多糖的分离和纯化
综述多糖的提取、分离及纯化方法

综述多糖的提取、分离及纯化方法小伙伴们!今天咱就来好好唠唠多糖的提取、分离及纯化方法这事儿哈。
多糖这玩意儿在生物领域那可是相当重要的角色呢,它的应用老广泛啦,所以掌握它的提取、分离和纯化方法那是很有必要的哟。
一、多糖的提取方法。
常见的多糖提取方法有很多种呢。
1. 热水浸提法。
这可是一种挺经典的方法哟。
就是把含有多糖的原料放到热水里面浸泡,让多糖溶解到水里边。
这个方法操作起来相对简单,成本也比较低。
就好比咱们泡茶一样,茶叶里的一些成分就会慢慢溶到水里啦,多糖也是类似的道理。
不过呢,它也有个小缺点,就是提取效率可能不是特别高,而且在高温下,有些多糖的结构可能会受到一定的破坏哦。
2. 酸提法。
酸提法就是用酸溶液来提取多糖啦。
酸可以破坏原料中的一些细胞结构,让多糖更容易释放出来。
就像是拆房子,把阻碍多糖出来的“墙”给拆掉。
但是呢,这个方法得控制好酸的浓度和提取时间,要是酸浓度太高或者时间太长,多糖可能就会被水解掉,那就不好啦。
3. 碱提法。
和酸提法相对应的就是碱提法咯。
碱可以使一些与多糖结合的杂质分解,从而提高多糖的提取率。
比如说有些多糖和蛋白质结合在一起,碱就可以把它们分开。
不过呢,碱提法也有它的麻烦事儿,就是在提取完之后,需要把碱给去除干净,不然会影响后续多糖的纯度哟。
4. 酶解法。
酶解法就比较巧妙啦。
它是利用酶的特异性来分解原料中的一些成分,让多糖更容易被提取出来。
就像一把专门的钥匙开一把锁,酶可以针对性地把阻碍多糖提取的东西给分解掉。
而且酶解法还比较温和,对多糖的结构破坏比较小。
但是呢,酶的成本相对较高,而且酶的活性也受到很多因素的影响,比如温度、pH值这些,所以操作的时候得特别小心。
二、多糖的分离方法。
把多糖提取出来之后,还得把它和其他杂质分离开来,这就用到各种分离方法啦。
1. 离心分离法。
离心分离法就像是坐过山车,利用离心力的作用,让不同密度的物质分离开来。
多糖和一些杂质的密度可能不一样,通过高速旋转,它们就会在离心力的作用下分层,这样就可以把多糖和一部分杂质分开啦。
写一种植物多糖的分离纯化实验流程

写一种植物多糖的分离纯化实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!从植物中提取多糖是许多科研项目的重要环节。
多糖的提取和纯化

多糖的提取和纯化目前,真菌多糖的提取可从子实体和采用深层培养发酵液的菌丝中分离获得,但以从子实体中提取多糖为主。
首先是将子实体粉碎,加入甲醇或乙醇乙醚1:1混合液,水浴加热搅拌1一3小时除去表面脂肪。
其次是用残渣提取多糖,常用的方法有不同温度下的水提法、稀酸提法、冷热稀碱提法。
水提法采用的较多,适合于提取水溶性多糖。
稀酸提取法适用于提取酸溶性多糖、时间宜短,温度不超过50℃,以防止糖昔键断裂。
稀碱法适合于提取碱溶性糖。
然后除去小分子杂质,常采用透析法,将多糖提取液置于半透膜透析袋中,逆向流水透析1一3天。
第四步是沉淀多糖。
大部分多糖在有机溶剂中的溶解度极小,所以可用有机溶剂来沉淀。
常用4一5倍低级醇、丙酮,一般在pH=7.0左右沉淀多糖,制得粗多糖。
最后是除去蛋白质。
除去多糖中的蛋白质常用的方法是三氯醋酸法。
得到的溶液基本上是没有蛋白质与小分子杂质的多糖混合物或单一多糖。
多糖的纯化是将多糖混合物分离为单一的多糖。
纯化方法很多,主要纯化方法有:(l)分步沉淀法根据不同多糖在不同浓度的低级醇或酮中具有不同溶解度的性质,逐次按比例由小而大加入这些醇或酮分步沉淀。
此法适用于分离各种溶解度相差较大的多糖。
(2)盐析法根据不同多糖在不同浓度盐中具有不同溶解度而分离。
