精品八年级数学上学期期末考试试题新人教版
人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试题一、单选题(本大题共16小题,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是A.8B.7C.2D.12.下列图形中具有不稳定性的是( )A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.如图,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°,则∠A的度数是A.65°B.75°C.95°D.105°4.探究多边形的内角和时,需要把多边形分割成若干个三角形.在分割六边形时,所分三角形的个数不可能的是A.3个B.4个C.5个D.6个5.如图,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一点,BE=BA,∠E=∠C,若DE=23BD,AD=95,BD=125,则ΔBDE的面积为A.2725B.1825C.3625D.54256.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是A. B. C. D.7.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,若∠BEC= 90°,则∠ACE的度数A.60°B.45°C.30°D.15°8.下列式子不能用“两数和乘以这两数差的公式”计算的是A.(3b−a)(3b+a)B.(3b−a)(−3b−a)C.(3b−a)(6b+2a)D.(3b−a)(a−3b)9.下列多项式相乘,能用平方差公式计算的是A.(5x+2y)(3x−2y)B.(2x−y)(2x+y)C.(−m+n)(m−n)D.(a−2b)(2a+b)10.如图是小明的作业,那么小明做对的题数为A.2B.3C.4D.511.下列从左边到右边的变形中,是因式分解的是A.a2−9=(a−3)(a+3)B.(x−y)2=x2−y2C.x2−4+4x=(x+2)(x−2)+4xD.x2+3x+1=x(x+3+1x)12.如果多项式x2−5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是A.2B.3C.4D.513.下列分式中属于最简分式的是( )A.x+2y+2B.1−x2x−2C.2x+2y6x−6yD.x2−9x+314.如果把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,那么分式的值A.不变B.缩小为原来的12C.变为原来的2倍D.变为原来的4倍15.假期正是读书的好时候,小颖同学到重庆图书馆借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是A.140x+140x−21=14B.280x+280x+21=14C.140140101016.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是A.40×1.25x−40x=800 B.800x−8002.25x=40C.800x−8001.25x=40D.8001.25x−800x=40二、填空题(本大题共6小题,共18分)17.一个正多边形的每个内角都等于120°,那么它的内角和是______.18.如图,BD是ΔABC的角平分线,DE⊥AB于点E.ΔABC的面积为20,AB=12,BC=8,则DE的长为______.19.两位同学将同一个二次三项式进行因式分解时,一位同学因看错了一次项系数而分解成(x−1)(x−9);另一位同学因看错了常数项而分解成(x−2)(x−4),则原多项式因式分解的正确结果是:______.20.如图,在ΔABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B=42°,则∠A=______.21.某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为x km/h,则可列方程______.22.化简:(1x−4−8x2−16)⋅(x+4)=______.三、计算、画图、解答题(本大题共6小题,共48分)23.如图,∠B=∠E,BF=EC,AB=DE.求证:AC//DF.24.在如图所示的网格(每个小正方形的边长为1)中,ΔABC的顶点A的坐标为(−2,1),顶点B的坐标为(−1,2). (1)在网格图中画出两条坐标轴,并标出坐标原点; (2)作ΔA'B'C'关于x轴对称的图形ΔA''B''C''; (3)求ΔABB''的面积.25.因式分解(1)3a2−6ab+3b2. (2)m2(m−2)+4(2−m).26.先化简再求值: (1)y(x+y)+(x+y)(x−y)−x2,其中x=−2,y=12. 27.(2)2(a−3)(a+2)−(3+a)(3−a),其中a=−2.27.已知分式y−a y+b,当y=−3时无意义,当y=2时分式的值为0,求当y=−7时分式的值.28.为庆祝建党100周年,学校组织初二学生乘车前往距学校132千米的某革命根据地参观学习.二班因事耽搁,比一班晚半小时出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果和一班同时到达.求一班的平均车速是多少千米/时?答案和解析1.【答案】C;【解析】解:设第三边长x. 根据三角形的三边关系,得1<x<7. 故选:C. 根据三角形的三边关系求得第三边的取值范围解答即可. 