信号完整性分析--信号反射..
第9章-信号完整性分析

Page 14
6.Impedance(最大/最小阻抗)
最大/最小阻抗用于定义所允许电阻的最大和最小值。
7.Signal Top Value(高电平信号的最小电压值)
高电平信号的最小电压值用于定义信号在高电平状态所允许的最小电 压值。
图9-14 快捷菜单
Page 13 清华大学出版社 2015-7-10
13条信号完整性分析规则: 1.Signal Stimulus(激励信号)
激励信号是在信号完整性分析中使用的激励信号的特性。
2.Overshoot-Falling Edge(信号超调的下降边沿)
信号超调的下降边沿用于定义信号下降沿允许的最大超调值。
Page 4 清华大学出版社 2015-7-10
差的信号完整性并不是某一单一因素造成的,而是由板 级设计中多种因素共同作用引起的。大致可以归结为以 下几个方面: 系统和器件频率的上升;一般认为,当系统和器件频率 大于等于50MHz时,信号完整性问题就会越来越突出。 元器件和PCB的参数; 元器件在PCB上的布局; 高速信号的布线。
10. Flight Time-Falling Edge(下降沿的最大延迟时间)
下降沿的最大延迟时间用于定义信号下降沿的最大允许延迟时间。
11. Slope-Rising Edge(上升沿斜率)
上升沿斜率用于定义上升沿从阈值电压VT到高电平VIH的最大延迟 时间。
12. Slope-Falling Edge(下降沿斜率)
Page 3Байду номын сангаас
第12章 信号完整性分析

下面介绍如何使用Protel2004DXP进 行信号完整性分析: ������ 不论是在PCB或是在原理图环 境下,进行信号完整性分析,设计 文件必须在工程当中,如果设计文 件是作为Free Document出现的,则 不能运行信号完整性分析。 ������ 本章主要介绍在PCB编辑环境 下进行信号完整性分析。 ������
12.2 DXP 的信 号完 整性 分析
在DXP设计环境下,既可以在原理 图又可以在PCB编辑器内实现信号 完整性分析,并且能以波形的方式 在图形界面下给出反射和串扰的分 析结果。 ������ Protel具有布局前和布局后信号 完整性分析功能,采用成熟的传输 线计算方法,以及I/O缓冲宏模型进 行仿真。基于快速反射和串扰模型, 信号完整性分析器能够产生准确的 仿真结果。 ������ 布局前的信号完整性分析允许 用户在原理图环境下,对电路潜在 的信号完整性问题进行分析,如阻 抗不匹配等因素。但对于串扰,在 原理图环境下不能进行分析,因为 布局路由尚未建立。 ������
12.1 信号 完整 性分 析概 述
信号的振铃(ringing)和环绕 振荡(rounding)由线上过度的 电感和电容引起,振铃属于欠 阻尼状态,而环绕振荡属于过 阻尼状态。信号完整性问题通 常发生在周期信号中,如时钟 等,振铃和环绕振荡同反射一 样也是由多种因素引起的,振 铃可以通过适当的端接予以减 小,但是不可能完全消除。
在模型配置界面下,能够看到每个 器件所对应的信号完整性模型,并 且每个器件都有相应的状态与之对 应,关于这些状态的解释如图所示。
修改器件模型的步骤如下: ������ 1、双击需要修改模型的器件 (U1)的Status部分,弹出相应的 窗口如下页图 ������ 2、在Type选项中选择器件的 类型, ������ 3、在Technology选项中选择相 应的驱动类型, ������ 4、也可以从外部导入与器件 相关联的IBIS模型,点击Import IBIS,选择从器件厂商那里得到的 IBIS 模型即可。 ������ 5、模型设置完成后选择OK, 退出。