纯度鉴定和分子量测定多糖纯度标准不能用通常化合物纯度标准来衡量,因为我们所说的多糖纯品实质上是一定分子量范围内的均一组成。
因此,测得的分子量一般为平均分子量。
过去常用粘度法、蒸气压渗透计法、沉降法、超速离心法、光散射法等测定高分子化合物分子量的方法测定真菌多糖的分子量,但由于这些方法测定起来比较麻烦,且误差较大,现多数已不采用。
目前实验室常用的方法为凝胶过滤法和高压液相色谱法,对于分子量小于1百万的多糖用高压液相法为最好。
1.2.1发酵、提取取香菇465菌株斜面菌种接人摇瓶培养基中振荡培养,逐级扩大培养至10O0L,25℃下通气培养72h,压滤,得香菇深层培养菌丝体。
多糖分离纯化

多糖分离纯化一、概述多糖是一类高分子化合物,具有复杂的结构和多样的功能,广泛存在于生物体内。
多糖的分离纯化是研究其结构和性质、开发应用的前提和基础。
本文将介绍多糖分离纯化的方法及其优缺点。
二、多糖分离纯化方法1. 溶液沉淀法溶液沉淀法是一种常用的多糖分离纯化方法。
该方法基于不同多糖在不同浓度下溶解度不同的原理,通过控制溶液中某些成分(如盐类)浓度来使目标多糖沉淀。
该方法操作简单,但需要对目标多糖在不同条件下的溶解度有较为准确的了解,并且会受到其他成分影响。
2. 离子交换色谱法离子交换色谱法是一种利用固定在固相上带电基团与目标多糖间相互作用实现分离纯化的方法。
该方法适用于具有明显电荷差异或含有特定官能团(如硫酸基、羧基等)的多糖。
该方法分离效果好,但需要对固相的选择和操作条件进行优化。
3. 凝胶过滤色谱法凝胶过滤色谱法是一种利用多孔凝胶作为分离介质,目标多糖根据其大小在凝胶中进行分离的方法。
该方法适用于具有不同分子量的多糖,且操作简单、分离效果较好。
但由于凝胶孔径大小限制,对于较小或较大的多糖可能无法有效分离。
4. 亲和层析法亲和层析法是一种利用目标多糖与特定配体间相互作用实现分离纯化的方法。
该方法适用于具有特定结构或功能的多糖,如具有特异性结合蛋白质、抗原表位等。
该方法操作简单、分离效果较好,但需要对配体选择和操作条件进行优化。
5. 聚焦电泳法聚焦电泳法是一种利用电场作用将目标多糖在pH梯度中移动并实现分离纯化的方法。
该方法适用于具有不同等电点或带电性质的多糖。
该方法分离效果好、可同时实现高效分离和纯化,但需要对pH梯度的选择和操作条件进行优化。
三、多糖分离纯化方法的优缺点1. 溶液沉淀法优点:操作简单,无需昂贵设备。
缺点:需要对目标多糖在不同条件下的溶解度有较为准确的了解,并且会受到其他成分影响。
2. 离子交换色谱法优点:分离效果好,适用于具有明显电荷差异或含有特定官能团(如硫酸基、羧基等)的多糖。
多糖分离纯化

多糖分离纯化简介多糖又称多聚糖,是由10个以上的单糖通过苷键连接而成的,具有广泛生物活性的天然大分子化合物。
多糖是由多个单糖分子缩合、失水而成,是一类分子结构复杂且庞大的糖类物质。
凡符合高分子化合物概念的碳水化合物及其衍生物均称为多糖。
多糖在自然界分布极广,亦很重要。
其广泛分布于自然界高等植物、藻类、微生物与动物体内。
多糖是细胞中一类非常重要的大分子物质。
糖类是细胞膜上受体分子的重要组成成分,是细胞识别和信息传递等功能的参与者,是一类非特异性广谱免疫调节剂和重要的生命物质材料,广泛参与各项生命活动。
近年来的研究表明,多糖在免疫调节、抗肿瘤、抗病毒、抗氧化和降血糖等方面显示出良好的应用前景,是现代医学和食品功能化学共同关注的焦点。
天然多糖来源广泛且化学成分复杂,粗多糖中通常伴随着一些蛋白质、脂肪和色素等物质,不利于多糖的结构鉴定及后续活性分析,因此需要进行分离纯化:即除杂和组分分离。
