15-35)℃ (15-85)%RH
实际情况 (18-30)℃ (40-70)%RH
结论 符合要求 符合要求
5
六、计量标准的量值溯源和传递框图
计量标准名称:数字多用表
计量标准技术报告
计 量 标 准 名 称 热量表检定装置 计量标准负责人 建 标单位名称 填 写 日 期 2020
目录
一、建立计量标准的目的…………………………………………………… ( ) 二、计量标准的工作原理及其组成……………………………………( ) 三、计量标准器及主要配套设备…………………………………………( ) 四、计量标准的主要技术指标………………………………………( ) 五、环境条件……………………………………………………………( ) 六、计量标准的量值溯源和传递框图………………………………………( ) 七、计量标准的稳定性考核…………………………………………………( ) 八、检定或校准结果的重复性试验……………………………………………( ) 九、检定或校准结果的不确定度评定……………………………………( ) 十、检定或校准结果的验证…………………………………………………( ) 十一、结论……………………………………………………………………( ) 十二、附加说明…………………………………………………………………( )
德宝超声波热量表介绍

“德宝”热计量工作概况一、企业简史1、1997年,财政部下属德宝集团开始投资组合研发生产热计量产品,是国内最早的热计量产品生产企业之一,现有博士5人,硕士8人,学士52人,生产员工目前110人;2、2000年,参加热量表国家标准《CJ128-2000》的编纂,并提供重要文献;3、2001年,参加热量表国家检验标准《JJG225-2001》的编纂工作;4、2002年,获得《ISO质量管理体系认证》、《中国知名品牌》、《重合同守信用企业》、《专利证书》、《中国暖通协会》、《北京管委推荐企业》、《中国城镇供热协会理事单位》;5、2003年,在山东省建立中国第一个热计量收费试点。
王树铎、蔡启林等教授到试点指导并在中国建设部备案,目前已经成功收费达7个采暖季;6、2004年,产品列入《东北标准建筑图集》、《华北标准建筑图集》;7、2005年,超声波热量表、电磁热量表研发成功,推出“热网数字化管理”理念,建立了东北、西北、华北等多地供热企业的合作;8、2006年,热计量产品远传系统成功推出,解决繁重的抄表工作;9、2007年,参与编纂热量表国家标准《CJ128-2007》热量表检验标准《JJG225-2001》;10、2008年,产品被选为“2008奥运会场馆”指定产品;11、2009年,完成北京、黑龙江、吉林、辽宁、内蒙古、青海、新疆、陕西、山西、河南、河北等省级的入围工作;12、2010年,在国家政策大力引导下,企业销量突破15万台;二、产品13、核心处理器(CPU)采用进口产品(美国TI);14、温度传感器(PT1000)采用配对进口产品(德国JUMO);15、超大容量电池采用进口产品(韩国帝王),保证使用10年以上;16、积分仪外壳采用航空专用(ABS)工业塑料;17、流量传感器具备防结垢功能(A,高频振动,防止结垢B,声波击破水流产生纳米气泡清洗反射板C,增大信号发射功率,保证精度);18、户用型精度2级,大口径系列产品(电磁)精度1级;19、防护等级为IP68,可在泡水情况下不影响运转;20、配套抄表系统可扩展用户达100万户,实现地市级单系统平台,故障报警、欠费报警及短信提醒等特色功能均可订制,目前抄表用户已达5万户;21、通过部级成果鉴定的超声波系列产品;三、业绩德宝牌热计量产品部分业绩表德宝牌热计量产品外埠部分业绩表北京德宝豪特能源科技有限公司四、供货及服务方案●产量1、企业目前的热量表产品单位流水线目前可检测1500台/天,每月按30天计算。
超声热量表技术标准

1、概述本次采购设备高温热水热量表采购设备,包括双声道高温水超声波热量表、远传计量箱、热量表配对法兰、螺栓等一整套热计量装置。
2、热能表流量参数3、供货范围:4套供水超声波热量表整套装置(包括双声道超声波流量计、供回水配对温度传感器、积分仪)、流量计采用分体式,变送器线缆长20m、积分仪线长30m,配套计量箱、供水流量计的首次强制检定、提供检定证书原件一份、复印件 3份,质保期一年,保质期内出现问题免费维修、更换。
主要供货范围见下表:供货商应按标书要求提供上述设备,并附所有附件、技术文件、有关的图纸或规范要求的其它技术资料,以及拆卸设备所需的专用工具,并提供指导安装、计量设备调试等工作。
要求所有设备配置均为技术先进、性能优良,在国际上处于领先地位的最新产品。
4、超声波热量计及积算仪技术要求超声波热量计包括超声波流量计、配对温度传感器及热量积算仪等整套设备。
由于供热系统水质的特殊,要求热量表具有良好的防堵塞、防腐蚀、防结垢、防散热功能。
流量计要求采用分体式产品。
产品必须取得中华人民共和国《进口计量器具型式批准证书》。
制造商应具备 30年以上生产历史;必须具有ISO9001管理体系认证证书和ISO14001管理体系认证证书。
(1)流量计要求:a.公称压力:PN16b.连接方式:法兰连接,投标方应配套提供流量计安装所需的法兰盘c.储存温度:-40℃~85℃d.最大压力损失:≤0.02MPae.流体温度范围:0-130℃,耐温要求不低于 180℃f.流量范围比例:1:100g.量计通道要求:双通道湿式超声波测量技术,流量精度为 0.5级,h.所测最大流速: 6m/s.i.要求启动流量:公称流量大于 1:100 标识:j.流量计上均须带有以下标识信息:流向、公称尺寸k.使用寿命:流量计使用寿命不少于 10年m.流量计的部件和安装等事项:信号转换器分体安装。
由厂家提供传感器与信号转换器之间专用电缆20米n.流量计输出方式:流量计应有两路脉冲输出。
超声波热量表工艺文件
江西三川水表股份有限公司标识号:工艺文件产品名称:热量表共 23 页型号规格: BCLR-A-(15~25) 产品图号: BCLR-01-01 版本号:分发号:批准:会签: 2010 年 10 月 8 日 02 第 1 页共 23 页徐州丙辰电产品名称热量表名称工艺流程图子有限公司产品图号 BCLR-01-01 工序代号不合格退回元件采购元件检验入库领料元件检测焊前准备不合格修理功能检测组装合格焊插件再流焊贴片丝印检流量不焊 PT 不合格检温度抽检合格包装入库格合返修拟制审核标准化批准日期 2007 年 10 月 8 日修订状态 02 第 2 页共23 页徐州丙辰电产品名称热量表名称丝印 01 丝印工艺操作卡子有限公司一产品图号工作环境⑴温度要求:5- 40℃⑵保持工作环境洁净。
二操作步骤BCLR-01-01 湿度要求:20-95% 工序代号 1、将钢网左右均匀的夹在丝网印刷台上。
2、将线路板用三点孔定位固定在丝网印刷台上,轻轻的按下钢网,使其紧贴在线路板上 3、目测钢网的过孔是否与线路板的焊盘相重合,否则按以下步骤调整。
1)、左右调整:先转动丝网台的左边或右边的调整螺丝,让钢网板的过孔(左边或右边)与线路板的焊盘(左边或右边)相重合。
2)、上下调整:转动丝网台前面的调整螺丝,使钢网的过孔与线路板(上面)的焊盘相重合。
4、暂时固定丝网台上的调整螺丝,轻轻的抬起丝网板,以免使线路板移位。
5、再次按下钢网按步骤 3 再次进行调整直到符合要求为止。
调好后压紧调整螺丝 6、按下钢网板,目测钢网的过孔是否与线路板的焊盘相重合。
如有偏位作适当调整,然后在钢网前端均匀涂上焊锡膏,再用刮板从前到后均匀的刮下来。
7、轻轻的抬起钢网板,取出线路板。
检查有无粘连现象,如有用棉纱蘸少许酒精擦拭干净。
重复以上步骤。
三注意事项⑴、设备应保持平稳,不得倾斜,严禁剧烈震动,应在洁净的环境中,避免因灰尘等影响印刷质量。
热量表型式检测评价大纲
热量表型式检测评价大纲(原创版)目录一、引言二、热量表型式检测的目的和意义三、热量表型式检测的具体内容四、热量表型式检测的流程五、热量表型式检测的评价标准六、热量表型式检测的实际应用七、总结正文一、引言热量表是测量热能消耗的一种仪表,广泛应用于住宅、商业和工业建筑等领域。
为了保证热量表的准确性和可靠性,需要对其进行型式检测评价。
本文旨在介绍热量表型式检测评价的大纲,以帮助相关人员了解并实施这一过程。
二、热量表型式检测的目的和意义热量表型式检测的目的是确保热量表在正常使用条件下能够准确测量热能消耗,从而为能源管理提供可靠的数据支持。
这一过程的意义在于,可以保证热量表的使用效果,提高能源利用效率,并为我国的节能减排工作提供技术支持。
三、热量表型式检测的具体内容热量表型式检测的具体内容包括以下几个方面:1.热量表的结构和功能检测:检查热量表的零部件是否齐全,功能是否正常。
2.热量表的准确度检测:通过实验室对比试验,评价热量表的准确度是否符合标准要求。
3.热量表的稳定性检测:通过对热量表进行长时间的运行试验,评价其在不同工况下的稳定性能。
4.热量表的环境适应性检测:检查热量表在不同温度、湿度等环境条件下的性能表现。
四、热量表型式检测的流程热量表型式检测的流程如下:1.样品准备:从生产批次中随机抽取一定数量的热量表样品。
2.检测前准备:对样品进行编号,并记录相关信息,如生产日期、生产批次等。
3.检测:按照检测内容进行各项试验,记录试验数据。
4.数据分析:对试验数据进行统计分析,评价热量表的性能。
5.检测报告:编写检测报告,记录检测结果和评价结论。
五、热量表型式检测的评价标准热量表型式检测的评价标准主要包括以下几个方面:1.准确度:热量表的测量结果与实际值之间的偏差应在规定范围内。
2.稳定性:热量表在长时间运行过程中,其测量结果应保持稳定。
3.环境适应性:热量表在不同环境条件下的性能表现应满足使用要求。
4.可靠性:热量表在正常使用条件下,应具有较高的故障率和较长的使用寿命。
热量表型式检测评价大纲
热量表型式检测评价大纲【原创实用版】目录一、引言二、热量表型式检测的定义和意义三、热量表型式检测的评价标准四、热量表型式检测的实施步骤五、热量表型式检测的注意事项六、结论正文一、引言随着我国能源事业的发展,热量表作为计量能源消耗的重要工具,其性能和精度越来越受到广泛关注。