此题主要考查三角形三边关系的知识点,此题比较简单,注意三角形的三边关系.2.【答案】A;【解析】解:等腰三角形,直角三角形,锐角三角形都具有稳定性, 长方形不具有稳定性. 故选:A. 根据三角形具有稳定性解答. 此题主要考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.【答案】C;【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°, ∴∠B=∠DEF=35°, ∵∠ACB=50°, ∴∠A=180°−∠B−∠ACB=95°. 故选:C. 由平移的性质可得∠B=∠DEF=35°,从而利用三角形的内角和定理即可求∠A的度数. 此题主要考查三角形的内角和定理,平移的性质,解答的关键是由平移的性质得到∠B=∠DEF.4.【答案】A;【解析】解:分割六边形,可以从一顶点连接对角线,分割成四个三角形,如图1; 可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形,如图2; 可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形,如图3. 故选:A. 分割六边形,可以从一顶点连接对角线,分割成四个三角形;可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形;可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形. 此题主要考查了多边形内角和问题,解题关键是把多边形分割成若干三角形来研究.5.【答案】C;【解析】解:∵∠ABD=∠C=∠E,,AB=BE, 在BD上截取BF=DE, 在ΔABF与ΔBED中, AB=BE∠ABD=∠EBF=DE, ∴ΔABF≌ΔBED(SAS), ∴SΔBDE=SΔABF. ∴SΔABD=12BD⋅AD=12⋅125⋅95=5425. ∵DE=23BD, ∴BF=23BD, ∴SΔABF=23SΔABD=3625, ∴SΔBDE=3625. 故选:C. 根据SAS证明ΔABF与ΔBED全等,进而利用全等三角形的性质解答即可. 此题主要考查全等三角形的判定和性质,关键是根据SAS证明ΔABF与ΔBED全等.6.【答案】C;【解析】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 根据轴对称图形的概念求解即可. 此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,7.【答案】D;【解析】解:∵等边三角形ABC中,AD⊥BC, ∴BD=CD,即:AD是BC的垂直平分线, ∴BE=CE, ∴∠EBC=∠ECB, ∵∠BEC=90°, ∴∠EBC=∠ECB=45°, ∵ΔABC是等边三角形, ∴∠ACB=60°, ∴∠ACE=∠ACB−∠ECB=15°, 故选:D. 先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论. 此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.【答案】D;【解析】解:A、(3b−a)(3b+a)=(3b)2−a2,故A不符合题意; B、(3b−a)(−3b−a)=−(3b−a)(3b+a)=−[(3b)2−a2],故B不符合题意; C、(3b−a)(6b+2a)=2(3b−a)(3b+a)=2[(3b)2−a2],故C不符合题意; D、(3b−a)(a−3b)=−(a−3b)(a−3b)=−(a−3b)2,故D符合题意; 故选:D. 根据平方差公式进行分析求解即可. 此题主要考查整式的混合运算,解答的关键是对平方差公式的掌握与应用.9.【答案】B;【解析】解:A、原式=15x2−10xy+6xy−4y2=15x2−4xy−4y2,不符合题意; B、原式=4x2−y2,符合题意; C、原式=−(m−n)2=−(m2−2mn+n2)=−m2+2mn−n2,不符合题意; D、原式=2a2+ab−4ab−2b2=2a2−3ab−2b2,不符合题意. 故选:B. 利用平方差公式的结构特征判断即可. 此题主要考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.10.【答案】A;【解析】解:(1)∵a m=3,a n=7, ∴a m+n=a m⋅a n=3×7=21,本小题正确; (2)原式=(−0.125)2020×82020×8 =(−0.125×8)2020×8 =(−1)2020×8 =1×8 =8,本小题正确; (3)原式=2a2b÷ab−ab÷ab (4)原式=(−2)3⋅a3 =−8a3,本小题错误; (5)原式=2x2+x−6x−3 =2x2−5x−3,本小题错误, 则小明做对的题数为2. 故选:A. (1)利用同底数幂的乘法法则计算得到结果,即可作出判断; (2)原式变形后,逆用积的乘方运算法则计算得到结果,即可作出判断; (3)原式利用多项式除以单项式法则计算得到结果,即可作出判断; (4)原式利用积的乘方运算法则计算得到结果,即可作出判断; (5)原式利用多项式乘多项式法则计算,合并得到结果,即可作出判断. 此题主要考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】A;【解析】解:A、符合因式分解的定义,故本选项符合题意; B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意. 故选:A. 多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可. 