多糖类物质结构复杂,由不同分子质量的中性或酸性糖混合组成,具有微观不均一性,其分析和结构解析一直是糖组学和糖生物学研究的重点。
多糖分离纯化的核心是获得低分散性、电荷均一的多糖,以适宜后续结构解析和活性功能的深入分析,故多糖需分离纯化才能得到均一性多糖。
百欧泰经过多年技术积累,建立了完善的多糖提取和纯化平台。
样本经研磨粉碎后、热水提取、醇沉、除蛋白、脱色、脱脂等一系列成熟的工艺后得到粗多糖,粗多糖经离子交换色谱及凝胶色谱分离纯化后可获得对应单一、均一的多糖组分。
此外根据原料中多糖特性,针对性地选择预处理和分离纯化方法(柱层析、膜分离法或者分级沉淀法等),可高效分离纯化各种中性多糖、酸性多糖和黏多糖以及糖复合物等。
多糖分离纯化服务多种方法1 柱色谱法纤维素柱层析法:实现分级解离;但流量小、耗时长阴离子交换柱层析法:可用于中性和酸性多糖的分离,以及不同中性多糖的分离凝胶柱层析法:实现连续进样、在线监测、重复性好,样品收集和纯化效率高2 分级沉淀法操作原理:不同的多糖组分在低醇或酮中有不同的溶解度3 盐析法操作原理:不同分子量的多糖组分在一定浓度的盐溶液中其溶解度不同4 超声波辅助提取法利用超声波的机械效应和空化作用破坏细胞壁、细胞膜等生物组织。
多糖的提取和纯化

多糖的提取和纯化Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT多糖的提取和纯化→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥首先除去表面脂肪。
原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或-1M氢氧化钠作为提取溶剂)提取多糖。
温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。
得到的多糖提取液大多较粘稠,可进行吸滤。
也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和)。
然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀。
然后依次用乙醇、丙酮和乙醚洗涤。
将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥)。
干燥后可得粉末状的粗多糖。
微波辅助提取法:其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中[14]。
由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率。
而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方法澄清[15]。
聂金源等在柴胡多糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(%)。
超声辅助法:其原理是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散、击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取[16]。
多糖的分离纯化及其纯度鉴别与分子量测定
多糖的分离纯化及其纯度鉴别与分子量测定以多糖的分离纯化及其纯度鉴别与分子量测定为题,本文将介绍多糖的分离纯化方法、纯度鉴别和分子量测定的原理和技术。
一、多糖的分离纯化方法多糖是一类由多个糖基组成的生物大分子,其结构复杂多样。
为了研究多糖的性质和功能,需要将多糖与其他杂质分离开来并纯化。