热量表型式检测作为一种评估热量表性能的有效手段,对于保障热量表的准确性和可靠性具有重要意义。
本文旨在对热量表型式检测的评价大纲进行分析和探讨,以期为我国热量表型式检测工作的开展提供参考。
二、热量表型式检测的定义和意义热量表型式检测,是指对热量表的型式、结构、材料等方面进行全面检查和评估,以确定其在使用过程中的性能和精度。
热量表型式检测对于确保热量表的准确计量、提高能源利用效率和减少能源浪费具有重要意义。
三、热量表型式检测的评价标准热量表型式检测的评价标准主要包括以下几个方面:1.型式要求:热量表应符合国家相关标准和规定,具备良好的通用性和互换性。
2.结构要求:热量表结构应稳定、可靠,具有良好的抗干扰性能和防水性能。
3.材料要求:热量表的材料应具备优良的耐热性、耐腐蚀性和抗氧化性。
4.功能要求:热量表应具备完善的计量、显示和保护功能,能够准确反映能源消耗情况。
5.精度要求:热量表的计量精度应符合国家相关标准和规定。
四、热量表型式检测的实施步骤1.采样:从生产批次中随机抽取一定数量的热量表进行检测。
2.检测:对抽取的热量表进行型式、结构、材料等方面的全面检查和评估。
3.数据处理:对检测数据进行整理、分析和评价,得出检测结论。
4.报告:编写检测报告,记录检测过程和结果,提出改进建议。
五、热量表型式检测的注意事项1.检测前应充分了解国家相关标准和规定,确保检测工作符合要求。
2.检测过程中应严格遵循操作规程,确保检测数据的准确性和可靠性。
3.检测报告应客观、真实、完整地反映检测结果,为热量表的生产、使用和监管提供依据。
六、结论热量表型式检测是保障热量表性能和精度的重要手段。
热量表型式检测评价大纲
热量表型式检测评价大纲
摘要:
一、引言
二、热量表型式检测的目的和意义
三、热量表型式检测的具体内容
四、热量表型式检测的方法和步骤
五、热量表型式检测的评价标准
六、热量表型式检测的实际应用
七、总结
正文:
一、引言
随着科技的发展,各种新型的热量表层出不穷,为了保证热量表的准确性和可靠性,热量表型式检测评价就显得尤为重要。
本文旨在介绍热量表型式检测评价的大纲,以便于相关人员进行参考和实践。
二、热量表型式检测的目的和意义
热量表型式检测的目的在于确保热量表的准确性和可靠性,从而保证热量计量的准确性。
这对于能源的管理和合理利用具有重要的意义。
三、热量表型式检测的具体内容
热量表型式检测的具体内容包括:热量表的结构检查、功能检查、性能检查等。
四、热量表型式检测的方法和步骤
热量表型式检测的方法主要包括实验方法和模拟方法。
具体的步骤包括:样品的准备、实验设备的准备、实验操作、数据收集和分析等。
五、热量表型式检测的评价标准
热量表型式检测的评价标准主要包括:准确度、稳定性、可靠性等。
六、热量表型式检测的实际应用
热量表型式检测在实际应用中,不仅可以保证热量计量的准确性,还可以提高热量表的使用寿命,节约能源等。
七、总结
热量表型式检测评价对于保证热量表的准确性和可靠性,以及能源的合理利用具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heat metersPart 1: General requirementsCompteurs d’énergie thermique Partie 1: Exigences généralesO I ML R 75-1 E d i t i o n 2002 (E )OIML R 75-1Edition 2002 (E)I NTERNATIONAL R ECOMMENDATIONContentsForeword ...........................................................................................................................................................................41Scope ...........................................................................................................................................................52References ..................................................................................................................................................53Types of instrument ...................................................................................................................................53.1Complete instrument 3.2Combined instrument 3.3Hybrid instrument3.4Sub-assemblies of a heat meter, which is a combined instrument 3.5Equipment under test, EUT4Terminology and symbols ..........................................................................................................................64.1Response time, τ0.54.2Fast response meter 4.3Rated voltage, U n4.4Rated operating conditions 4.5Reference conditions 4.6Influence quantity 4.7Influence factor 4.8Disturbance 4.9Types of error 4.10Types of fault4.11Reference values of the measurand, RVM 4.12Conventional true value 4.13Meter model 4.14Electronic device4.15Electronic component4.16Minimum immersion depth of a temperature sensor 4.17Self-heating effect5Rated operating conditions .......................................................................................................................85.1Limits of temperature range5.2Limits of temperature differences 5.3Limits of flow rate5.4Limits of thermal power5.5Maximum admissible working pressure, MAP 5.6Maximum pressure loss6Technical characteristics ...........................................................................................................................86.1Materials and construction6.2Requirements outside the limiting values of the flow rate 6.3Display (indicating device)6.4Protection against fraud 6.5Supply voltage7Specified working range .........................................................................................................................117.1Temperature difference 7.2Flow rate8Heat transmission formula (11)9Metrological characteristics (maximum permissible errors, MPE) (11)9.1General9.2Values of maximum permissible errors9.3Application of maximum permissible errors9.4Maximum permissible errors in service10Environmental classification (13)10.1Environmental class A (domestic use, indoor installations)10.2Environmental class B (domestic use, outdoor installations)10.3Environmental class C (industrial installations)11Heat meter specifications, inscriptions and instruction manual (13)11.1Flow