六年级总复习空间与图形1
2021-2022年六年级数学小升初专题复习训练—空间与图形:周长、面积与体积(1)(通用含解析)

小升初数学专题复习训练—空间与图形周长、面积与体积(1)知识点复习一.长方形的周长【知识点归纳】周长:图形一周的长度,就是图形的周长;周长的长度等于图形所有边的和.一般用字母C来表示.计算方法:①周长=长+宽+长+宽②周长=长×2+宽×2③周长=(长+宽)×2.【命题方向】例1:用一根长38厘米的铁丝围长方形,使它们的长和宽都是整厘米数,可以有()种围法.A、7B、8C、9D、10分析:要求有几种围法,应依据长方形的周长公式,求出长和宽的和,再据条件“长和宽都是整数”进行推算即可.解:长方形的周长=(长+宽)×2所以长与宽之和是:38÷2=19(厘米)由此可知:1+18=19、2+17=19、3+16=19、4+15=19、5+14=196+13=19、7+12=19、8+11=19、9+10=19.一共有9种方法.故选:C.点评:此题主要考查长方形的周长公式及整数的加减问题,依据题目条件,可以推算出结果.例2:一个周长为20米的长方形,如果把它的长和宽都增加5米,那么它的周长增加()A、10米B、20米C、30米D、40米分析:抓住“长和宽都增加5米”,那么周长就增加了2个(5+5)的长度.由此计算得出即可选择正确答案.解:(5+5)×2=10×2=20(米);答:那么它的周长增加20米.故选:B.点评:此题考查了长方形的周长公式的灵活应用.二.正方形的周长【知识点归纳】正方形周长是围成正方形的边长总和,由于正方形的特征是4条边都相等,所以正方形周长=边长×4.用字母表示为c=4a.【命题方向】例1:正方形的边长是周长的()A、B、C、D、分析:因为正方形的周长是四条边的和,并且正方形的4条边都相等,所以正方形的边长是周长的.解:正方形的周长=边长×4,所以正方形的边长是周长的.故选:A.点评:此题主要考查正方形的边长和周长的关系,根据正方形周长是边长的4倍即可得出二者的关系.例2:一个边长2分米的正方形,如果在四个角各剪去一个边长为2厘米的小正方形,那么它周长与原来比,结果是()A、减小B、不变C、增加分析:正方形对边相等,所以减去后周长不变.解:因为正方形对边相等,所以减去后周长不变.故选:B.点评:此题考查学生对空间的想象力.三.梯形的周长【知识点归纳】梯形的周长=两腰长度+上底+下底.【命题方向】分析:因为梯形的周长=两腰长度+上底+下底,又根据等腰梯形的特点,两腰相等,所以一条腰的长度=(周长-上底-下底)÷2,计算即可.解:(30-8-10)÷2,=12÷2,=6(厘米).答:每条腰长6厘米.故答案为:6.点评:解决本题的关键是明确梯形的周长=两腰长度+上底+下底,由于两腰长度相等,所以一条腰的长度=(周长-上底-下底)÷2.四.圆、圆环的周长【知识点归纳】圆的周长=πd=2πr,半圆的周长等于圆周长一半加上直径,即;半圆周长=πr+2r.圆环的周长等于两个圆的周长,即:圆环的周长=πd1+πd2=2πr1+2πr2.【命题方向】例1:车轮滚动一周,所行的路程是求车轮的()A、直径B、周长C、面积分析:车轮滚动一周,所行的路程就是这个车轮的周长,可采用化曲为直的方法进行计算.解:车轮滚动一周所行的路程就是车轮一周的长度,即周长.答:车轮滚动一周,所行的路程是求车轮的周长.故选:B.点评:此题主要考查的是利用圆的周长求车轮的所行路程.例2:如图,一个半圆形的半径是r,它的周长是()A、2πr×B、πr+rC、(π+2)rD、πr2.分析:根据半圆的周长公式:C=πr+2r,可求半圆的周长.解:πr+2r=(π+2)r.答:半圆的周长是(π+2)r.故选:C.点评:考查了半圆的周长.解题的关键是理解和掌握它们的计算公式,同时不要错误的以为半圆的周长是圆的周长的一半.五.长方形、正方形的面积【知识点归纳】长方形面积=长×宽,用字母表示:S=ab正方形面积=边长×边长,用字母表示:S=a2.【命题方向】例1:一个长方形的周长是48厘米,长和宽的比是7:5,这个长方形的面积是多少?分析:由于长方形的周长=(长+宽)×2,所以用48除以2先求出长加宽的和,再根据长和宽的比是7:5,把长看作7份,宽看作5份,长和宽共7+5份,由此求出一份,进而求出长和宽分别是多少,最后根据长方形的面积公式S=ab求出长方形的面积即可.解:一份是:48÷2÷(7+5),=24÷12,=2(厘米),长是:2×7=14(厘米),宽是:2×5=10(厘米),长方形的面积:14×10=140(平方厘米),点评:本题考查了按比例分配的应用,同时也考查了长方形的周长公式与面积公式的灵活运用.答:这个长方形的面积是140平方厘米.例2:小区前面有一块60米边长的正方形空坪,现要在空坪的中间做一个长32米、宽28米的长方形花圃,其余的植上草皮.(如图)①花圃的面积是多少平方米?②草皮的面积是多少平方米?分析:(1)长方形的面积=长×宽,代入数据即可求解;(2)草皮的面积=正方形的面积-长方形的面积,利用正方形和长方形的面积公式即可求解.解:(1)32×28=896(平方米);(2)60×60-896,=3600-896,=2704(平方米);答:花圃的面积是896平方米,草皮的面积是2704平方米.点评:此题主要考查正方形和长方形的面积的计算方法.六.梯形的面积【知识点归纳】梯形面积=(上底+下底)×高÷2.【命题方向】例1:一个果园近似梯形,它的上底120m,下底180m,高60m.如果每棵果树占地10m2,这个果园共有果树多少棵?分析:根据梯形的面积公式S=(a+b)×h÷2,求出果园的面积,再除以10就是这个果园共有果树的棵数.解:(120+180)×60÷2÷10,=300×60÷2÷10,=18000÷20,=900(棵),答:这个果园共有果树900棵.点评:本题主要是利用梯形的面积公式S=(a+b)×h÷2与基本的数量关系解决问题.七.圆、圆环的面积【知识点归纳】圆的面积公式:S=πr2圆环的面积等于大圆的面积减去小圆的面积即可得,公式:S=πr22-πr12=π(r22-r12)【命题方向】例1:因为大圆的半径和小圆的直径相等,所以大圆面积是小圆面积的()A、2倍B、4倍C、D、分析:大圆的半径和小圆的直径相等,说明大圆的半径是小圆的半径的2倍,利用圆的面积公式和积的变化规律即可推理得出正确答案进行选择.