常用的多糖分离纯化方法包括离心沉淀、凝胶层析、离子交换层析、亲和层析等。
离心沉淀是一种简单有效的多糖分离纯化方法。
通过调节离心速度和时间,可以使多糖与其他杂质沉淀分离,然后将上清液取出,即可得到相对纯净的多糖溶液。
凝胶层析是一种常用的多糖分离纯化方法。
凝胶层析根据多糖分子的大小和形状,利用凝胶的孔隙大小选择性地分离多糖。
常用的凝胶材料有琼脂糖、聚丙烯酰胺凝胶等。
离子交换层析是一种利用多糖与离子交换树脂之间的电荷相互作用进行分离的方法。
树脂表面带有正负电荷,多糖分子根据其电荷性质与树脂发生吸附和解吸作用,从而实现分离纯化。
亲和层析是一种利用多糖与特定的亲和配体之间的特异性结合进行分离的方法。
常见的亲和配体有金属离子、抗体、受体等。
通过与亲和配体结合,多糖可以被选择性地吸附在亲和树脂上,其他杂质则被洗脱,从而实现纯化。
二、多糖的纯度鉴别多糖的纯度鉴别是判断多糖溶液中是否存在杂质的过程。
常用的纯度鉴别方法包括聚丙烯酰胺凝胶电泳、紫外-可见光谱、红外光谱等。
聚丙烯酰胺凝胶电泳是一种常用的多糖纯度鉴别方法。
通过在凝胶中施加电场,多糖分子根据其大小和电荷性质在凝胶中迁移,从而实现分离和鉴定。
紫外-可见光谱是一种常用的多糖纯度鉴别方法。
多糖溶液在紫外-可见光谱范围内有特征性的吸收峰,通过测量多糖溶液在不同波长下的吸光度,可以判断多糖溶液中是否存在杂质。
红外光谱是一种常用的多糖纯度鉴别方法。
不同多糖具有特征性的红外吸收峰,通过测量多糖溶液的红外光谱,可以判断多糖溶液中是否存在杂质。
三、多糖的分子量测定多糖的分子量是衡量多糖结构大小的重要指标。
多糖分离纯化
多糖分离纯化1. 概述多糖是由许多重复单元组成的生物大分子,具有广泛的生物功能和应用价值。
多糖的分离纯化是从混合物中分离出目标多糖并提高纯度的过程。
本文将介绍多糖分离纯化的常用方法和技术,以及其在食品、药品和生物工程等领域的应用。
2. 多糖的分离方法多糖的分离方法主要包括溶剂沉淀、离子交换、凝胶过滤、超滤、逆流层析、电泳和气相色谱等。
下面将分别介绍这些方法的原理和应用情况。
2.1 溶剂沉淀溶剂沉淀是利用溶剂的物理性质,如极性和温度等,使多糖在溶液中发生相分离的方法。
通常采用醇类溶剂,如乙醇或异丙醇。
溶剂沉淀适用于多糖与其他溶质的溶解度差异较大的情况,但纯度较低。
2.2 离子交换离子交换是利用离子交换树脂上的功能基团与多糖分子间发生离子交换反应的方法。
树脂的功能基团可以选择性吸附或释放多糖分子。
离子交换适用于多糖的分子量差异较大的情况,例如海藻酸和壳聚糖的分离。
2.3 凝胶过滤凝胶过滤是利用凝胶的孔隙结构将分子按大小分离的方法。
多糖分子较大,可以被凝胶孔隙排除,而小分子可以通过凝胶透过。
凝胶过滤常用于多糖与其他小分子的分离,如蛋白质和核酸。
2.4 超滤超滤是利用超滤膜的孔隙结构将溶液分离的方法。
超滤膜的孔径可以根据需要选择,通常是分子量截留范围在1 kDa至100 kDa之间。
超滤适用于多糖与其他大分子的分离,如蛋白质和核酸。
2.5 逆流层析逆流层析是利用多糖与填料间的亲和作用进行分离的方法。
填料可以是具有特定亲和性的配体,如亲和树脂。
逆流层析适用于分子间相互作用较强的多糖分离。
2.6 电泳电泳是利用电场作用将分子按电荷和大小进行分离的方法。
多糖可根据电荷差异选择合适的电泳方法,如聚丙烯酰胺凝胶电泳和毛细管电泳。
电泳在多糖的分子量分析和负载量测定中广泛应用。
2.7 气相色谱气相色谱是利用样品在气相载体中的分配和迁移以实现分离的方法。
多糖需要经过甲硅烷衍生化处理后才可以进行气相色谱分析。
气相色谱适用于多糖的含量测定和结构分析。
多糖的提取分离纯化及分析鉴定方法研究