sensor11.2Temperature sensor pair11.3Calculator11.4Complete instrument12Information to be delivered with the heat meters or sub-assemblies (15)Annex A (Mandatory): Heat coefficient equations (16)The International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization whose primary aim is to harmonize the regulations and metrological controls applied by the national metrological services, or related organizations, of its Member States.The two main categories of OIML publications are:•International Recommendations (OIML R), which are model regulations that establish the metrological charac-teristics required of certain measuring instruments and which specify methods and equipment for checking their conformity; the OIML Member States shall implement these Recommendations to the greatest possible extent;•International Documents (OIML D), which are inform-ative in nature and intended to improve the work of the metrological services.OIML Draft Recommendations and Documents are devel-oped by technical committees or subcommittees which are formed by the Member States. Certain international and regional institutions also participate on a consultation basis.Cooperative agreements are established between OIML and certain institutions, such as ISO and IEC, with the objective of avoiding contradictory requirements; consequently, manu-facturers and users of measuring instruments, test labor-atories, etc. may apply simultaneously OIML publications and those of other institutions.International Recommendations and International Docu-ments are published in French (F) and English (E) and are subject to periodic revision.This publication - reference OIML R 75-1 edition 2002 - was developed by the OIML Technical Committee TC 11 Instru-ments for measuring temperature and associated quantities on the basis of Part 1 of the European Standard EN 1434 (1997),the relevant paragraphs of which have been reproduced with the agreement of the European Committee for Standardiza-tion (CEN). This publication was approved for final publica-tion by the International Committee of Legal Metrology in 2001 and will be submitted to the International Conference of Legal Metrology in 2004 for final sanction.OIML Recommendation R 75 includes three parts: Part 1(General requirements)and Part 2 (Type approval tests and initial verification tests)which have been issued in 2002 as separate publications, and Part 3 (Test report format)which is expected to be approved and issued at a later stage. It supercedes the former edition dated 1988.OIML publications may be obtained from the Organization’s headquarters:Bureau International de Métrologie Légale 11, rue Turgot - 75009 Paris - France Telephone:33 (0)1 48 78 12 82 and 42 85 27 11Fax:33 (0)1 42 82 17 27E-mail:biml@ Internet:Foreword1ScopeThis Recommendation applies to heat meters, that is to instruments intended for measuring the heat which, in a heat-exchange circuit, is given up by a liquid called the heat-conveying liquid.Heat meters which are submitted for control by legal metrology services shall comply with the requirements formulated in this Recommendation.2ReferencesInternational Vocabulary of Terms in Legal Metrology (VIML, 2000)International Vocabulary of Basic and General Terms in Metrology (VIM, 1993)IEC 61010-1 (2001-02). Safety requirements for electrical equipment for measurement, control and laboratory use.Part 1: General requirements . International Electro-technical Commission, GenevaISO 7268 (1983-05). Amendment ISO 7268-am1(1984-07). Pipe components - Definition of nominal pressure .International Organization for Standardization,GenevaIAPWS-IF97.The Industrial Standard for the Thermo-dynamic Properties and Supplementary Equations for other Properties of Water and Steam . Ed. by Wagner, W.and Kruse, A. Springer Verlag, Berlin-Heidelberg, 1998ISBN 3-540-64339-7IEC 60751 (1983-01). Amendments IEC 60751-am1(1986-01) and IEC 60751-am2(1995-07) Industrial platinum resistance thermometer sensors . International Electrotechnical Commission, Geneva3Types of instrumentFor the purpose of this Recommendation, heat meters are defined either as complete instruments or as com-bined instruments.3.1Complete instrumentA heat meter which does not have separable sub-assemblies as defined in 3.4.3.2Combined instrumentA