解:大圆的半径和小圆的直径相等,说明大圆的半径是小圆的半径的2倍,圆的面积=πr2,根据积的变化规律可得,r扩大2倍,则r2就会扩大2×2=4倍,所以大圆的面积是小圆的面积的4倍.故选:B.点评:此题考查了积的变化规律在圆的面积公式中的灵活应用,这里可以得出结论:半径扩大几倍,圆的面积就扩大几倍的平方.例2:在图中,正方形的面积是100平方厘米,那么这个圆的面积是多少平方厘米?周长呢?分析:看图可知:正方形的边长等于圆的半径,先利用正方形的面积公式求出正方形的边长,即得出圆的半径,由此根据圆的周长和面积公式即可列式解答.解:因为10×10=100,所以正方形的边长是10厘米,所以圆的面积是:3.14×10×10=314(平方厘米);周长是:3.14×10×2=62.8(厘米),答:这个圆的面积是314平方厘米,周长是62.8厘米.点评:此题考查圆的周长与面积公式的计算应用,关键是结合图形,利用正方形的面积公式求出正方形的边长,即这个圆的半径.同步测试一.选择题(共8小题)1.某等腰梯形的上底为6cm,一腰长8cm,下底长11cm,则梯形的周长是()A.25 cm B.33 cm C.17 cm2.边长是1000米的正方形菜地的面积是()A.1000000米B.1平方千米C.1000平方米3.如图,一只蚂蚁从起点沿着长方形的边向前爬行.它要爬行()分米才能回到起点.A.20B.40C.604.如图,长方形的面积和圆的面积相等如果圆的周长是314m,那么长方形的周长是()m.A.7850B.157C.4145.画一个周长为37.68厘米的圆,圆规两脚间的距离为()厘米.A.2B.6C.46.正方形的边长扩大到4倍,它的周长扩大到()倍.A.4B.8C.不变7.长方形菜地长是20米,宽是长的,求这块菜地周长算式正确的是()A.20×B.20××20C.D.8.一个梯形的上底扩大到原来的3倍,下底也扩大到原来的3倍,高不变,则面积扩大到原来的()倍.A.9B.6C.3二.填空题(共8小题)9.如图中长方形的周长是厘米.10.小朋友绕绿地一周,走了米.11.画圆时,圆规两脚之间叉开得越大,画出的圆会;如果圆规两脚之间的距离是2.5厘米,画出的圆的直径是厘米.它的周长是厘米.12.一块长方形菜地,长是15m,宽是长的,该菜地的面积是.13.一个正方形的周长是28厘米,它的边长增加3厘米,那么它的周长增加厘米.14.直径为8cm的半圆,周长是cm,面积是cm2.(π取3.14)15.一个直角梯形的高是6厘米,如果把它的上底向一端延长2厘米就成为一个正方形,这个梯形的面积是平方厘米.16.如图,正方形的面积10m2,那么圆的面积是m2.三.判断题(共5小题)17.梯形的面积等于平行四边形面积的一半..(判断对错)18.一个长400米,宽250米的长方形花坛,占地面积是10公顷.(判断对错)19.一个圆的直径增加2厘米,它的周长将增加2π厘米.(判断对错)20.两个直径是2cm的圆的面积之和,与一个直径是4cm的圆面积相等.(判断对错)21.一个长方形的周长是16厘米,把它剪成两个完全相同的长方形,每个长方形的周长都是8厘米.(判断对错)四.操作题(共3小题)22.作图题:在下面的正方形中画一个最大的圆,并求出圆的面积.23.张大爷在小河边围了一块梯形菜地.菜地上底长5米,下底长12米,两腰各长7米,他只用了19米长的篱笆.你知道他是怎么圈的吗?画一画.24.按要求作答.(1)用圆规画出图2的图形.(2)计算出图2阴影部分的周长.(π取3.14)五.应用题(共7小题)25.小兰的妈妈准备靠墙做一个长方形的菜地,要用栅栏围起来.这块菜地的长是8米,宽是5米.请问一共有几种方法,分别要准备多长的栅栏?(方法一)列式:(方法二)列式:26.一块正方形菜地,一面靠墙,三面用篱笆围起来.篱笆长24米,你知道这块正方形菜地的边长是多少米吗?27.李阿姨到超市买了一个圆形杯垫,它的周长是25.12厘米,它的面积是多少平方厘米?28.如图,红红家在院墙边围一个梯形花坛,围花坛的篱笆总长是56m,求这个花坛的面积.29.如图,王大爷靠墙围了一个半径为10m的半圆形养鸡场,并在它的外围铺了一条2m宽的小路,这条小路的面积是多少平方米?(π取3)30.一个等腰梯形,下底比上底长10厘米,上底和一条腰的长是86厘米,这个梯形的周长是多少厘米?31.有一张长1.3米,宽1.2米的长方形纸板,要剪成面积为0.36平方米的正方纸板,能剪出几块?参考答案与试题解析一.选择题(共8小题)1.【分析】首先要明确:等腰梯形的两条腰的长度相等,然后根据梯形的周长=上底+下底+两条腰的长度,据此即可解答.【解答】解:6+11+8×2=6+11+16=33(厘米)答:这个梯形的周长是33厘米.故选:B.【点评】本题考查了梯形周长公式的灵活应用.2.【分析】1000米=1千米,根据长方形的面积公式求解即可.【解答】解:1000米=1千米1×1=1(平方千米)答:边长是1000米的正方形菜地的面积是1平方千米.故选:B.【点评】解决本题关键是熟练掌握长度单位的换算和正方形的面积公式.3.【分析】一只蚂蚁沿着一个长12分米,宽8分米的长方形的边爬行,它爬回到起点的长度与长方形的周长相等,根据长方形的周长公式计算即可.【解答】解:2×(8+12)=2×20=40(分米)答:它要爬40分米才能回到起点.故选:B.【点评】此题考查了长方形的周长计算,长方形的周长公式:C=2(a+b).4.【分析】根据题意可知:长方形的宽等于圆的半径,根据圆的周长公式:C=2πr,那么r=C÷2π,再根据圆的面积公式:S=πr2,求出圆的面积,已知圆的面积和长方形的面积相等,用长方形的面积除以宽求出长,然后根据长方形的周长公式:C=(a+b)×2,把数据代入公式解答.【解答】解:314÷3.14÷2=50(m)3.14×502=3.14×2500=7850(m2)7850÷50=157(m)(157+50)×2=207×2=414(m)答:长方形的周长是414m.故选:C.【点评】此题主要考查圆的周长公式、面积公式、长方形的面积公式、周长公式的灵活运用,关键是熟记公式.5.