信号完整性(SI)分析-9~10传输线与反射

反射和失真使信号质量下降。一些情况下,它们看起来 就像是振铃。引起信号电平下降的下冲可能会超过噪声容 限,造成误触发。图 8.1 示例了短传输线末端由阻抗突变 造成的反射噪声。
Voltage, V ── 电压,V
time,nsec ──时间,ns
图 8.1 在 1 in 长、阻抗可控互连线的接收端,由于阻抗不匹配和 多次反射而产生的“振铃”噪声。
第二种特殊情况是传输线的末端与返回路径相短路, 即末端阻抗为 0。反射系数为(0 - 50) /(0 + 50) = -1。 1V 入射信号到达远端时,产生-1V 反射信号向源端传播。 短路突变处测得的电压为入射电压与反射电压之和, 即 1V + -1V=0。这是合理的,因为如果此处是严格按定义 规定的短路,短路点两侧不可能有电压差。此处电压为 0V 的原因就是它是从源端出发的正向行波和返回源端的负向 行波之和。
高速电路与系统互连设计中 信号完整性(SI)分析
(之9~10[八]:传输线与反射)
李玉山
西安电子科技大学电路CAD研究所
8.0
提示
引言
如果信号沿互连线传播时所受到的瞬态阻抗发生变化,则一部分信号将
被反射,另一部分发生失真并继续传播下去,这一原理正是单一网络中多数信号完整 性问题产生的主要原因。
―――――――――――――――――――――――――――――――――
reflected ──反射
incident── 入射
measured ──测量
图 8.4 如果区域 2 是开路,则反射系数
经常说信号到达传输线的末端时,其值翻倍。从数值上这是正确的,可实
际上发生的情况并非如此。总电压即两个行波之和虽然是入射电压的两倍,但是这样 说会引起错误的直觉。最好还是把末端电压看作入射电压与反射电压之和。
信号完整性分析

添加标题
添加标题
添加标题
添加标题
信号完整性分析在高速数字系统中 的应用
信号完整性分析在数字信号处理系 统中的应用
高速数字接口设计
应用场景:高速数字接口设计是信号完整性分析的重要应用场景之一
设计目标:保证信号传输的稳定性和可靠性
设计挑战:高速数字接口设计面临着信号传输速度、信号完整性、信号干扰等问题
建立信号完整 性分析的数学 模型
验证模型的准 确性和可靠性
优化模型,提 高分析结果的 准确性和可靠 性
仿真分析
仿真模型搭建:根 据实际电路搭建仿 真模型
仿真参数设置:设 置仿真参数,如频 率、阻抗等
仿真结果分析:分 析仿真结果,如信 号质量、时延等
仿真优化:根据仿 真结果进行优化, 如调整电路参数、 增加滤波器等
结果解读与优化建议
结果解读:根据分析结果,判断信号的完整性 优化建议:针对分析结果,提出针对性的优化方案 实施方案:根据优化建议,制定实施计划并执行 效果评估:对优化后的信号进行再次分析,评估优化效果
信号完整性分析的 应用场景
高速数字系统设计
信号完整性分析在数字电路设计中 的应用
信号完整性分析在数字通信系统中 的应用
信号完整性分析的 流程
确定分析目标
确定信号完整性分析的目标, 如提高信号传输质量、降低信 号干扰等
确定分析的范围,如系统级、 模块级、芯片级等
确定分析的指标,如信号传输 延迟、信号抖动、信号失真等
确定分析的方法,如仿真分析、 实验验证等
建立模型
确定信号完整 性分析的目标 和需求
收集和分析信 号完整性相关 的数据
添加副标题
信号完整性分析
汇报人:
电路设计中的信号完整性SI问题分析与解决

电路设计中的信号完整性SI问题分析与解决引言:在现代电子设备中,信号完整性是一个至关重要的问题。
由于信号的传输速度越来越高,信号完整性问题变得尤为突出。