heat meter which has separable sub-assemblies as defined in 3.4.3.3Hybrid instrumentA heat meter - often called a “compact” instrument -which for the purpose of type approval and verifi-cation, can be treated as a combined instrument as defined in 3.2. However, after verification, its sub-assemblies shall be treated as inseparable.3.4Sub-assemblies of a heat meter, which is a combined instrumentThe flow sensor, the temperature sensor pair and the calculator or a combination of these.3.4.1Flow sensorA sub-assembly through which the heat-conveying liquid flows, at either the flow or return of a heat-exchange circuit, and which emits a signal, which is a function of the volume or the mass or the volumetric or mass flow rate.3.4.2Temperature sensor pairA sub-assembly (for mounting with or without pockets), which senses the temperatures of the heat-conveying liquid at the flow and return of a heat-exchange circuit.Heat metersPart 1: General requirements3.4.3CalculatorA sub-assembly which receives signals from the flow sensor and the temperature sensors and calculates and indicates the quantity of heat exchanged.3.5Equipment under test (EUT)A sub-assembly, a combination of subassemblies or a complete meter subject to a test.4Terminology and symbolsFor the purposes of this Recommendation, the follow-ing terms, definitions and symbols apply.Note:The terminology used in this Recommendationcomplies with the International Vocabulary of Terms in Legal Metrology (VIML) and the Interna-tional Vocabulary of Basic and General Terms in Metrology (VIM) of which certain definitions are reproduced below.4.1Response time, τ0,5Time interval between the instant when the flow, the temperature or the temperature difference is subjected to a specified abrupt change, and the instant when the response reaches 50 % of its final steady value.4.2Fast response meterMeter suitable for heat-exchange circuits with rapid dynamic variations in the exchanged heat.4.3Rated voltage, U nVoltage of the external power supply required to operate the heat meter, conventionally the voltage of the AC mains supply.4.4Rated operating conditionsConditions of use for which specified metrological characteristics of a measuring instrument are intended to lie within the specified maximum permissible errors [adapted from VIM 5.5].4.5Reference conditionsConditions of use prescribed for testing the perform-ance of a measuring instrument or for intercomparison of results of measurements [VIM 5.7].4.6Influence quantityQuantity that is not the measurand but that affects the result of the measurement [VIM 2.7].4.7Influence factorInfluence quantity having a value within the rated operating conditions.4.8DisturbanceInfluence quantity having a value outside the rated operating conditions.4.9Types of error4.9.1Error (of indication) of a measuring instrumentIndication of the measuring instrument minus the conventional true value of the corresponding input quantity [adapted from VIM 5.20].4.9.2Intrinsic error (of a measuring instrument)Error of a measuring instrument, determined under reference conditions [VIM 5.24].4.9.3Initial intrinsic errorIntrinsic error of a measuring instrument as deter-mined prior to performance tests and durability tests.4.9.4Durability errorDifference between the intrinsic error after a period of use and the initial intrinsic error.4.9.5Maximum permissible error, MPEExtreme values of the error (positive or negative)permitted by this Recommendation [adapted from VIM 5.21].4.10Types of fault 4.10.1FaultDifference between the error of indication and the intrinsic error of the instrument.4.10.2Transitory faultMomentary variations in the indication which cannot be interpreted, memorized or transmitted as measure-ments.4.10.3Significant faultFault greater than the absolute value of the MPE which is not a transitory fault.Example: If the MPE is ±2 %, then the significant fault is a fault larger than 2 %.4.11Reference values of the measurand, RVM Specified set of values of the flow rate, the return temp-erature and the temperature difference, fixed to ensure valid intercomparison of the results of measurements.4.12Conventional true valueValue of a quantity which, for the purpose of this Recommendation, is considered as a true value. Note:A conventional true value is, in