【分析】根据圆的周长公式:C=2πr,那么r=C÷2π,把数据代入公式解答.【解答】解:37.68÷3.14÷2=6(厘米)答:圆规两脚间的距离为6厘米.故选:B.【点评】此题主要考查圆周长搜狗的灵活运用,关键是熟记公式.6.【分析】根据积的变化规律和正方形的周长进行解答,正方形的周长:C=4a,根据积的变化规律知:一个因数不变,另一个因扩大或缩小几倍,积也扩大或缩小几倍,据此解答.【解答】解:正方形的周长:C=4a,边长扩大4倍,另一个因数不变,积也扩大4倍,所以它的周长扩大到4倍.故选:A.【点评】本题主要考查了学生根据积的变化规律和正方形的周长公式解答问题的能力.7.【分析】把长看作单位“1”,宽是,长与宽的和是长的(1+),所以用长乘(1+)求出长与宽的和,再根据长方形的周长C=(a+b)×2,用长与宽的和乘,即可求解.【解答】解:20×(1+)×2=20××2=35×2=70(米)答:它的周长是70米.故选:D.【点评】此题主要考查长方形的周长公式的灵活应用,关键是先计算出长方形的宽.8.【分析】根据题意可知,梯形的上底和下底都扩大3倍,也就是说(上底+下底)的和扩大了3倍,高不变,它的面积一定也扩大了3倍.【解答】解:设上底为a,下底为b,高为h,原来的面积是:S=(a+b)×h÷2;扩大后的面积是:(a×3+b×3)×h÷2=(a+b)×3×h÷2=[(a+b)×h÷2]×3;所以一个梯形的上底扩大到原来的3倍,下底也扩大到原来的3倍,高不变,则面积扩大到原来的3倍.故选:C.【点评】本题用到的知识点是:S=(a+b)×h÷2;两个加数都扩大几倍,它们的和也扩大几倍.二.填空题(共8小题)9.【分析】观察图形,长方形的长等于3个圆的半径,长方形的宽等于圆的直径,求出长和宽,根据长方形的周长公式C=(a+b)×2.【解答】解:(4.2×3+4.2×2)×2=(12.6+8.4)×2=21×2=42(厘米)答:长方形的周长是42厘米.故答案为:42.【点评】本题主要是利用长方形的周长公式、圆与长方形的关系解答.10.【分析】用正六边形的边长×6,列式计算即可求解.【解答】解:4×6=24(米)答:走了24米.故答案为:24.【点评】本题关键是熟悉正六边形的特征,正六边形的6条边长度都相等.11.【分析】画圆时,圆规两脚之间叉开得大小,就是这个圆的半径,半径越大,画出的圆会越大,根据画圆的方法可知这个圆的半径是2.5厘米,利用圆的直径与圆的半径的关系,圆的周长公式即可计算.【解答】解:根据题干分析可得:画圆时,圆规两脚之间叉开得越大,画出的圆会越大;2.5×2=5(厘米)3.14×5=15.7(厘米)答:画圆时,圆规两脚之间叉开得越大,画出的圆会越大;如果圆规两脚之间的距离是2.5厘米,画出的圆的直径是5厘米.它的周长是15.7厘米.故答案为:越大;5;15.7.【点评】此题考查了圆的画法以及圆的周长=2πr的计算应用.12.【分析】根据题干,先求出这个长方形菜地的宽是15×=12米,再根据长方形的面积=长×宽,代入数据计算即可解答问题.【解答】解:15×=12(米)15×12=180(平方米)答:该菜地的面积是180平方米.故答案为:180平方米.【点评】此题主要考查了长方形的面积公式的计算应用,熟记公式即可解答问题.13.【分析】因为正方形的4条边的长度都相等,正方形每条边增加3厘米,那么正方形的周长就增加4个3厘米,根据正方形的周长公式:C=4a,把数据代入公式解答.【解答】解:3×4=12(厘米)答:它的周长增加12厘米.故答案为:12.【点评】此题主要考查正方形周长公式的灵活运用,关键是熟记公式.14.【分析】此题是求出直径为8厘米的半圆的周长与面积,利用半圆的周长=所在圆的周长÷2+直径;半圆的面积=所在圆的面积÷2,即可解答.【解答】解:3.14×8÷2+8=12.56+8=20.56(厘米)3.14×(8÷2)2÷2=3.14×16÷2=25.12(平方厘米)答:周长是20.56厘米,面积是25.12平方厘米.故答案为:20.56;25.12.【点评】此题考查半圆的周长与面积计算方法;注意半圆的周长=所在圆的周长÷2+直径,容易漏掉直径.15.【分析】根据“一个直角梯形的高是6厘米,如果把它的上底向一端延长2厘米就成为一个正方形”,可知这个梯形的上底是6﹣2=4厘米,下底是6厘米.然后再根据梯形的面积公式进行计算.【解答】解:(6﹣2+6)×6÷2=10×6÷2=30(平方厘米)答:这个梯形的面积是30平方厘米.故答案为:30.【点评】此题考查了梯形面积的计算方法.16.【分析】根据图示可知,圆的半径与正方形的边长相等设圆的半径为r,则r2=10,利用圆的面积公式:S=πr2,则圆的面积为:3.14×10=31.4(平方米).【解答】解:3.14×10=31.4(平方米)答:圆的面积是31.4m2.故答案为:31.4.【点评】本题主要考查圆与圆环的面积,关键利用圆与正方形的关系做题.三.判断题(共5小题)17.【分析】缺少关键条件,梯形的面积是和它等底等高的平行四边形面积的一半.【解答】解:因为梯形的面积是和它等底等高的平行四边形面积的一半.故答案为:×.【点评】此题主要考查梯形的面积是和它等底等高的平行四边形面积的一半.18.【分析】根据长方形的面积公式:S=ab,把数据代入公式求出花坛的面积与10公顷进行比较.【解答】解:400×250÷10000=100000÷100000=10(公顷)答:这个花坛的占地面积是10公顷.因此,一个长400米,宽250米的长方形花坛,占地面积是10公顷.这种说法是正确的.故答案为:√.【点评】此题主要考查长方形面积公式的灵活运用,关键是熟记公式,注意:面积单位相邻单位之间的进率及换算.19.【分析】圆的周长计算公式是C=πd,假设原来的直径是a厘米,如果直径增加了2厘米,则直径增加2厘米后的直径是(a+2)厘米,由此可得原来的周长是aπ(厘米),而现在的周长是(a+2)π=(aπ+2π)(厘米)所以周长增加了aπ+2π﹣aπ=2π(厘米),据此即可判断.【解答】解:假设原来的直径是a厘米,则直径增加2厘米后的直径是(a+2)厘米原来的周长是aπ(厘米)现在的周长是(a+2)π=(aπ+2π)(厘米)所以周长增加了aπ+2π﹣aπ=2π(厘米)所以一个圆的直径增加2厘米,它的周长将增加2π厘米,原题说法正确.