本文将分析信号完整性(Signal Integrity,简称SI)问题在电路设计中的重要性,并介绍一些常见的SI问题及其解决方法。
一、信号完整性的重要性信号完整性是指在信号传输过程中保持信号波形的准确性和完整性,确保信号的正确传递和解读。
如果信号受到干扰、衰减或失真,可能会导致数据的错误传输或丢失。
这对于各种电子设备,尤其是高速数据传输的系统来说,都是一项极其重要的考虑因素。
二、常见的SI问题1. 反射干扰反射干扰是信号在多个传输线之间传播时产生的一种干扰现象。
当信号到达传输线末端时,一部分信号能够反射回来,与输入信号相叠加,引起波形失真。
这种干扰主要由于阻抗不匹配引起。
2. 串扰干扰串扰干扰是指在多条相邻的传输线上,信号在传输过程中相互影响的现象。
这种干扰主要由于电磁场相互耦合引起,导致信号波形失真,降低信号质量。
3. 时钟抖动时钟抖动是指时钟信号在传输中出现的随机时移现象。
时钟抖动可能导致时序错误,使系统无法正确同步,进而影响整个系统的性能。
三、SI问题的解决方法1. 降低阻抗不匹配为了解决反射干扰问题,可以通过匹配传输线和负载的阻抗,减少信号反射。
采用合适的终端电阻,可以使信号在传输线上的反射最小化。
2. 优化布线方式在设计电路板布线时,应尽量避免传输线之间的相互干扰。
合理安排和分隔传输线的布局,使用屏蔽层和地平面层等技术手段,可有效减少串扰干扰。
3. 使用信号完整性分析工具借助信号完整性分析工具,可以模拟和分析信号在电路板上的传输过程,帮助发现潜在的SI问题。
通过调整设计参数,优化电路板布线,可以提前预防并解决SI问题。
4. 时钟校准技术对于时钟抖动问题,可以采用时钟校准技术来调整时钟信号的时序和相位。
通过使用高精度的时钟源和时钟校准电路,可以有效减少时钟抖动带来的问题。
信号完整性-反射

假设传输线的末端是开路,1ns 后在线末端,测得开 路两端的总电压为两个波之和,即 0.84V +0.84V=1.68V。
再经过 1ns 后,0.84V 反射波到达源端,又一次遇到 阻抗突变。源端的反射系数是(10 - 50)/(10+50)=- 0.67, 这时将有 0.84V×(-0.67)=-0.56V 反射回线远端。当然, 这个新产生的波又会从远端反射回源端,即-0.56V 电压将 被反射回来。线远端开路处将同时测得四个波:从一次行 波中得到 2×0.84 V=1.68 V,从二次反射中得到的 2× (-0.56)=-1.12 V,故总电压为 0.56 V。
8.1 阻抗变化处的反射
无论什么原因使瞬态阻抗发生了改变,部分信号将沿 着与原传播方向相反的方向反射,而另一部分将继续传播, 但幅度有所改变。将瞬态阻抗发生改变的地方称为阻抗突 变,或简称突变。
反射信号的量值由瞬态阻抗的变化量决定,如图 8.2 所 示。如果第一个区域瞬态阻抗是 Z1,第二个区域是 Z2,则 反射信号与入射信号幅值之比为(后面的 8.10 式给出证明):
(8.9)
最终可得:
(8.10)
这就是反射系数的定义(即(8.1)式)。用同样的方法可 以很容易推导出传输系数 t。将根据(8.2)式得出的 V , refl 代入(8.7)式可得:
Vinc Vtrans Vinc Vtrans
Z1
Z1
Z2
对上式通分、化简后可得:
(8.11)
没有人知道到底是什么产生了反射电压?只是知道当 产生之后,只有这样交界面两侧的电压才可以相等,交界 面处的电压才是连续的。同样,在交界面两侧也存在电流 回路,电流也是连续的。这样,整个系统也才是平衡的(有 点唯心主义的解释)。
信号反射及阻抗匹配
信号完整性分析---信号反射及阻抗匹配信号反射产生的原因,当信号从阻抗为Z0 进入阻抗为ZL 的线路时,由于阻抗不匹配的原因,有部分信号会被反射回来,也可以用“传输线上的回波来概括”。