general, regardedas sufficiently close to the true value for the difference to be insignificant for the given purpose.4.13Meter modelDifferent sizes of heat meters or sub-assemblies having a family similarity in the principles of operation,construction and materials.4.14Electronic deviceDevice employing electronic components and perform-ing a specific function.4.15Electronic componentSmallest physical entity in an electronic device which uses electron or hole conduction in semi-conductors or electron conduction in gases or in a vacuum.4.16Minimum immersion depth of atemperature sensorDepth of immersion in a thermostatic bath with a temperature of (80 ±5) °C at an ambient temperature of (25 ±5) °C, beyond which deeper immersion changes the output value by an amount corresponding to less than 0.1 K.4.17Self-heating effectIncrease in temperature signal that is obtained by subjecting each temperature sensor of a pair to a con-tinuous power dissipation of 5 mW when immersed to the minimum immersion depth in a water bath, having a mean water velocity of 0.1 m/s.5Rated operating conditions5.1Limits of temperature range5.1.1The upper limit of the temperature range, Θmax ,(expressed in °C) is the highest temperature of the heat-conveying liquid, at which the heat meter shall func-tion without the maximum permissible errors being exceeded.5.1.2The lower limit of the temperature range, Θmin ,(expressed in °C) is the lowest temperature of the heat-conveying liquid, at which the heat meter shall function without the maximum permissible errors being exceeded.5.2Limits of temperature differences5.2.1The temperature difference, ∆Θ, (expressed in K)is the absolute value of the difference between the temperatures of the heat-conveying liquid at the flow and return of the heat-exchange circuit.5.2.2The upper limit of the temperature difference,∆Θmax , is the highest temperature difference, at which the heat meter shall function within the upper limit of thermal power without the maximum permissible errors being exceeded.5.2.3The lower limit of the temperature difference,∆Θmin , is the lowest temperature difference, at which the heat meter shall function without the maximum permissible errors being exceeded.5.3Limits of flow rate5.3.1The upper limit of the flow rate, q s , is the highest flow rate, at which the heat meter shall function for short periods (less than 1h/day and less than 200h/year) without the maximum permissible errors being exceeded.5.3.2The permanent flow rate, q p , is the highest flow rate at which the heat meter shall function con-tinuously without the maximum permissible errors being exceeded.5.3.3The lower limit of the flow rate, q i , is the lowest flow rate, above which the heat meter shall function without the maximum permissible errors being exceeded.5.4Limits of thermal powerThe upper limit of the thermal power, P s , is the highest power at which the heat meter shall function without the maximum permissible errors being exceeded.5.5Maximum admissible working pressure, MAPThe maximum positive internal pressure that the heat meter can withstand permanently at the upper limit of the temperature range, expressed as a PN-series as defined in ISO 7268.5.6Maximum pressure lossThe loss of pressure in the heat-conveying liquid passing through the flow sensor when the flow sensor is operating at the permanent flow rate, q p .6Technical characteristicsThe materials used and the construction of heat meters shall ensure sufficient stability to enable the instru-ment to comply with the maximum permissible errors stated when the device is set up in accordance with the supplier’s instruction manual.6.1Materials and constructionAll the constituent elements of heat meters shall be solidly constructed of materials having appropriate qualities to resist the various forms of corrosion and wear which occur under rated operating conditions,especially those due to impurities in the heat-conveying liquid. Correctly installed meters shall also be able towithstand normal external influences. Meters shall, in all circumstances, withstand the maximum admissible pressure and the temperatures for which they are designed, without malfunction.6.1.1Suppliers of heat meters shall declare any limitations with regard to installation of the heat