故答案为:√.【点评】本题考查圆的周长的计算,在圆中,如果是圆的直径增加n,则其周长增加nπ,周长增加的值与原来圆的直径大小无关.20.【分析】根据圆的面积公式:S=πr2,把数据分别代入公式求出它们的面积后进行比较即可.【解答】解:3.14×(2÷2)2×2=3.14×1×2=6.28(平方厘米)3.14×(4÷2)2=3.14×4=12.56(平方厘米)6.28平方厘米≠12.56平方厘米.因此,两个直径是2cm的圆的面积之和,与一个直径是4cm的圆面积相等.这种说法是错误的.故答案为:×.【点评】此题主要考查圆面积公式的灵活运用,关键是熟记公式.21.【分析】如图所示,将长方形剪成两个两个完全相同的长方形,有以下两种剪法,所得到的两个长方形的周长都比原长方形的一半多一个长或宽,所以周长都应大于(16÷2)厘米.【解答】解:如图所示:将长方形剪成两个两个完全相同的长方形,有两种剪法,所得到的两个长方形的周长都比原长方形的一半多一个长或宽,所以周长都应大于:16÷2=8(厘米).故题干的说法是错误的.故答案为:×.【点评】解答此题的关键是:利用直观作图,即可求得每个小长方形的周长.四.操作题(共3小题)22.【分析】(1)正方形内最大的圆,是以正方形的中心为圆心,以正方形的边长为直径的圆,据此即可画出;(2)知道正方形的边长,进而求出圆的半径,然后依据圆面积公式求出圆的面积;【解答】解:(1)以正方形的中心为圆心,以正方形的边长为直径画圆,如下图所示;(2)圆的半径为:3÷2=1.5(cm)圆的面积为:3.14×1.52=3.14×2.25=7.065(平方厘米)答:圆的面积是7.065平方厘米.【点评】此题考查了正方形内最大圆的特点,另外也考查了圆的面积公式的灵活应用.23.【分析】根据梯形周长的意义,梯形的周长是指围成这个梯形的4条边的长度和,已知这个梯形的上底是5米,下底是12米,两条腰各是7米,一边靠河用了19米长的篱笆,由此可知,梯形的下底靠河,据此解答即可.【解答】解:如图:5+7×2=5+14=19(米)答:他是梯形的下底靠河圈的.【点评】此题考查的目的是理解掌握等腰梯形的特征,梯形周长的意义及应用.24.【分析】(1)用圆规画出图形即可;(2)根据半圆的周长公式C=πd÷2+d列式计算即可求解.【解答】解:(1)如图所示:(2)3.14×2÷2×2+2×2=6.28+4=10.28(cm)答:图2阴影部分的周长是10.28cm.【点评】考查了圆的周长,关键是熟练掌握半圆的周长公式.五.应用题(共7小题)25.【分析】两种方法:若长边靠墙,则栅栏长等于长+宽×2;若宽边靠墙,则栅栏长等于长×2+宽;据此计算即可解答问题.【解答】解:(方法一)列式:8+5+5=18(米)(方法二)列式:8+8+5=21(米)答:共有两种方法,要准备18米或者21米的栅栏.【点评】此题主要考查长方形的周长公式的实际应用,要注意一边靠墙的情况.26.【分析】正方形菜地,一面靠墙,三面用篱笆围起来,篱笆长24米,24米就是这个正方形3条边的长,用24除以3可求出一条边的长,据此解答.【解答】解:24÷3=8(米)答:这块正方形菜地的边长是8米.【点评】本题的重点是让学生理解:24米就是这个正方形3条边的长,即可求出这个正方形的边长.27.【分析】根据圆的周长公式:C=2πr,那么r=C÷2π,据此求出半径,再根据圆面积公式:S=πr2,把数据代入公式解答.【解答】解:25.12÷2÷3.14=4(厘米)3.14×42=3.14×16=50.24(平方厘米)答:它的面积是50.24平方厘米.【点评】此题主要考查圆的周长公式、面积公式的灵活运用,关键是熟记公式.28.【分析】观图可知:围成的图形是一个直角梯形,因为围花坛的篱笆长56m,用篱笆长减去20米,就是上底与下底的和,由此根据梯形的面积公式S=(a+b)h÷2,列式解答即可.【解答】解:(56﹣20)×20÷2=36×20÷2=720÷2=360(平方米)答:这个花坛的面积是360平方米.【点评】解答此题的关键是根据题意求出梯形的上底与下底的和,然后利用梯形的面积公式解答.29.【分析】求小路的面积即求半环形的面积,需知道内圆半径(已知)和外圆半径(未知),内圆半径加上小路的宽即外圆半径,根据环形面积公式s=π(R2﹣r2),代入公式计算出面积,再运用圆环的面积除以2即可得到这条小路的面积.【解答】解:10+2=12(米)3×(122﹣102)÷2=3×44÷2=66(平方米)答:这条小路的面积是66平方米.【点评】此题主要考查环形的面积公式及其计算,根据s=π(R2﹣r2)计算比较简便,注意本题是半圆环,面积要除以2.30.【分析】由“一个等腰梯形,下底比上底长10厘米,上底和一条腰的长是86厘米”可知:下底和另一条腰的长的和应是(86+10)厘米,再根据等腰梯形周长的意义,用上底加下底再加两个腰的长度就是这个梯形的周长.【解答】解:86+86+10=182(米)答:这个梯形的周长是182厘米.【点评】本题主要考查了梯形的周长的计算方法,即把四条边的长度加起来.31.【分析】根据题干,面积是0.36平方米的正方形的边长是0.6米,以长为边可以剪出1.3÷0.6≈2块,以宽为边可以剪出1.2÷0.6=2块,所以一共可以剪出2×2=4块,据此即可解答问题.【解答】解:因为0.62=0.36所以面积是0.36平方米的正方形的边长是0.6米以长为边可以剪出1.3÷0.6≈2(块)以宽为边可以剪出1.2÷0.6=2(块)所以一共可以剪出2×2=4(块)答:能剪出4块.【点评】解答此题关键是明确沿着长与宽各能剪出几个小正方形,据此即可解答问题.。
人教版小学数学六年级上册精品教学课件 9 总复习 第3课时空间与图形

1 2
,这个圆环的面积是内圆面积
的( C )。A.1 2C.3倍
B.2倍 D.4倍
基础开心园
4.如图,两个半圆形重叠部分的面积相当于小半圆形面积的27,相当于 大半圆形面积的2,则大、小两个半圆形的面积之比为( D )。
9
A.9∶11 B.11∶9 C.7∶9
D.9∶7
三、我会做。
基础开心园
1.