如果源端、负载端和传输线具有相同的阻抗,反射就不会发生了。
反射的影响:如果负载阻抗小于传输线阻抗,反射电压为负,反之,如果负载阻抗大于传输线阻抗,反射电压为正。
实际问题中,PCB上传输线不规则的几何形状,不正确的信号匹配,经过连接器的传输及电源平面不连续等因素均会导致反射情况发生,而表现出诸如过冲/下冲以及振荡等信号失真的现象。
过冲,当信号的第一个波峰超过原来设定的最大值,信号的第一个波谷超过原来设定的最大值时,为过冲,也就是冲过头了。
下冲,当信号的第二个波峰波谷超过设定值时,称为下冲。
过大的过冲会导致元件保护二极管损坏,而下冲严重时会产生假时钟,导致系统误读写操作。
如果过冲过大我们可以采用阻抗匹配的方式消除过冲,方法很简单如下所示:效果如下:震荡:信号的反射也会引起信号震荡,而震荡的本质跟过冲/下冲是一样的,在一个周期内,信号反复的过冲下冲我们称之为信号震荡。
震荡是消除电路多余能量的一种方式。
通过震荡的信号,可以将反射而产生的多余能量给消耗掉。
欠阻尼(振铃)是指终端的阻尼小,过阻尼(环绕)是指终端的阻尼大了。
(PS:不只是分布式电路才会产生振荡,集总电路由于LC振荡也会产生振荡,其振荡的大小和电路的品质因素Q有关,Q值代表了电路中信号的衰减速度,Q值越高衰减越慢。
可以通过单位时间电路储存的能量与丢失的能量比值来衡量)Q<1/2的时候就不存在过冲或者振荡。
Q值的计算方法为: L是导线的平均电感,C是接收端的负载电容,Rs 是驱动端的输出电阻。
阻抗匹配,由于源端与负载端的阻抗不匹配才引起信号的反射,因此要进行阻抗匹配,从而降低反射系数,可以在源端串接阻抗,或者负载端并行接阻抗。
反射系数公式:P=(Z1-Z0)/(Z1+Z0)阻抗匹配端接技术汇总单电阻端接经总结:串联电阻匹配一般适用于单个负载的情况。
芯片电路设计中的信号完整性分析与优化
芯片电路设计中的信号完整性分析与优化在现代科技的发展中,芯片电路设计是至关重要的一环。
而在芯片电路设计中,信号完整性是一个关键的问题。
它涉及到信号在芯片中的传输和接收过程中是否能够保持其原有的质量和准确性。
信号完整性的分析与优化是确保芯片电路性能稳定可靠的关键步骤。
一、信号完整性分析在芯片电路设计过程中,信号完整性分析是必不可少的一步。
它可以帮助设计师了解信号在芯片内部的传输过程中可能出现的问题,提前预防并解决这些问题。
信号完整性分析主要包括以下几个方面:1. 信号传输时延:信号在芯片内传输的时间延迟会对电路的性能产生影响。
通过分析信号传输时延,可以确定信号是否能够在预定时间内到达目标位置,从而保证芯片的正常工作。
2. 信号反射:信号在传输过程中遇到过渡边沿时会发生反射现象。
这种反射会导致信号波形不稳定,进而影响芯片的工作。
通过对信号反射的分析,可以确定是否需要进行阻抗匹配等优化措施,从而保证信号的完整性。
3. 信号串扰:当多条信号在芯片内同时进行传输时,它们之间可能会产生互相干扰的现象,将导致信号的失真和噪声增加。
信号串扰的分析可以帮助设计师选择适当的信号引脚布局和引脚排列方式,以降低信号串扰的影响。
二、信号完整性优化在进行信号完整性分析的基础上,设计师可以采取一系列措施来优化信号的完整性,保证芯片的正常工作和性能稳定:1. 电源噪声抑制:电源噪声是一个常见的信号完整性问题。
它会对芯片电路的稳定性和准确性产生不利影响。
设计师可以采用滤波器、瞬态电容和电磁屏蔽等方法来抑制电源噪声的干扰,提高信号的完整性。
2. 阻抗匹配:信号传输中的阻抗不匹配会导致信号反射和波形失真。
设计师可以通过调整电阻和电容的数值,优化电路的布局来实现阻抗匹配,从而降低信号反射的发生,提高信号的完整性。
3. 信号引脚布局优化:芯片上的信号引脚布局合理与否对信号完整性起着重要作用。