此题主要考查因式分解的定义.解答该题的关键是掌握因式分解的定义,属于基础题型.12.【答案】C;【解析】解:当c=4时, x2−5x+c =x2−5x+4 =(x−1)(x−4). 故选:C. ∵4=−1×(−4),−1+(−4)=−5,∴可以用十字相乘法因式分解. 此题主要考查了因式分解−十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.13.【答案】A;【解析】解:A、x+2y+2是最简分式,故本选项符合题意; B、原式=−12,不是最简分式,故本选项不符合题意; C、原式=x+y3x−3y,不是最简分式,故本选项不符合题意; D、原式=x−3,该式子不是最简分式,故本选项不符合题意; 故选:A. 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 此题主要考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.14.【答案】C;【解析】解:∵2.(2x)2−3.(2y)22x−2y=8x2−12y22x−2y=4(2x2−3y2)2(x−y)=2(2x2−3y2)x−y, ∴把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,则分式的值变为原来的2倍. 故选:C. 根据分式的基本性质解决此题. 此题主要考查分式的基本性质,熟练掌握分式的基本性质是解决本题的关键.15.【答案】C;【解析】解:读前一半用的时间为:140x, 读后一半用的时间为:140x+21. 由题意得,140x+140x+21=14, 故选:C. 设读前一半时,平均每天读x页,关键描述语为:“在两周借期内读完”;等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可. 此题主要考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.16.【答案】C;【解析】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800x−8001.25x=40, 故选:C. 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 该题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.17.【答案】720°;【解析】解:设所求正多边形边数为n, ∵正n边形的每个内角都等于120°, ∴正n边形的每个外角都等于180°−120°=60°. 又因为多边形的外角和为360°, 即60°⋅n=360°, ∴n=6. 所以这个正多边形是正六边形. 所以内角和是120°×6=720°. 故答案为:720°. 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°⋅n=360°,求解即可. 此题主要考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.18.【答案】2;【解析】解:作DF⊥BC于F, ∵BD是ΔABC的角平分线,DE⊥AB,DF⊥BC, ∴DF=DE, ∴12×AB×DE+12×BC×DF=20,即12×12×DE+12×8×DF=20, ∴DF=DE=2. 故答案为:2. 作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可. 此题主要考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解答该题的关键.19.【答案】(x-3)2;【解析】解:根据题意得:(x−1)(x−9)=x2−10x+9,(x−2)(x−4)=x2−6x+ 8, 原多项式为x2−6x+9=(x−3)2. 故答案为:(x−3)2. 根据两位同学的结果确定出原多项式,分解即可. 此题主要考查了因式分解−十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】54°;【解析】解:∵E在线段BC的垂直平分线上, ∴BE=CE, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=84°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°−∠B−∠ACB=54°, 故答案为:54°. 由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在ΔABC中由三角形内角和定理可求得∠A. 此题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解答该题的关键.21.【答案】6x−63x=23;【解析】解:设步行学生的速度为x km/h,则汽车的速度为3x km/h, 由题意得,6x−63x=23, 故答案为:6x−63x=23. 表示出汽车的速度,然后根据汽车行驶的时间等于步行行驶的时间减去时间差列方程即可. 此题主要考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解答该题的关键.22.【答案】1;【解析】解:(1x−4−8x2−16)⋅(x+4) =x+4−8(x+4)(x−4)⋅(x+4) =x−4(x+4)(x−4)⋅(x+4) =1, 故答案为:1. 先根据分式的减法法则算减法,再算乘法即可. 