(1)书店在李老师家( 东 )偏( 北 )( 35 )°方向,距离( 200 )m。
基础开心园
(2)王老师家在李老师家西偏北30°方向距离600 m,在图上标出王老 师家的位置。
基础开心园
(3)周末王老师从家出发,找李老师一同去书店,你能描述王老师的 行走路线吗? 王老师从家出发,沿东偏南30°方向走600 m到李老师家,再沿东偏 北35°方向走200 m到书店
基础开心园
二、我会选。
1.一台拖拉机,后轮直径是前轮直径的2倍,后轮转8圈,前轮转( B ) 圈。
A.8
B.16 C.24 D.32
2.在同一个平面内,由两个大小不同的圆组成的图形( D )。
A.有一条对称轴 B.有两条对称轴
C.没有对称轴 D.有一条对称轴或者有无数条对称轴
3.一个圆环,内圆半径是外圆半径的
4×4÷2÷2=4(dm2)
能力闯关岛
2.求阴影部分的周长及面积。
能力闯关岛
周长:[3.14×(10-2)×2+3.14×10×2]÷2+2×4=64.52(cm) 面积:[3.14×102-3.14×(10-2)2]÷2=56.52(cm2)
能力闯关岛
五、我会解答。 1.某俱乐部有一个圆形舞池,周长为37.68 m,现准备把半径加长1 m, 舞池面积可增加多少平方米? 37.68÷(2×3.14)=6(m) 3.14×(6+1)2-3.14×62=40.82(m2) 2.刘爷爷用157 m长的篱笆靠墙(墙足够长)恰好围成了一个半圆形 的养鸡场,这个养鸡场的面积是多少平方米? 3.14×(157÷3.14)2÷2=3925(m2)
北师大版小学数学六年级下册总复习《空间与图形》教材解读

(四)“图形与位置”的复习
主要内容: 回顾确定位置的方法
(四)“图形与位置”的复 习
1 在解决问题的过程 中,复习有关确定 位置的知识。
2、能在具体情境中, 确定某一地点的位 置。
北师大版小学数学六年级下册总复习 《空间与图形》
“空间与图形”总复习
“空间与图形”总复习的主要内容 ★图形的认识:包括线与角、平面图形、立 体图形 ★图形与测量:包括长度、面积、体积 ★图形与变换 ★图形与位置
内容 图形的认识 图形与测量 图形与变换 图形与位置
机动
建议课时数 6 4 3 2 2
3、能运用所学的知识和技 能解决日常生活中的简单问 题,体会数学与生活的密切 联系
4、引导学生交流整理知识 的方法
1.线与角
1、复习整理直线、线 段和射线 2、引导学生复习垂直 与平行 3、引导学生复习比较 角的大小和角的度量 的有关知识 4、复习锐角、直角、 钝角、平角及周角
2.平面图形
1、引导学生从不同 的角度回顾与整理所 学平面图形的特征 2、引导学生对图形 的一些特征进行验证 或说明 3、举例说明平面图 形特征在生活中的应 用
(二)“图形与测量”的复
习
1、通过列表、画图等,对图形测量的有关 知识进行系统整理,进一步理解周长、面 积、体积、等以及相应的单位。
2、沟通几种基本图形面积公式及其推 导过程的内在联系、体积计算公式之间的 联系,体会数学知识和方法的内在联系, 体会转化、类比等数学思想方法,发展初 步的推理能力。
3、能正确计算常见平面图形的周长和 面积、常见立体图形的表面积和体积,并 解决一些简单的实际问题。
本单元建议教学课时数: 17 课时
新人教版六年级下册数学总复习专题五——空间与图形的试题及答案(个人整理)

新人教版六年级下册数学总复习专题五——空间与图形的试题及答案(个人整理)专题五——空间与图形(一) 一、填空。
(30分)1、一条10厘米长的线段,这条线段长()分米,是1米的()()。
2、经过两点可以画出()条直线;两条直线相交有()个交点。
3、如果等腰三角形的一个底角是53°,则它的顶角是().直角三角形的一个钝角是48°,另一个锐角是()。
4、上图是由()个棱长为1厘米的正方体搭成的。
将这个立体图形的表面涂上蓝色,其中只有三个面涂上蓝色的正方体有()个,只有四个面涂上蓝色正方体有()个。
5、在一块边长10cm的正方形硬纸板上剪下一个最大的圆,这个圆的面积是()cm2,剩下的边角料是()cm2。
6、一个长方形的周长是42cm,它的长与宽的比是4∶3,它的面积是()cm2。
7、用72cm长的铁丝焊成一个正方体框架(接口处不计),这个正方体框架的棱长是()cm,体积是()cm3,表面积是()cm2。
8、一个圆锥的体积是9.42立方分米,底面直径是6分米,它的高是()分米,和它等底等高的圆柱的体积是()立方分米。
9、从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线()的线段。
10、用百分数表示以下阴影部分是整个图形面积的百分之几。
11、把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来的圆柱体表面积减少()平方分米。
12、右图是由棱长1厘米的小正方体木块搭成的,这个几何体的表面积是()平方厘米。
至少还需要()块这样的小正方体才能搭成一个大正方体。
13、在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是()平方厘米,剩下的边料是()平方厘米。
14、将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是()平方厘米。
15、把一个棱长8cm的正方体切成棱长2cm的小正方体,可以得到()个小正方体,它们的表面积之和比原来增加了()c㎡。
六年级数学上册空间与图形复习

2.圆的半径扩大3倍,直径扩大( 3 )倍,周长扩大 ( 3 )倍;面积扩大( 9 )倍。
• 3.小铁环直径6分米,大铁环直径8分米。大铁环和 小铁环半径的比是( );周长的比是( ); 面积的比是( )。如果它们滚过相同的路程, 则转动的圈数的比是( )。
• 4.在一张长60厘米,宽40厘米的长方形纸上 剪一个最大的圆,则圆的面积是( ) 平方厘米。如果剪一个最大的半圆,则半圆 的面积是( )平方厘米。
二、 求下列图形的周长 和面积。
8dm 6㎝
三、 求下面各图的阴影部分的面 积。(单位:㎝)
10
8
6
8
8
回忆相关概念及公式:
3.什么是圆的半径、直径,在同圆或等圆中,它们有什么关系?