多糖的提取分离纯化及分析鉴定方法研究多糖是由多个单糖分子通过糖苷键连接而成的高分子化合物。
多糖具有广泛的应用价值,包括食品、医药、化妆品和生物材料等领域。
因此,对多糖的提取、分离纯化以及分析鉴定方法的研究具有重要意义。
一、多糖的提取方法1.物理法物理法主要包括热水提取法、酸碱提取法和微波提取法等。
热水提取法是最常用的提取方法之一,通过加热使细胞壁破烂,有利于多糖的溶出。
酸碱提取法则是利用酸碱反应将多糖从细胞壁中释放出来。
微波提取法则是利用微波辐射对样品进行加热,加速多糖的溶解和释放。
2.化学法化学法主要包括酶解法、酶解分离法和酸碱水解法等。
酶解法是利用特定的酶对样品进行处理,将多糖分解为单糖,然后进行分离和纯化。
酸碱水解法则是通过酸碱反应将多糖水解为低聚糖和单糖。
3.生物法生物法是利用微生物或植物产生的酶对多糖进行酶解和分离。
生物法具有选择性强、工艺简单等优点,在多糖提取中得到了广泛的应用。
二、多糖的分离纯化方法多糖的分离纯化方法主要包括离子交换色谱法、凝胶渗透色谱法和亲和色谱法等。
1.离子交换色谱法离子交换色谱法是利用离子交换树脂对多糖进行分离的方法。
通过控制溶液pH值和离子强度等条件,使不同电荷的多糖在树脂上发生吸附反应,实现多糖的分离纯化。
2.凝胶渗透色谱法凝胶渗透色谱法是根据多糖分子量的大小来进行分离的方法。
多糖分子量越大,越容易在凝胶渗透色谱柱的孔隙中滞留,分离得到纯度较高的多糖。
3.亲和色谱法亲和色谱法是利用多糖与一些特定配体之间的相互作用进行分离的方法。
例如,可以利用亲和色谱柱上的特定配体与多糖的特定结构之间的结合作用,实现多糖的分离和纯化。
三、多糖的分析鉴定方法多糖的分析鉴定方法主要包括红外光谱法、紫外光谱法、核磁共振波谱法、高效液相色谱法和气相色谱法等。
1.红外光谱法红外光谱法能够通过检测样品吸收、散射或透射特定波长的红外光来分析多糖的结构和功能。
2.紫外光谱法紫外光谱法是利用多糖分子在紫外可见光区域的吸收特性进行分析。
分离纯化多糖实验报告(3篇)
第1篇一、实验目的1. 学习多糖的提取、分离和纯化方法。
2. 掌握多糖的鉴定技术。
3. 了解多糖的化学性质和生物活性。
二、实验原理多糖是一类由多个单糖分子通过糖苷键连接而成的生物大分子,广泛存在于植物、动物和微生物中。
多糖具有多种生物活性,如抗氧化、抗肿瘤、免疫调节等。
本实验以某植物为原料,通过水提醇沉法提取多糖,采用离子交换层析和凝胶色谱法对多糖进行分离纯化,并对其结构进行鉴定。
三、实验材料与仪器1. 实验材料:某植物、无水乙醇、蒸馏水、氯化钠、磷酸氢二钠、磷酸二氢钠、氢氧化钠、硫酸铜、苯酚、硫酸、考马斯亮蓝G-250、氯化钡、明胶等。
2. 仪器:分析天平、电热恒温水浴锅、旋转蒸发仪、高效液相色谱仪、凝胶色谱仪、紫外-可见分光光度计、磁力搅拌器、离心机、层析柱等。
四、实验方法1. 多糖提取(1)将某植物样品干燥、粉碎,过60目筛。
(2)称取2g样品,加入50mL蒸馏水,在80℃水浴中提取2h。
(3)将提取液过滤,滤液浓缩至一定体积。
(4)加入无水乙醇,使溶液中多糖沉淀。
(5)离心分离,收集多糖沉淀。
2. 多糖分离纯化(1)将多糖沉淀溶解于蒸馏水中,加入一定量的氯化钠溶液,调节pH值至7.0。
(2)将溶液通过DEAE-Sepharose Fast Flow层析柱,用蒸馏水洗脱,收集洗脱液。
(3)将洗脱液浓缩,加入一定量的无水乙醇,使多糖沉淀。
(4)离心分离,收集多糖沉淀。
(5)将多糖沉淀溶解于蒸馏水中,通过Sephadex G-100凝胶色谱柱,用蒸馏水洗脱,收集洗脱液。
(6)将洗脱液浓缩,加入一定量的无水乙醇,使多糖沉淀。