meter and its orientation with respect to the vertical.6.1.2Casings of heat meters shall protect the parts inside against water and dust ingress. The minimum forms of enclosure protection shall be IP54 for enclosures that are to be installed into pipework and IP52 for other enclosures, all in accordance with IEC 61010-1.6.1.3Heat meters may be fitted with interfaces allowing the connection of supplementary devices.Such connections shall not modify the metrological qualities of the heat meter.6.1.4The maximum pressure loss at q p shall not exceed 0.25 bar, except where the heat meter includes a flow controller or also acts as a pressure-reducing device.6.2Requirements outside the limiting values of the flow rateWhen the flow rate is less than a threshold value declared by the supplier, no registration is allowed.Note:The flow rate through a “nominally” closed valveor the movement of liquid in the pipe behind a closed valve caused by thermal expansion and contraction should not be recorded.For flow rates greater than q s , the behavior of the meter, e.g. the production of spurious or zero signals,shall be declared by the manufacturer. Flow rates greater than q s shall not result in a positive error greater than 10 %.6.3Display (indicating device)6.3.1The quantity of heat shall be indicated in joules,watt-hours or in decimal multiples of those units. Thename or symbol of the unit in which the quantity of heat is given shall be indicated adjacent to the display.6.3.2The display shall include a numerical or semi-numerical scale. Heat meters shall be so designed that,in the event of an external power supply failure (mains or external DC), the meter indication of energy at the time of failure is not lost, and remains accessible for a minimum of one year.Note:Compliance with 6.3.2 will not necessarilyensure that the heat meter will continue to register the heat consumed in the event of a power supply failure.6.3.3The indicating device shall provide an easily read, reliable and unambiguous indication.6.3.4The real or apparent height of the figures on the display for energy shall not be less than 4mm.6.3.5The figures indicating decimal fractions of a unit shall be separated from the others by the decimal divider. In addition, the figures indicating decimal fractions of energy shall be clearly distinguishable from the others.6.3.6Where the display is of the roller-type, the advance of a figure of a particular significance shall be completed during the time when the figure of next lower significance changes from 9 to 0. The roller carrying the figures of lowest significance may have a continuous movement, of which the visible displace-ment shall then be from bottom to top.6.3.7The display indicating the quantity of heat shall be able to register, without overflow, a quantity of heat at least equal to the transfer of energy which corres-ponds to a continuous operation for 3000h at the upper limit of the thermal power, P s , of the heat meter.The quantity of heat, measured by a heat meter operating at the upper limit of the thermal power for 1h, shall correspond to at least one digit of lowest significance of the display.6.4Protection against fraudHeat meters shall have protective devices which can be sealed in such a way that, after sealing, both before and after the heat meter has been correctly installed, there is no possibility of dismantling, removing, or altering the heat meter or its adjustment devices without evident damage to the device(s) or seal(s).Means shall also be provided for meters with external power supply, either to give protection against the meter being disconnected from the power supply or to make it evident that this has taken place.Sites shall be provided for marks (e.g. legal status marks) to be sited on that part of the heat meter indicating the quantity of heat for a complete meter or on each sub-assembly for combined meters. All parts of the heat meter that might be separated after calibration and testing shall have sites for placing an identity mark. The sites for these marks shall be situated so that the marks are clearly visible when attached.Note:The incorporation in the meter casing of acounter indicating the hours run will make it evident if the power supply has been discon-nected.6.5Supply voltageThe instrument shall be fully operational and shall not exceed the maximum permissible errors if the electric power supply is influenced as described in 6.5.1 to 6.5.4.6.5.1Instruments supplied by AC mains supply•Variations in AC mains voltage of –15% to +10%related to the instrument’s rated nominal voltage.