此题主要考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23.【答案】证明:∵BF=EC, ∴BF+CF=EC+CF, ∴BC=EF, 在△ABC和△DEF中, BC=EF∠B=∠EAB=DE, ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.;【解析】 证明ΔABC≌ΔDEF(SAS),由全等三角形的性质得出∠ACB=∠DFE,由平行线的判定可得出结论. 此题主要考查了全等三角形的判定与性质、平行线的判定.解答该题的关键是证明ΔABC≌ΔDEF.24.【答案】解:(1)如图,平面直角坐标系如图所示: (2)如图,△A″B″C″即为所求; =3×4-12×1×1-12×3×3-12×2×4=3. (3)S△ABB″;【解析】 (1)根据A,B两点坐标确定平面直角坐标系即可; (2)利用轴对称的性质分别作出A',B',C'的对应点A'',B'',C''即可; (3)把三角形面积看成矩形面积减去周围三个三角形面积即可. 此题主要考查作图−轴对称变换,三角形的面积等知识,解答该题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.25.【答案】解:(1)原式=3(a2-2ab+b2) =3(a-b)2; (2)原式=m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m-2)(m+2) =(m-2)2(m+2).;【解析】 (1)先提公因式3,再利用完全平方公式即可进行因式分解; (2)先提公因式(m−2),再利用平方差公式进行因式分解即可. 此题主要考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.26.【答案】解:(1)原式=xy+y2+x2-y2-x2 =xy, 当x=-2,y=12时, 原式=-2×12=-1; (2)原式=2(a2+2a-3a-6)-(9-a2) =2a2-2a-12-9+a2 =a2-2a-21, 当a=-2时,原式=(-2)2-2×(-2)-21 =4+4-21 =-13.;【解析】 (1)直接利用单项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案; (2)直接利用多项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案. 此题主要考查了整式的混合运算−化简求值,正确运用乘法公式计算是解题关键.27.【答案】解:∵当y=-3时无意义, ∴-3+b=0, ∴b=3. ∵当y=2时分式的值为0, ∴2-a=0,2+3≠0, ∴a=2. ∴该分式为y−2y+3, 当x=-7时, y−2y+3 =−7−2−7+3 =−9−4 =94. 答:当x=-7时分式的值为94.;【解析】 分式无意义的条件是分母等于0,分式等于0的条件是分子等于0,且分母不等于0. 此题主要考查分式无意义的条件和分式值为0的条件,解题时注意分式为0的条件是分子等于0,且分母不等于0.28.【答案】解:设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时, 依题意得:132x-1321.2x=12, 解得:x=44, 经检验,x=44是原方程的解,且符合题意. 答:一班的平均车速是44千米/时.;【解析】 设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时,利用时间=路程÷速度,结合二班比一班少用半小时,即可得出关于x的分式方程,解之经检验后即可得出一班的平均车速. 此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解答该题的关键.。
人教版八年级上学期期末考试数学试卷及答案(共5套)

人教版八年级上学期期末考试数学试卷(一)(满分:150分;考试时间:120分钟)★ 友情提示:① 所有答案都必须填在答题卡相应位置上,答在本试卷上一律无效. ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.下列以长城为背景的标志设计中,不是轴对称图形的是2.下列各式计算正确的是A. B . C .623a a a =⋅ D . 3.在平面直角坐标系xOy 中,点M (1,2)关于轴对称点的坐标为 A .(1,-2)B. (-1,2)C. (-1,-2)D. (2,-1)4.在△ABC 中,作BC 边上的高,以下作图正确的是A .B .C .D .5.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的A .10B .7C .4D .36.在ABC ∆、DEF ∆中,已知AB =DE ,BC =EF ,那么添加下列条件后,仍然无法判定ABC ∆≌DEF ∆的是A .AC =DFB .∠B =∠EC .∠C =∠FD .∠A =∠D =90o326(3)9x x -=222()a b a b -=-224x x x +=x E CBAE CB AD .C .A .B .E CBAECBA7.如果一个多边形的内角和是外角和的2倍,则这个多边形的边数是 A .4 B .5C .6D .78.若23y x =,则的值为A . 53B .52 C .35D .239.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长 为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =2,AB =6,则△ABD 的面积是 A .4 B .6 C .8D .1210.