d r
o
d=2r
半径决定圆的大小。
关于圆,你还了解哪些知识?请边完成下面练习边思考:
1.用圆规画一个周长12.56厘米的圆,圆规两脚之间 12.56 的距离是( )厘米,所画圆的面积是( ) 2 平方厘米。
空间与图形
六年级 数学上册
怎样确定物体 的位置呢?
图上画了 些什么?
你能说出每一棋所下的位置吗?
圆心 圆的认识 半径 直径 圆的周长 圆 圆的面积
圆环的面积
d
O
r
圆的周长指的是什么?
围成圆的曲线的长叫做圆的周长。
C=πd
d r
C=2πr
一个女孩推着一个半径是35㎝的 车轮在地面上滚动20周,车轮所 走的路程是多少米?
)cm2.
可以发现规律:圆外切正方形,圆与圆内接正方形 三者间的关系为 ( )。
只列式不计算:
1.求下面图形的面积:
3cm
5cm
六年级空间与图形总复习教案以及反思

六年级空间与图形总复习教案以及反思一、教学目标1. 知识与技能:使学生掌握小学阶段空间与图形的基本知识和技能,能够灵活运用所学知识解决实际问题。
2. 过程与方法:通过复习,让学生经历自主探究、合作交流的过程,培养学生的空间想象能力、逻辑思维能力和创新能力。
3. 情感态度与价值观:激发学生对空间与图形的兴趣,培养学生的自信心和自主学习能力,使学生感受数学与生活的密切联系。
二、教学内容1. 第一课时:平面图形复习(1)三角形、四边形、五边形、六边形的性质和分类。
(2)圆的性质和圆周率的概念。
2. 第二课时:立体图形复习(1)长方体、正方体的性质。
(2)圆柱、圆锥的性质。
(3)立体图形的展开与折叠。
3. 第三课时:图形变换复习(1)平移、旋转的性质和应用。
(2)轴对称的概念和应用。
4. 第四课时:位置与方向复习(1)坐标系的认识。
(2)位置与方向的表示方法。
(3)坐标与图形变换。
5. 第五课时:面积与体积复习(1)平面图形的面积计算。
(2)立体图形的体积计算。
(3)面积和体积在实际应用中的意义。
三、教学策略1. 采用复习提问的方式导入新课,激发学生的学习兴趣。
2. 运用多媒体课件辅助教学,直观展示图形变换过程,提高学生的空间想象力。
3. 注重练习设计,分层提问,让不同程度的学生在复习中提高。
4. 组织小组讨论,培养学生的合作交流能力。
5. 联系生活实际,让学生感受数学与生活的紧密联系。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、思维活跃度和合作交流能力。
2. 练习完成情况:检查学生对复习内容的掌握程度。
3. 课后反馈:听取学生的意见和建议,了解复习效果。
五、教学反思1. 反思教学内容:是否全面、系统地复习了空间与图形的相关知识。
2. 反思教学方法:是否激发了学生的学习兴趣,培养了学生的动手操作能力和空间想象力。
3. 反思教学评价:是否全面、客观地评价了学生的学习情况。
4. 针对反思结果,调整教学策略,为下一步的教学做好准备。
小学六年级总复习:空间与图形复习PPT课件
②给宽,求圆的面积 ③给长方形长求圆面积
.
已知图中正方形的面积是3平方厘米,请求出圆的 面积。
.
已知图中正方形的面积是3平方厘米,请求出圆的 面积。
.
已知图中正方形的面积是3平方厘米,请求出圆的 面积。
.
已知图中正方形的面积是3平方厘米,请求出圆的 面积。
.
二、在“围一围”中复习“形”
(二)复习题设计
1.根据已知条件,求出下列形体的表面积和体积, 填入下表。
形体名称 长方体 正方体 圆柱 圆锥
已知条件
长2米,宽1.5米,高1.2米 棱长3分米 底面半径4厘米,高3分米 底面直径6厘米,高5厘米
表面积 体积
.
二、在“围一围”中复习“形”
(二)复习题设计
.
二、在“围一围”中复习“形”
(二)复习题设计
3.填一填。
(3) 一个圆柱的底面直径和高都是10厘米,它的侧面 积是( )平方厘米,表面积是( )平方厘米,体积 是( )立方厘米。
(4) 一段圆柱形木头制成一个最大的圆锥,削去部分 的体积是圆柱体积的( ),是圆锥体积的( )。
.
(一)掌握实际问题与几何图形之间的联系, 具体问题具体分析,灵活运用所学知识 做一个底面周长是18.84厘米,高10厘 米的圆柱体罐头盒,至少用多少铁皮? 能装多少东西?在四周贴商标纸,用多 少纸?
.
圆柱体
(1)什么变?什么不变? (2)柱→长方体,表面积增加多少? (3)圆柱体的侧面积62.8平方厘米, 半径2厘米,求体积?
.