•Variations in AC mains frequency of –2% to +2%related to the instrument’s rated nominal frequency.6.5.2Instruments supplied by external AC or DC lowvoltage (<50 V)•Variations in AC remote voltage of ±50 % related to the instrument’s rated nominal voltage.•Variations in DC remote voltage of – 50 % to + 75%related to the instrument’s rated nominal voltage.6.5.3Instruments supplied by internalnon-rechargeable batteries or rechargeable batteries that cannot be (re)charged during the operation of the measuring instrumentWhen the battery voltage has dropped to a critical value, this shall be clearly indicated by the instrument at a time safely before the instrument starts function-ing improperly (resulting in for instance poor display,unstable memory function, errors exceeding MPE,etc.), or the instrument shall automatically switch off,storing actual data and time at the moment of switch-ing off for a period of at least 1 year. The moment of switching off may be preprogrammed.The minimum period of time during which the instru-ment shall function properly without renewing or recharging batteries shall be specified by the manu-facturer, and shall be at least 2 years.6.5.4Instruments supplied by internal rechargeablebatteries that are intended to be (re)chargedduring the operation of the measuring instrumentThese instruments shall:•either comply with the requirements for batterysupplied instruments (6.5.3) with the external supply switched off (manually or by accident),•orcomply with the requirements for instruments supplied by external AC or DC low voltage (6.5.2) with the external supply switched off (manually or by accident),and shall additionally:•comply with the requirements for AC-powered instruments (6.5.1) with the mains supply switched on.7Specified working rangeThe working parameters of the heat meter are bounded by the limiting values of the temperature range, the temperature difference, the thermal power and the flow rates (q s and q i ).If the measurement of heat is affected by the pressure of the heat-conveying liquid, pressure shall be regarded as a parameter.7.1Temperature differenceThe ratio of the upper and lower limits of the temper-ature difference shall not be less than 10. The lower limit shall be stated by the supplier to be either 1, 2, 3,5 or 10 K. The preferred value is 3 K.7.2Flow rateThe ratio of the permanent flow rate to the lower limit of the flow rate (q p /q i ) shall be 10, 25, 50, 100 or 250.8Heat transmission formulaHeat transmitted to or from a body of liquid can be determined from knowledge of its mass, specific heat capacity and change in temperature.In a heat meter, the rate of change of enthalpy between the flow and return through a heat exchanger is integrated with respect to time. The equation for its operation is as follows:where:Q is the quantity of heat given up;q m is the mass flow rate of the heat-conveying liquid passing through the heat meter;∆his the difference between the specific enthalpies of the heat-conveying liquid at the flow and return temperatures of the heat-exchange circuit;tis time.If the instrument determines the volume instead of the mass, its equation becomes:where:Q is the quantity of heat given up;V is the volume of liquid passed;kcalled the heat coefficient, is a function of the properties of the heat-conveying liquid at the relevant temperatures and pressure;∆Θis the temperature difference between the flowand return of the heat exchange circuit.The conventional true value of the heat coefficient k for water, if it is used as the system heat-conveying liquid,shall be obtained from the formulas (A.1.) to (A.5.) in Annex A, where the pressure shall be set to 16 bar.For meters intended for use with heat-conveying liquids other than water, the supplier shall declare the heat coefficient used as a function of temperature and pressure.Note:Tables with values for the heat coefficient forliquids other than water can be found in the book Handbuch der Wärmeverbrauchsmessung ,by Dr. F. Adunka, Vulkan-Verlag, Essen, ISBN 3-8027-2373-29Metrological characteristics(maximum permissible errors, MPEs)Heat meters shall meet the tolerances stated which are considered as being the maximum permissible errorsQ = q m ∆h d tt 1t 0Q = k ∆Θd VV 1V 0(∆Θmin / ∆Θ) and the flow rate ratio (q p /q). The MPEs of the complete instrument of accuracy classes 2 and 3are the arithmetic sums of E c (in 9.2.2.1), E t (in 9.2.2.2)and E f (in 9.2.2.3). The classes of heat meters are defined by the class of the flow sensor. Class 1:see note in 9.2.2.3Class 2 and Class 3:E = E c + E t + E f9.2.2Maximum permissible relative errors ofsub-assemblies 9.2.2.1Calculator E c = ±(0.5 + ∆Θmin / ∆Θ)where the error, E c , relates the value of the heat indicated to the conventional true value of the heat.9.2.2.2Temperature sensor pairE t = ±(0.5 + 3 ∆Θmin /∆Θ)where the error, E t , relates the indicated value to the conventional true value of the relationship between temperature sensor pair output and temperature difference.The relationship between temperature and resistance of each single sensor of a pair shall not differ from the values of the formula given in IEC 60751 (using the standard values of the constants A, B and C) by more than an amount equivalent to 2 K.9.2.2.3Flow sensorClass 1:E f = See noteClass 2:E f = ±(2 + 0.02 q p /q ), but not more than ±5 %Class 3:E f = ±(3 + 0.05 q p /q ), but not more than ±5 %where the error, E f , relates the indicated value to the conventional true value of the relationship between flow sensor output signal and mass or volume.Note:E and E f for class 1 will be defined when improve-ments in testing procedures and flow sensors make it possible.The definitions for class 1 flow sensors could be presumed to be:For complete meters:E = ±(2 + 4 ∆Θmin /∆Θ+ 0.01 q p /q ).For flow sensors:E f = ±(1 + 0.01 q p /q ), but not more than ±3.5 %.It is presumed that these maximum permissible errors could be applied to heat meters with flow sensors of q p ≥100 m 3/h.9.3Application of maximum permissible errors9.3.1For a combination of sub-assemblies as defined in 3.4, the maximum permissible error for the combination is the arithmetic sum of the maximum permissible errors of all sub-assemblies.9.3.2The errors of combined instruments shall not exceed the arithmetic sum of the maximum per-missible errors of the sub-assemblies indicated in 9.2.2.1 to 9.2.2.3.9.3.3Suppliers of combined instruments can stipulate that they shall be considered as complete instruments for the application of the maximum permissible errors.9.4Maximum permissible errors in serviceWhere different values for maximum permissible errors in service and at verification are prescribed by national regulations, the values of the maximum permissible errors in service shall be equal to 2 times the maximum permissible errors fixed for verification.10Environmental classificationHeat meters shall conform to one or more of the following environmental classifications according to the application.10.1Environmental class A(domestic use, indoor installations)•Ambient temperature: + 5 °C to + 55 °C •Low level humidity conditions•Normal electrical and electromagnetic conditions •Low level mechanical conditions10.2Environmental class B(domestic use, outdoor installation)•Ambient temperature: – 25 °C to + 55 °C •Normal level humidity conditions•Normal electrical and electromechanical conditions •Low level mechanical conditions10.3Environmental class C(industrial installations)•Ambient temperature: + 5 °C to + 55 °C •Normal level humidity conditions•High electrical and electromagnetic conditions •Low level mechanical conditions11Heat meter specifications, inscriptions and instruction manualEach heat meter shall be accompanied by an instruc-tion manual and data sheets, which shall include all the information listed in 11.1 to 11.4.A heat meter and/or its sub-assemblies shall be marked clearly and indelibly with the information listed in italics in 11.1, 11.2, 11.3 and 11.4.11.1Flow sensor•Supplier (name or trade mark)•Type identification, year of manufacture, serial number•Accuracy class•Limits of flow rate (q i , q p and q s )•Limits of temperature (Θmin and Θmax )•Maximum admissible working pressure (PN-class)•One or more arrows to indicate the direction of flow。