设计师可以通过良好的信号引脚布局来减少信号串扰、提高信号传输速率和降低功耗。
图讲信号完整性
信号完整性基础信号完整性问题过冲(overshoot/undershoot)振铃(ringing/ring back)非单调性(non-monotonic)码间串扰(ISI)同步开关噪声(SSN)噪声余量(noise margin)串扰(crosstalk)信号完整性(Signal Integrity)主要包括以下几方面问题:1.过冲(Overshoot/Undershoot)一般IC对于过冲的高度和宽度的容忍度都有指标。
因为过冲会使IC内部的ESD防护二极管导通,通常电流有100mA左右。
信号长期的过冲会使IC器件降质,并是电源噪声和EMI的来源之一。
2. 振铃(Ringing/Ring Back)振铃会使信号的threshold域值模糊,而且容易引起EMI。
3.非单调性(Non-monotonic)电平上升过程中的平台会产生非单调性,这有可能对电路有危害,特别是针对异步信号如:Reset、Clock等会有影响。
4. 码间串扰(ISI)主要是针对高速串行信号。
其产生的本质是前一个波形还没有进入稳态,另外也有可能是传输线对不同频率衰减不同所造成的。
一般通过眼图来观察,方法是输入一伪随机码,观察输出眼图。
5. 同步开关噪声(SSN)同步开关噪声会使单根静止的信号线上出现毛刺?V,另外还会影响输入电平的判断。
SSN的另一种现象是SSO(同步开关输出),这会使得传输线的特性如阻抗、延时等特性发生改变。
6. 噪声裕量(Noise Margin)控制噪声余量的目的是防止外界干扰,用于克服仿真没有分析到的一些次要因素。
一般对于TTL信号应留有200~300mV的余量。
7. 串扰(Crosstalk)串扰主要有线间串扰、回路串扰、通过平面串扰(常见于数模混合电路)三种形式。
通常示波器所观察到的数字信号。
图中为各相关的信号完整性参数:•Overshoot、Undershoot指信号的过冲。
•Ringback 指信号的振铃。
现代电路设计中的信号完整性分析
现代电路设计中的信号完整性分析在当今高度数字化和集成化的电子世界中,电路设计的复杂性日益增加。
信号完整性已经成为确保电子系统可靠运行的关键因素之一。
简单来说,信号完整性指的是信号在传输过程中保持其准确性、完整性和时序特性的能力。
如果信号完整性出现问题,可能会导致系统性能下降、数据错误、甚至系统崩溃。
那么,为什么信号完整性在现代电路设计中如此重要呢?随着电子设备的工作频率不断提高,信号的传输速度也越来越快。
在高速情况下,信号的行为不再像在低速时那样简单和可预测。
例如,信号在传输线上可能会出现反射、串扰、衰减等现象,这些都会影响信号的质量。
反射是信号完整性中的一个常见问题。
当信号在传输线的终端遇到阻抗不匹配时,就会发生反射。
这就好像声音在一个封闭的房间里反射一样,会产生回声。
在电路中,反射会导致信号的失真和叠加,可能会引起误码或者时序错误。
串扰则是另一个需要关注的问题。
当相邻的传输线之间存在电磁场耦合时,就会发生串扰。
一条线上的信号可能会干扰到相邻线上的信号,导致信号的噪声增加,影响系统的性能。
衰减也是不可忽视的。
信号在传输过程中会因为电阻、电容和电感等因素而损失能量,导致信号的幅度减小。
如果衰减过大,可能会使接收端无法正确识别信号。
为了确保信号完整性,电路设计师需要在设计阶段就进行充分的分析和优化。
首先,要合理选择传输线的类型和参数。
不同类型的传输线,如微带线、带状线等,具有不同的特性,适用于不同的应用场景。
同时,传输线的阻抗、长度、宽度等参数也需要根据信号的频率和特性进行精心设计。