(三)注重动手操作 1、如量出所需数据 2、画出图形的对称轴,
(推荐)六年级数学总复习空间与图形(一)、(二)
空间与图形
(一)
一、图形的认识与测量:
回顾与交流:
1、直线、射线、线段有什么区别?
LOGO
名称 直线
端点数量
是否可以延长
能否度量
无
一个
能
否 否 能
射线
线段
能
2
两个
Page
否
LOGO
2、同一平面内的两条直线有哪几种位置关系?
位置关系
平行 相交
互相垂直
交点
无
图例
1个交点 1个垂足
Page 3
Page
17
LOGO
看图填空:
1 4
已知∠2=40
0
∠1=( 50 )
2
140 ) ∠3=(
0 0 0
3
∠4=( 40 )
Page
18
LOGO
这是小明同学体育课跳远后留下的脚印, 测定跳远成绩时,怎样测量比较准确,为 什么?
起 跳 线
Page
19
LOGO
3、我们学过的角有哪几种?角的大小与什 么有关? 名称
锐角 直角
图例
大小
大小比较
大于0°小于90° 等于90°
角的两边张开 的距离
钝角
大于90°
小于180°
Page 4
二、巩固练习
过点A,画出下面直线的平行线 和垂线。
A
LOGO
Page
5
角 表格
LOGO
过点A,画出下面直线的平行线 和垂线。
Page 10
量角
LOGO
量角
两重合 一看准
121
0
Page
11
西师版小学六年级总复习空间与图形
空间与图形一、《平面图形》(一)平面图形复习要点:1、(1)直线、射线、线段的认识和画法;(2)角、锐角、直角、钝角、平角、周角的概念及它们之间的大小关系与测量;(3)相交与平行的概念及按要求作图;(4)长方形、正方形、三角形、平行四边形、梯形、圆的特征及它们之间的关系。
2、周长与面积:(1)周长与面积的意义;(2)长方形、正方形与圆的周长;(3)长方形、正方形、三角形、平行四边形、梯形、圆的面积[环形面积]、组合图形的面积(周长)计算。
(4)利用平面图形周长面积相关知识解决生活中的问题问题。
3、轴对称:画出图形的对称轴,补出轴对称图形的另一半等4、测量和操作:主要复习角的度量、平面图形长度、面积的测算,按要求作图。
(二)知识归类整理:1、直线、线段和射线。
2、垂线和平行线:A、垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条叫做另一条直线的垂线。
B、平行线:在同一平面内永不相交的两条直线。
3、角:A、从一点引出的两条射线所组成的图形叫做角。
角的大小与两边叉开的大小有关,而与角的两边长短无关。
B、角的分类:4、三角形(1)三角形:三角形是由三条线段围成的图形。
从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。
4、四边形。
四边形是由四条线段围成的图形。
任意四边形的内角和均是360o。
已学过的4种四边形的特征:注意:长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。
5、圆圆是平面上的一种曲线图形。
同圆(或等圆)的直径相等,直径等于半径的2倍。
圆有无数条对称轴。
圆心确定圆的位置,半径确定圆的大小。
6、平面图形的周长和面积A、周长与面积的意义,区别。
B、常见平面图形的周长和面积计算公式如下表:二、注意的问题:1、重视作图,作图要准确地反应出题目中的要求。
作图题主要有量线段的长度、作己知直线的垂线(图形的高)、作已知直线的平行线、按要求在指定范围内作平面图形[圆、长方形、正方形等]、作面积相等的几何图形等题型。
数学六年级下册总复习专题:空间与图形
空间与图形一、填空。
1、直线上两点间的一段叫( ),线段有( )个端点,把线段的一端无限延长就得到一条( )。
2、1平角=( )直角 1周角=( )平角=( )直角3、观察一个长方体,一次最多能看到 ( )面。
4、等腰三角形有( )条对称轴;长方形有( )条对称轴;正方形有( )条对称轴;圆有( )条对称轴,扇形有( )条对称轴。
5、在平面上画圆,圆心决定圆的( ),半径决定圆的( )。
6、画圆时,圆规两脚张开的距离是所画圆的( )。
7、下列图形,能画几条对称轴?8、从正面、右面和上面看到的都是的物体,它一定是由()个小正方体摆成的。
9、观察下面用4个正方体搭成的图形,并填一填。
(1)从正面看到的图形是的有 。
(2)从侧面看到的图形是的有 。
10、工人叔叔把电线杆上的线架和自行车架子做成三角形,这是应用了三角形具有( )的特征,而推拉防盗门则是由许多小平行四边形组成的,这是应用平行四边形( )的特性。
11、等边三角形的每个内角都是( )度,等腰直角三角形的两个底角都是( )度。
12、把一根圆柱形木料截成3段,表面积增加了45.12cm 2,这根木料的底面积是( )cm 2。
13、一个圆锥体的底面半径是6cm ,高是1dm ,体积是( )cm 3。
14、把一个圆柱体钢坯削成一个最大的圆锥体,要削去 1.8 cm 3,未削前圆柱的体积是( )cm 3。
15、一个圆柱体的侧面展开后,正好得到一个边长25.12 cm 的正方形,圆柱体的高是( )cm ,底面半径是( )cm 。
16、等底等高的圆柱和圆锥,体积的和是72 dm 3,圆柱的体积是( ),圆锥的体积是( )。
17、三角形三个角度数的比是2:4:3,最大的角是( )。
18、一个三角形底是3dm ,高是4dm ,它的面积是( )。
19、一个平行四边形的底长18cm ,高是底的12,它的面积是( )。
20、一个直径4cm 的半圆形,它的周长是( ),它的面积是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总复习图形的认识和测量
姓名家长签字成绩
一、填空
2. 从一点引出(),就组成一个角,这个点叫做角的(),这()叫做角的边。
3. 两条直线相交,有一个角是直角,这两条直线叫做(),其中一条直线叫做另一条直线的(),这两条直线的交点叫做()。
4. 一个三角形有两条边相等,这个三角形叫()三角形。
如果这个三角形的顶角是70°,其余两个底角分别是()度和()度。
5. 直角度数的1
2
等于平角度数的
( )
( )
等于周角度数
的( ) ( )。
6. 在直角三角形中,如果一个锐角的度数是另一个锐角度数的一半,那么这两个锐角的度数分别是()度和()度。
7. 一个三角形的每个角都是60°,如果按角分,这个三角形是()三角形;如果按边分,这个三角形是()三角形。
8.一个三角形三个内角度数的比是1: 1:2,这个三角形最大的角是()度,这是一个()三角形。
9. 在梯形里,互相平行的一组对边分别叫梯形的
()和(),不平形的一组对边叫梯形的()。
10. 等腰三角形有()条对称轴,等边三角形有()条对称轴,长方形有()条对称轴,正方形有()条对称轴,等腰梯形有()条对称轴,圆有()条对称轴。
二、选择
1. 用圆规画圆时,圆规两角之间的距离是圆的()。
A.直径
B.半径
C.周长
D.面积
总复习图形的认识和测量
姓名家长签字成绩
一、填空
1.