(7)离心分离,收集多糖沉淀。
3. 多糖鉴定(1)采用苯酚-硫酸法测定多糖的糖含量。
(2)采用考马斯亮蓝G-250法测定多糖的蛋白质含量。
(3)采用硫酸-咔唑法和氯化钡-明胶法测定多糖中的糖醛酸和硫酸基含量。
(4)采用高效液相色谱法测定多糖的分子量。
五、实验结果与分析1. 多糖提取提取得到的粗多糖得率为5%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、多糖的分离和纯化多糖是极性极大的大分子化合物,提取时一般先将原料脱脂、脱色,然后用水、盐或稀碱水在不同温度下提取。
提取物浓缩后加沉淀剂(乙醇、丙酮等)离心沉淀,沉淀部分可反复多次离心沉淀,以除去部分水溶性色素等杂质。
1.除蛋白用水或稀碱提取的多糖常含有蛋白质,常用的除蛋白质的方法有Sevag 法、三氟三氯乙烷法、三氯乙酸法等。
前两种多用于微生物多糖,后者多用于植物多糖。
Sevag 法是经典的除蛋白质方法,复杂、费时,且样品损失较大。
冯建林等比较了Sevag 法、三氟三氯乙烷法、三氯乙酸法、硫酸铵法及木瓜蛋白酶复合酶法除蛋白的效果,从蛋白残留量和多糖的得率两方面评价.认为三氯乙酸法最好,但三氯乙酸仍不能完全除去蛋白,建议三氯乙酸法和Sevag 法结合使用。
2.脱色多糖中常含有一些色素(游离色素或结合色素),根据其不同性质采取不同的去除方法。
常用的脱色方法有离子交换法、氧化法、金属络合物法、吸附法(纤维素、硅藻土、高岭土、活性炭等)。
D EA E一纤维素是目前最常用的脱色方法,通过离子交换柱不仅达到脱色目的,而且可以进行多糖的分离。
H2 O2:是一种氧化脱色剂,浓度不宜过高,宜在低温下进行,否则引起多糖的降解。
对于同时含有游离蛋白质和色素的多糖,可通过生成金属络合物的方法同时除去蛋白和色素,即加入费林试剂生成不溶性络合物,经分离后用阴离子交换树脂分解络合物。
吸附脱色法也常用,如通过活性炭、高岭土、硅藻土柱达到脱色的目的。
3.多糖的分级采用一般方法提取的多糖,通常是多糖的混合物,即是多分散性的,其不均一性表现在化学组成、聚合度、分子形状等的不同。
分级可以达到纯化的目的,可按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级(如按电荷性质分级的电泳、离子交换层析等)。
(1)分级沉淀利用分子大小和溶解度不同进行分离,常用的有两种方法,即有机溶剂沉淀法和季铵盐或硫酸铵法。
Ba(O H )2、Ca(O H )2等也常用于酸性多糖的分级。
(2)柱层析法柱层析法较常用,也可分为两类。
一类是只有分子筛作用的一般凝胶柱层析,如Sephadex、Saphrose、Bio gel等;一类是离子交换层析,这种分级不仅按电荷性质不同,同时也有分子筛作用,如带负电荷的多糖可在阴离子型的D EA E一纤维素柱或D EA E—Sephadex 柱上达到分级;酸性多糖可在阳离子型的羧甲基(CM —Sephades)或黄乙基(SE—Sephadex)等凝胶柱上分离。
这种离子交换树脂常用水、不同浓度和种类的缓冲溶液或酸碱液洗脱得以分级。
检测手段国内仍沿用经典的酚一硫酸法,国外用LKB 柱层析系统,用比旋度、视差折光及紫外检测器,各组分的峰位自动记录,分离效果好且方便。
(3)透析、超滤及超速离心选用不同规格的超滤膜和透析袋进行超滤和透析以及一定条件下的超速离心操作,可按分子大小将多糖样品分级,超滤和透析更常用于除去小分子物质。
(4) 区带电泳区带电泳主要按多糖的电荷性质不同分级,常用的有聚丙烯酰胺凝胶电泳、乙酸纤维素薄膜电泳。