其次,布局和布线也是至关重要的。
在电路板上,元件的布局应该尽量减小信号传输的路径长度,减少反射和串扰的可能性。
布线时,要遵循一定的规则,如保持传输线之间的间距、避免直角转弯等。
电源和地的设计也会影响信号完整性。
稳定的电源供应是保证电路正常工作的基础,而良好的接地可以减少噪声和干扰。
在进行信号完整性分析时,通常会使用一些专业的工具和技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号完整性:信号反射信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。
对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。
如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB 转角,接插件),信号都会发生反射。
那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射 电压和原传输信号电压的比值。
反射系数定义为:ρ= 1212Z Z Z Z +-。
其中:Z 1为变化前的阻 抗,Z 2为变化后的阻抗。
假设PCB 线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系 数为:ρ=3150********=+-,信号有1/3被反射回源端。
如果传输信号的电压是3.3V 电压,反射电压就是1.1V 。
纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。
阻抗增加有限值:反射电压上面的例子已经计算过了。
这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V 电压,另一部分是在反射电压1.1V ,那么反射点处的电压为二者之和,即4.4V 。
阻抗减小有限值:仍按上面的例子,PCB 线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射 系数为 ρ=50305030+-=-0.25,反射电压为 3.3*(-0.25)V= -0.825V 。
此时反射点电压为3.3V+(-0.825V )=2.475V 。
开路:开路相当于阻抗无穷大,反射系数按公式计算为1。
即反射电压3.3V 。
反射点处电压为6.6V 。
可见,在这种极端情况下,反射点处电压翻倍了。
短路:短路时阻抗为0,电压一定为0。
按公式计算反射系数为-1,说明反射电压为-3.3V ,因此反射点电压为0。
由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。
这种反射电压会改变信号的波形,从而可能会引起信号完整性问题。
信号完整性分析---信号反射及阻抗匹配信号反射产生的原因,当信号从阻抗为Z0进入阻抗为Z l的线路时,由于阻抗不匹配的原因,有部分信号会被反射回来,也可以用“传输线上的回波来概括”。
如果源端、负载端和传输线具有相同的阻抗,反射就不会发生了。
反射的影响: 如果负载阻抗小于传输线阻抗,反射电压为负,反之,如果负载阻抗大于传输线阻抗,反射电压为正。
实际问题中,PCB上传输线不规则的几何形状,不正确的信号匹配,经过连接器的传输及电源平面不连续等因素均会导致反射情况发生,而表现出诸如过冲、下冲以及振荡等信号失真的现象。
过冲,当信号的第一个波峰超过原来设定的最大值,信号的第一个波谷超过原来设定的最大值时,为过冲,也就是冲过头了。
下冲,当信号的第二个波峰波谷超过设定值时,称为下冲。