如图,在格的正方形网格中,与△ABC 有一条公共边且全等(不与△ABC 重合)的格点三角形(顶点在格点上的三角形)共有 A .5个 B .6 个 C .7个 D .8 个二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置)11. = .12.用科学记数法表示0.002 18= . 13.要使分式有意义,则x 的取值范围是 . 14.已知等腰三角形的底角为70°,则它的顶角为 °. 15.已知,,若,则= . 16.如图,△ABC 中,∠BAC =75°,BC =7,△ABC 的面积为14,D 为 BC 边上一动点(不与B ,C 重合),将△ABD 和△ACD 分别沿直线AB ,AC 翻折得到△ABE 与△ACF ,那么△AEF 的面积最小值x y x +55⨯()02-22xx -122+=n m 142+=m n 2m n ≠n m 2+(第16题图)DFECBA(第9题图)NBC为 .三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(每小题4分,共8分)分解因式:(1)3x x -; (2).18.(每小题4分,共8分)计算:(1)2(4)a a a +-(+2); (2)532a b aa b a b----.19.(8分)先化简,再求值:,其中x =13.20.(8分)如图,点B ,F ,C ,E 在一条直线上,BF =CE , AB ∥DE ,∠A =∠D .求证:AC =DF .21.(8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,E 是AC 边上的一点,且∠CBE =∠CAD .求证:BE ⊥AC .22.(10分)某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元. (1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?221218ax ax a -+x x x x x 22)242(2+÷-+-FEDCBA(第20题图) BDCE A(第21题图)23.(10分)如图,在Rt △ABC 中,∠BAC=90°,∠C=30°.(1)请在图中用尺规作图的方法作出AC 的垂直平分线交BC 于点D ,并标出D 点 (不写作法,保留作图痕迹) .(2)在(1)的条件下,连接AD ,求证:△ABD 是等边三角形.24.(12分)阅读材料:数学课上,吴老师在求代数式245x x -+的最小值时,利用公式2222()a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x -+=-++=-+, 因为≥0, 所以≥1, 当2=x 时,22)1x -+(=1, 因此22)1x -+(有最小值1,即245x x -+的最小值为1. 通过阅读,解下列问题:(1)代数式的最小值为 ; (2)求代数式229x x -++的最大或最小值;(3)试比较代数式2232237x x x x -+-与的大小,并说明理由.25.(14分)如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC =90°. (1)图1中,点C 的坐标为 ;(2)如图2,点D 的坐标为(0,1),点E 在射线CD 上,过点B 作BF ⊥BE 交y 轴于点F .2(2)0x -≥2(2)11x -+≥2612x x ++BCA(第23题图)① 当点E 为线段CD 的中点时,求点F 的坐标;② 当点E 在第二象限时,请直接写出F 点纵坐标y 的取值范围.参考答案及评分说明 说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分. (2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分。
人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列各运算中,正确的是()A .a³·a²=a 6B .(-4a³)²=16a 6C .a 6÷a²=a³D .(a -1)²=a²-13.若分式23xx +有意义,则x 的取值范围是()A .x≠3B .x≠-3C .x >3D .x >-34.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若∠A+∠B =220°,则∠1+∠2+∠3=()A .140°B .180°C .220°D .320°5.如果229x kxy y -+是一个完全平方式,那么k 的值是()A .3B .±6C .6D .±36.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是()A .30°B .30°或150°C .60°或150°D .60°或120°7.已知11x y-=3,则代数式232x xy y x xy y +---的值是()A .72-B .112-C .92D .348.下列各式从左到右的变形中,属于因式分解的是()A .m (a+b )=ma+mbB .a 2+4a ﹣21=a (a+4)﹣21C .x 2﹣1=(x+1)(x ﹣1)D .x 2+16﹣y 2=(x+y )(x ﹣y )+169.如图,35AOB ∠=︒,C 为OB 上的定点,M ,N 分别为射线OA 、OB 上的动点.当CM MN +的值最小时,OCM ∠的度数为()A .35︒B .20︒C .45︒D .55︒10.