二、纯度鉴定1、紫外分光光度法:将多糖P W2 加0.9 % N aCl 溶液溶解, 配成浓度为1mg·mL-1的溶液, 采用UV-160A 紫外可见光谱仪扫描(200nm-300nm)观察260nm、280nm 处是否有吸收峰。
2、纸层析法(PC)取0.5% 的多糖PW2 样品溶液50μL , 点样于新华中速滤纸(3cm ×20cm)距端点1cm 处的中部, 以正丁醇∶浓氨水∶水(40∶50∶5)为展开剂, 饱和2h 以上,在室温下展开6h, 取出吹干, 用0.5%甲苯胺蓝液染色, 立即用95%乙醇漂洗至背景褪色。
3、凝胶柱层析法用DEA E-纤维素52(2.6cm ×100cm)柱层析, 0.1mol·L-1N aCl 洗脱, 流速6mL ·h-1, 按2mL 一管分部收集, 苯酚-硫酸法逐管检测, 绘制收集体积与糖含量之间的关系曲线。
4、琼脂糖(Ag aro se)凝胶电泳法在琼脂糖板(厚度为0.2cm)上点样3 ~5μL 采用浓度为0.075mol·L-1, pH8.6 的巴比妥缓冲液, 电泳1~ 1.5h, 电压为64~80V , 甲苯胺蓝(浓度为1%)染色, 醋酸乙醇混合溶液(醋酸∶乙醇∶水=0.1∶5∶5)脱色。
P W2 多糖纯品经电泳展开。
5、红外光谱分析取干燥样品微量, 压片, 全波段扫描。
6、核磁共振分析将样品10mg , 溶于D2O(重水)中, 溶解温度80℃, 分别在400MHz 和500MHz 上测定1HNM R和CNM R 。
三、结构鉴定多糖的化学研究首先是提取、分离、纯化以获得不同的多糖组分,经纯度鉴定证明为均一多糖后进行各组分的理化性质如溶解度、旋光、粘度、分子量等的测定,然后进行平面的和立体的化学研究以及结构改造和修饰的研究。
经典通用的多糖结构鉴定方法常按图 1 程序进行。
经过分级纯化的多糖在测定结构前须检查其纯度及测定分子量。
目前检查纯度最常用的判断方法主要有:1)用G C 、H PLC测定组成多糖的单糖的摩尔比是否恒定。
用不同的柱型测定结果更为可靠。
2)电泳只出现一条带。
如可用聚丙烯酰胺凝胶电泳、乙酸纤维素薄膜电泳及玻璃纤维纸电泳。
对于中性多糖可采用高压电泳,以硼酸盐为缓冲液,可增大其迁移速度。
3)凝胶柱层析图呈现对称的单峰。
若有“拖尾”现象,说明其均一性不够好。
4)纸层析法呈单一集中斑点。
多糖的分子量测定过去用超速离心沉降法、光散射法、渗透压法、粘度法等,这些方法操作复杂且误差较大,现已少用。
现在较常用的方法有凝胶过滤法和高效凝胶液相色谱法,这两种方法须先用已知分子量的标准多糖对照测定样品的分子量。
多糖的生物大分子结构比蛋白质更为复杂,这不仅因为组成多糖的单糖品种繁多(目前已知的单糖有200 多种),而且即使只由一种单糖组成的多糖因其连接方式的不同以及可能有的支链(蛋白质支链较少)使多糖的结构鉴定非常困难。
多糖的结构鉴定方法较多,主要分为3 大类,即化学分析法、物理分析法和生物学方法。
3.1 化学分析法3.1.1 酸水解阐明结构的第一步就是要鉴别多糖的单糖组分,酸水解是常用的方法,可根据需要选择适当的条件(酸的种类、浓度、温度及水解时间等)。
现在酸水解方法已实现完全自动化。
3.1.2 甲基化甲基化法虽然不能解决多糖中单糖的连接顺序,但它对于阐明单糖的连接方式(键型)、重复结构中某种单糖的数目、末端糖的性质以及分支点的位置等非常有用。
全甲基化的多糖一般先经90 %甲酸水解,然后用0.5 m ol/L 的硫酸或三氟乙酸水解,水解时要注意防止发生去甲基化和降解反应。
水解后的甲基化单糖混合物可用层析法分离或制成挥发性衍生物通过GC 分析。
若用G C—M S对结构解析更为方便。
3.1.3过碘酸及其盐的氧化多糖因其有邻二醇、邻三醇结构而易被过碘酸盐氧化开环。