2. 从一点引出(),就组成一个角,这个点叫
做角的(),这()叫做角的边。
3. 两条直线相交,有一个角是直角,这两条直线叫做
(),其中一条直线叫做另一条直线的(),
这两条直线的交点叫做()。
4. 一个三角形有两条边相等,这个三角形叫()三
角形。
如果这个三角形的顶角是70°,其余两个底角分
别是()度和()度。
5. 直角度数的
1
2
等于平角度数的
( )
( )
等于周角度
数的
( )
( )。
6. 在直角三角形中,如果一个锐角的度数是另一个锐
角度数的一半,那么这两个锐角的度数分别是()
度和()度。
7. 一个三角形的每个角都是60°,如果按角分,这个
三角形是()三角形;如果按边分,这个三角形是
()三角形。
8.一个三角形三个内角度数的比是1: 1:2,这个三角
形最大的角是()度,这是一个()三角形。
9. 在梯形里,互相平行的一组对边分别叫梯形的
()和(),不平形的一组对边叫梯形的()。
10. 等腰三角形有()条对称轴,等边三角形有()
条对称轴,长方形有()条对称轴,正方形有()
条对称轴,等腰梯形有()条对称轴,圆有()
条对称轴。
二、选择
1. 用圆规画圆时,圆规两角之间的距离是圆的()。
A.直径
B.半径
C.周长
D.面积
总复习图形的认识和测量
姓名家长签字成绩
一、填空
1.填表:
2. 从一点引出(),就组成一个角,这个点叫
做角的(),这()叫做角的边。
3. 两条直线相交,有一个角是直角,这两条直线叫做
(),其中一条直线叫做另一条直线的(),
这两条直线的交点叫做()。
4. 一个三角形有两条边相等,这个三角形叫()
三角形。
如果这个三角形的顶角是70°,其余两个底角
分别是()度和()度。
5. 直角度数的
1
2
等于平角度数的
( )
( )
等于周角度
数的
( )
( )。
6. 在直角三角形中,如果一个锐角的度数是另一个锐
角度数的一半,那么这两个锐角的度数分别是()
度和()度。
7. 一个三角形的每个角都是60°,如果按角分,这个
三角形是()三角形;如果按边分,这个三角形是
()三角形。
8.一个三角形三个内角度数的比是1: 1:2,这个三角
形最大的角是()度,这是一个()三角形。
9. 在梯形里,互相平行的一组对边分别叫梯形的
()和(),不平形的一组对边叫梯形的()。
10. 等腰三角形有()条对称轴,等边三角形有()
条对称轴,长方形有()条对称轴,正方形有()
条对称轴,等腰梯形有()条对称轴,圆有()
条对称轴。
二、选择
1. 用圆规画圆时,圆规两角之间的距离是圆的()。
A.直径
B.半径
C.周长
D.面积
2. 等边三角形又是( )三角形。
A.直角 B.钝角 C.锐角 D.等腰直角
3. 钟面上9点半时,时针和分针组成的角是( )。
A.锐角 B.直角 C.钝角 D.平角
4. 用一根铁丝围成正方形.长方形.正三角形和半圆,那么面积最大的是( )。
A.长方形 B.正方形 C.正三角形 D.半圆
5. 把一个平形四边形任意分割成两个梯形,这两个梯形中( )总是相等的。
A.面积 B.周长 C.高 D.上、下两底的和
6. 以上四组图形都是轴对称图形,它们的对称轴共有( )条。
A.11 B.12 C.15 D.无数条 三、操作 (1)画一个115°的角。
(2)画出点A 到小河的最短路线。
(3)画出下列图形的一条高,并标出相应的底和高。
(4)画出一个直径是
3厘米的圆。
(5)用量角器量出下面每个角的度数
(6)画出下列图形的对称轴。
2. 等边三角形又是(
)三角形。
A.直角
B.钝角
C.锐角
D.等腰直角 3. 钟面上9点半时,时针和分针组成的角是( )。
A.
锐角 B.直角 C.钝角 D.平角 4. 用一根铁丝围成正方形.长方形.
正三角形和半圆,那么面积最大的是(
)。
A.长方形
B.正方形
C.正三角形
D.半圆 5. 把一个平形四边形任意分割成两个梯形,这两个梯形中( )总是相等的。
A.面积
B.周长
C.高
D.上、下两底的和
6. 以上四组图形都是轴对称图形,它们的对称轴共有
( )条。
A.11 B.12 C.15 D.无数条 三、操作 (1)画一个
125°的角。
(2)画出点
A 到小
河的最短路线。
(3)画出下列图形的一条高,并标出相应的底和高。
(4)画出一个直径是
3厘米的圆。
(5)用量角器量出下面每个角的度数
(6)画出下列图形的对称轴。
2. 等边三角形又是( )三角形。
A.直角 B.钝角 C.锐角 D.等腰直角 3. 钟面上9点半时,时针和分针组成的角是( )。
A.锐角 B.直角 C.钝角 D.平角 4. 用一根铁丝围成正方形.长方形.正三角形和半圆,那么面积最大的是( )。
A.长方形 B.正方形 C.正三角形 D.半圆 5. 把一个平形四边形任意分割成两个梯形,这两个梯形中( )总是相等的。
A.面积 B.周长 C.高 D.上、下两底的和 6. 以上四组图形都是轴对称图形,它们的对称轴共有( )条。
A.11 B.12 C.15 D.无数条 三、操作 (1)画一个115°的角。
(2)画出点A 到小
河的最短路线。
(3)画出下列图形的一条高,并标出相应的底和高。
(4)画出一个直径是3厘米的圆。
(5)用量角器量
出下面每个角的度数
(6)画出下列图形的对称轴。
小 河 ·A 小 河 ·A 小 河 ·A。