过大的过冲会导致元件保护二极管损坏,而下冲严重时会产生假时钟,导致系统误读写操作。
如果过冲过大我们可以采用阻抗匹配的方式消除过冲。
震荡:信号的反射也会引起信号震荡,而震荡的本质跟过冲/下冲是一样的,在一个周期内,信号反复的过冲下冲我们称之为信号震荡。
震荡是消除电路多余能量的一种方式。
通过震荡的信号,可以将反射而产生的多余能量给消耗掉。
欠阻尼(振铃)是指终端的阻尼小,过阻尼(环绕)是指终端的阻尼大了。
(不只是分布式电路才会产生振荡,集总电路由于LC振荡也会产生振荡,其振荡的大小和电路的品质因素Q有关,Q值代表了电路中信号的衰减速度,Q值越高衰减越慢。
可以通过单位时间电路储存的能量与丢失的能量比值来衡量) Q<1/2的时候就不存在过冲或者振荡。
阻抗匹配,由于源端与负载端的阻抗不匹配才引起信号的反射,因此要进行阻抗匹配,从而降低反射系数,可以在源端串接阻抗,或者负载端并行接阻抗。
反射系数公式:P=(Z1-Z0)/(Z1+Z0)阻抗匹配端接技术汇总单电阻端接经总结:串联电阻匹配一般适用于单个负载的情况。
一、串行端接串行匹配:(不太适用太高的高速)二、并行端接并行匹配:(更适用于高速)1、单电阻并行端接缺点:降低了输出的高电平,匹配电阻接地会造成下降沿过快(接电源上升源变快),这样会导致波形占空比不平衡2、戴维宁并行接法优点:综合适用上下来电阻,平衡输出高低电平,减小因占空比失调能力消耗缺点:静态直流功率过大,在TTL和CMOS电路中不常用。
3、并行AC端接优点:AC端接避免较多的电源消耗,缺点:由于电容的大小很难确定,大电容会吸收较大电流增加电源损耗,小电容则会减弱匹配效果,建议通过仿真来确定电容值。
应用:并联交流匹配一般用在多接收端和时钟信号线。
(二极管端接法,此法不属于阻抗匹配的思路,而是通过二极管的钳位来减小过冲与下冲,尽管成本会提高,但是系统整体布局布线开销可能会减小,因为不需要考虑精确控制传输线的阻抗匹配,它的缺点在于二极管本身不会消耗振铃信号,因此反射回来的信号会对电源或者地产生噪声,开关速度不够高,对较高速系统不太适用)串扰:如果足够细心你会发现,有时对于某根信号线,从功能上来说并没有输出信号,但测量时,会有幅度很小的规则波形,就像有信号输出。
这时你测量一下与它邻近的信号线,看看是不是有某种相似的规律!对,如果两根信号线靠的很近的话,通常会的。
这就是串扰。
当然,被串扰影响的信号线上的波形不一定和邻近信号波形相似,也不一定有明显的规律,更多的是表现为噪声形式。
串扰在当今的高密度电路板中一直是个让人头疼的问题,由于布线空间小,信号必然靠得很近,因此你比须面对它,只能控制但无法消除。
对于受到串扰的信号线,邻近信号的干扰对他来说就相当于噪声。
串扰大小和电路板上的很多因素有关,并不是仅仅因为两根信号线间的距离。
当然,距离最容易控制,也是最常用的解决串扰的方法,但不是唯一方法。
这也是很多工程师容易误解的地方。
轨道塌陷:噪声不仅存在于信号网络中,电源分配系统也存在。
我们知道,电源和地之间电流流经路径上不可避免存在阻抗,除非你能让电路板上的所有东西都变成超导体。
那么,当电流变化时,不可避免产生压降,因此,真正送到芯片电源管脚上的电压会减小,有时减小得很厉害,就像电压突然产生了塌陷,这就是轨道塌陷。
轨道塌陷有时会产生致命的问题,很可能影响你的电路板的功能。
高性能处理器集成的门数越来越多,开关速度也越来越快,在更短的时间内消耗更多的开关电流,可以容忍的噪声变得越来越小。
但同时控制噪声越来越难,因为高性能处理器对电源系统的苛刻要求,构建更低阻抗的电源分配系统变得越来越困难。
你可能注意到了,又是阻抗,理解阻抗是理解信号完整性问题的关键。
重视信号上升时间信号的上升时间,对于理解信号完整性问题至关重要,高速pcb设计中的绝大多数问题都和它有关,你必须对它足够重视。