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .83{74y x y x -=-=B .83{74y x y y -=-=C .83{74y x y x -=--=-D .83{74y x y x -=-=-二、填空题11.当=a ____________时,分式44a a --的值为零.12.若点M (m ,﹣1)关于x 轴的对称点是N (2,n ),则m+n 的值是_____.13.如图,OP 平分∠AOB,∠AOP=15º,PC ∥OA,PD ⊥OA 于D,PC =10,则PD =_________.14.1301(2)(3.14)|1|2π-⎛⎫-++--+= ⎪⎝⎭_________.15.如图,ABC ADE △≌△,点D 落在BC 上,且70EDC ∠=︒,则BAD ∠的度数等于_________.16.若关于x 的方程2222x m x x++=--的解为正数,则m 的取值范围是_______.17.把长方形OABC 放在如图所示的平面直角坐标系中,点F 、E 分别在边OA 和AB 上,若点F (0,3),点C (9,0),且∠FEC =90°,EF =EC ,则点E 的坐标为_____.18.若85,a bab +==-,则()2a b -=___________.19.已知:如图所示,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且24ABC S cm = ,则阴影部分的面积为____2cm.20.如图,在第1个1A BC 中,30B ∠=︒,1A B CB =;在边1A B 上任取一点D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D ;在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第3个23A A E △,按此做法继续下去,则第n 个三角形中以n A 为顶点的内角度数是________.三、解答题21.计算题:(1)因式分解:229()4()a x y b y x -+-;(2)计算:203)(2)---+-;(3)解分式方程:23193xx x +=--;(4)先化简-+⎛⎫-÷ ⎪+-⎝⎭223a 2a 11a 2a 4,然后从2-,1-,1,2中选择一个合适的整数作为a 的值代入求值.22.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.23.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?24.如图,直角坐标系中,ABC 的三个顶点的坐标分别为(2,1),(1,3),(3,2)--.(1)在图中作出ABC 关于x 轴对称的A B C ''' ,并写出点A '的坐标为________,点B '的坐标为_______,点C '的坐标为_______;(2)求ABC 的面积;25.如图:已知在ABC 中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .试判断CDE 的形状,并说明理由.26.已知:如图,点C 、D ,在线段AB 上,且AC =BD ,AE=BF ,ED ⊥AB ,FC ⊥AB .求证:AE ∥BF .27.如图1,2OA =,4OB =,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC △.(1)求C 点的坐标.(2)如图2,P 为y 轴负半轴上一个动点,当P 点沿y 轴负半轴向下运动时,以P 为顶点,PA 为腰作等腰Rt APD ,过D 作DE x ⊥轴于E 点,求OP DE -的值.参考答案1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.是轴对称图形,故A符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D不符合题意.故选:A.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【详解】a3·a2=a5,故A选项错误;(-4a3)2=16a6,故B选项正确;a6÷a2=a4,故C选项错误;(a-1)2=a2-2a+1,故D选项错误.故选:B.【点睛】掌握同底数幂的运算法则.3.B【分析】直接利用分式有意义的条件分析得出答案.【详解】 分式23xx+有意义,∴x的取值范围为:3x≠-.故选B.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.C【分析】根据∠A+∠B=220°,可求∠A、∠B的外角和,再根据多边形外角和360°,可求∠1+∠2+∠3的值.【详解】解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.5.B【分析】根据完全平方式得出k=±2×1×3,求出即可.【详解】∵x2−kxy+9y2是一个完全平方式,∴x2−kxy+9y2=x2±2•x•3y+(3y)2,即k=±6,故选:B.【点睛】本题考查了对完全平方式的应用,注意:完全平方式有两个:a2+2ab+b2和a2−2ab +b2.6.B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD⊥AC,∴∠BAD=90°-60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.7.D【分析】由113x y -=得出3y xxy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】113x y-=,∴3y xxy-=,∴3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xyxy xy xy -+-+-====-----.