通过测定过碘酸盐的消耗、甲酸的生成和剩余糖的比就可确定多糖维中各种单糖的键型及其比例。
3.1.4 Sm ith 降解用稀酸在室温下对多元醇进行部分酸水解,可得到各种赤藓醇糖苷或丙三醇糖苷,研究这些单糖苷、二糖苷和寡糖苷的结构有助于阐明多糖中单糖的部分连接顺序和键型。
3.1.5碱降解碱降解发生在与单糖的羟基或羧基连接的酯上,多糖还原端的单糖被逐个剥落,用之可分析多糖的键型。
3.1.6 酶水解是多糖控制降解的另一种方法,它主要是根据特定的酶降解特定结构的多糖的特性以阐明多糖的部分结构。
3.1.7免疫化学技术多糖是许多微生物免疫特异性的决定因子,根据多糖抗原与蛋白质抗体的多反应基的特异性,只有一定结构的多糖才能与一定类型抗体的蛋白质作用,如果能制备对抗未知多糖的抗体,那么这种抗体可用来阐明未知多糖的相似结构。
3.2物理分析法3.2.1 IRIR 在多糖结构分析上主要是确定吡喃糖的苷键构型以及常规观察其他官能团。
一般主要观察730~960cm-1的范围,如对于a一吡喃糖,艿δC1一H 在845 cm-1,而β吡喃糖艿C1一H在890 cm-1。
3.2.2 M S 、G C —M SGC 分析多糖虽受样品挥发性和热稳定性的限制,但G C—M S 是多糖结构分析不可缺少的工具,特别是对水解单糖、甲基化单糖及甲基化寡聚糖的分析,而且能鉴别出糖的异构体。
M S 在糖链结构分析中,由于其方法快速灵敏、样品用量极少而得到越来越广泛的应用。
不但在鉴定各种甲基衍生物的碎片、从而确定各种单糖残基的连接位置时必不可少,而且近年来由于快原子轰击质谱(FA M —M S)、电喷雾电离质谱(ESI—M S)和基质辅助激光解吸电离飞行时间质谱(M A LD I—M S)的出现,质谱还可以测定糖链的分子量及糖链的一级结构。
ESI—M S 是目前最软的一种电离技术。
因其能形成多电荷离子,故能测量分子量近10 万的大分子。
ESI—M S 易和H PLC 、CE 、SFC 等技术联用,大大提高了工作效率及灵敏度和精确度。
ESI—M S 与CID 联用可得到不同的碎片离子,由此可获知低于pmol(皮摩尔,10-12摩尔)的寡糖及其复合物的分子量、连接顺序及分支等信息。
V ernon 等曾用ESI —M S 与CID 相结合的技术研究了多糖的分子量、序列、链连接及分支。
ESI—M S 因其“干净”、灵敏,还可与串联质谱(M S—M S)联用进行寡糖混合物的结构确证。
M A LDI—M S 也是一种类似ESI—M S 的软电离技术,与E SI—M S 一样,这种电离技术产生分子离子稳定、不易裂解,极适用于测定生物大分子样品,且准确度极高。
测定的分子量与分子形状无关(与层析法和电泳法不同),所以很适合测定多糖的分子量及大小分布。
此外,M A LD I方法不受样品中的无机盐缓冲液的影响,其灵敏度也是各类方法中最高的。
M ock 用1 mol样品在5 min 内就可获得寡糖分子量最多差0.5 的准确度。
3.2.3 N M R用N M R 技术研究糖链结构的优点是不破坏样品,糖链的结构特征通过化学位移、偶合常数、积分面积、N O E 及驰豫时间等参数表达。
早期N M R 主要用于解决多糖结构苷键的构型以及重复结构中单糖的数目,近年来N M R 技术突飞猛进的发展为生物大分子的结构研究创造了良好的条件。
如在确定多糖的单糖组成方面,除了通过H —N M R和”C N M R 化学位移信息外,还可用H 一HCo SY 、H 一¨C Co SY 等二维谱;在确定单糖的类型和构型方面,可用H 一H DQ F—C o SY 、R C T 、T o C SY 、H o H A HA ,H ET —Co R —H M Q C 。