信号上升时间并不是信号从低电平上升到高电平所经历的时间,而是其中的一部分。
业界对它的定义尚未统一,最好的办法就是跟随上游的芯片厂商的定义,毕竟这些巨头有话语权。
通常有两种:第一种定义为10-90上升时间,即信号从高电平的10%上升到90%所经历的时间。
另一种是20-80上升时间,即信号从高电平的20%上升到80%所经历的时间。
两种都被采用,从IBIS模型中可看到这点。
对于同一种波形,自然20-80上升时间要更短。
对于我们终端应用来说,精确的数字有时并不是很重要,而且这个数值芯片厂商通常也不会直接给我们列出,当然有些芯片可以从IBIS模型中大致估计这个值,不幸的是,不是每种芯片你都能找到IBIS模型。
重要的是我们必须建立这样的概念:上升时间对电路性能有重要的影响,只要小到某一范围,就必须引起注意,哪怕是一个很模糊的范围。
没有必要精确定义这个范围标准,也没有实际意义。
你只需记住,现在的芯片加工工艺使得这个时间很短,已经到了ps级,你应该重视他的影响的时候了。
随着信号上升时间的减小,反射、串扰、轨道塌陷、电磁辐射、地弹等问题变得更严重,信号上升时间的减小,从频谱分析的角度来说,相当于信号带宽的增加,也就是信号中有更多的高频分量,正是这些高频分量使得设计变得更加困难。
互连线必须作为传输线来对待,从而产生了很多以前没有的问题。
因此,学习信号完整性,你必须有这样的概念:信号陡峭的上升沿,是产生信号完整性问题的罪魁祸首。
信号上升时间与带宽要重视信号上升时间,很多信号完整性问题都是由信号上升时间短引起的。
本文就谈谈一个基础概念:信号上升时间和信号带宽的关系对于数字电路,输出的通常是方波信号。
方波的上升边沿非常陡峭,根据傅立叶分析,任何信号都可以分解成一系列不同频率的正弦信号,方波中包含了非常丰富的频谱成分。
抛开枯燥的理论分析,我们用实验来直观的分析方波中的频率成分,看看不同频率的正弦信号是如何叠加成为方波的。
首先我们把一个1.65v的直流和一个100MHz的正弦波形叠加,得到一个直流偏置为1.65v的单频正弦波。
我们给这一信号叠加整数倍频率的正弦信号,也就是通常所说的谐波。
3次谐波的频率为300MHz,5次谐波的频率为500MHz,以此类推,高次谐波都是100MHz的整数倍。
图1是叠加不同谐波前后的比较,左上角的是直流偏置的100MHz基频波形,右上角时基频叠加了3次谐波后的波形,有点类似于方波了。
左下角是基频+3次谐波+5次谐波的波形,右下角是基频+3次谐波+5次谐波+7次谐波的波形。
这里可以直观的看到叠加的谐波成分越多,波形就越像方波。
影响信号完整性的不是波形的重复频率,而是信号的上升时间。
什么是地弹所谓“地弹”,是指芯片内部“地”电平相对于电路板“地”电平的变化现象。
以电路板“地”为参考,就像是芯片内部的“地”电平不断的跳动,因此形象的称之为地弹(ground bounce)。
当器件输出端有一个状态跳变到另一个状态时,地弹现象会导致器件逻辑输入端产生毛刺。
那么“地弹”是如何产生的呢?首先我们要明白,对于任何封装的芯片,其引脚会存在电感电容等寄生参数, 而地弹正是由于引脚上的电感引起的。
我们可以用下图来直观地解释一下。
图中开关Q的不同位置代表了输出的“0”“1”两种状态。
假定由于电路状态装换,开关Q接通RL低电平,负载电容对地放电,随着负载电容压下降,它积累的电荷流向地,在接地回路上形成一个大的电流浪涌。
随着放电电流建立然后衰减,这一电流变化作用于接地引脚的电感L G,这样在芯片外的电路板“地”与芯片内的地之间,会形成一定的电压差,如图中V G。
这种由于输出转换引起的芯片内部参考地电位漂移就是地弹。
芯片A的输出变化,产生地弹。