故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.8.C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.9.B【分析】作点C 关于OA 的对称点E ,作EN ⊥OC 交OA 于点M ,此时CM+MN=EM+MN=EN 最短,进而根据∠AOB=35°,和直角三角形两个锐角互余即可求解.【详解】解:如图:作点C关于OA的对称点E,过点E作EN⊥OC于点N,交OA于点M,∴ME=MC,∴CM+MN=EM+MN=EN,根据垂线段最短,EN最短,∵∠AOB=35°,∠ENO=CFM=90°,∴∠OMN=55°,∠OCF=55°,∴∠EMF=∠OMN=55°,∴∠E=∠MCE=35°,∴∠OCM=∠OCF-∠MCE=20°.故选:B.【点睛】本题考查了轴对称-最短路线问题,熟知直角三角形的两个锐角互余是解题关键.10.D【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:根据题意可知,83 74y xy x-=⎧⎨-=-⎩故答案为:D.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.-4【分析】分式的值为零时,分子等于零,分母不等于零,进行求解即可.【详解】解:∵分式44aa--的值为零,∴4=0a-.解得:=4a,所以=4a±当=4a时,分式无意义,故舍去.综上所述,=4a-.故答案为:-4.【点睛】考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.12.3【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数,即可得出答案.【详解】∵点M(m,﹣1)关于x轴的对称点是N(2,n),∴m=2,n=1,∴m+n=3.故答案为:3.13.5【详解】解:如图,过点P作PE⊥OB于E,∵OP平分∠AOB,∴∠AOB=2∠AOP=2×15°=30°,∵PC∥OA,∴∠PCE=∠AOB=30°,∴PE=12PC=12×10=5,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE=5.故答案为:5.14.4--【分析】根据有理数的乘方运算法则、负整数指数幂运算法则、零次幂运算法则和绝对值运算进行计算求值即可.【详解】解:原式=﹣8+2+1﹣1)=﹣4故答案为:4--.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、绝对值、实数的运算,熟练掌握和运算法则是解答的关键.15.70︒【分析】直接利用全等三角形的性质得出AB=AD ,∠B=∠ADE ,进而利用已知得出答案.【详解】解:∵△ABC ≌△ADE ,∴AB=AD ,∠B=∠ADE ,∴∠B=∠ADB ,∴∠BDA=∠ADE ,∵∠EDC=70°,∴∠BDA=∠ADE=12×(180°-70°)=55°.∴∠BAD=180°-55°-55°=70°,故答案为:70°.【点睛】此题主要考查了全等三角形的性质,正确得出对应角和对应边是解题关键.16.6m <且0m ≠【分析】根据分式方程的解法,解出x ,再根据题意列出不等式求解即可.【详解】解:∵2222x mx x ++=--去分母得:2()2(2)x m x -+=-解得:63mx -=因为方程的解为正数,∴603m->∴6m <,又∵2x ≠,∴623m-≠∴0m ≠,∴m 的取值范围为:6m <且0m ≠故答案为:6m <且0m ≠.【点睛】本题考查了根据分式方程解的情况求分式方程中的参数,解题的关键是掌握分式方程的解法,并且注意分式方程增根的问题.17.(6,6)【分析】根据矩形的性质得到AB =OC =9,∠FAE =∠B =90°,根据余角的性质得到∠AFE =∠CEB ,根据全等三角形的性质得到AF =BE ,AE =BC ,设AF =BE =x ,列方程即可得到结论.【详解】解:∵点F (0,3),点C (9,0),∴OF =3,OC =9,∵四边形ABCO 是矩形,∴AB =OC =9,∠FAE =∠B =90°,∵∠FEC =90°,∴∠AEF+∠AFE =∠AEF+∠CEB =90°,∴∠AFE =∠CEB ,∵EF =EC ,∴△AEF ≌△BCE (AAS ),∴AF =BE ,AE =BC ,设AF =BE =x ,∴AO =BC =AE =x+3,∴x+3+x =9,∴x =3,∴AE =BC =6,∴点E 的坐标为(6,6),故答案为:(6,6).【点睛】本题考查了全等三角形的判定和性质,矩形的性质,坐标与图形性质,证全等三角形是本题的关键,也是本题的难点.18.84【详解】解:把8a b +=两边平方得:222264a b a b ab +=++=(),将5ab =-代入得:2274a b +=,则原式=222741084a b ab +-=+=,故答案为:84.19.1【分析】根据三角形中线把三角形分成两个面积相等的三角形得出11,22ABD ABC ACD ABC S S S S == ,11,22BDE ABD CDE ACD S S S S == ,进而求得11,22BCE ABC BEF BCE S S S S == ,然后代入数据进行计算求解即可【详解】解:∵点D 、E 分别是边BC 、AD 的中点∴11,22ABD ABC ACD ABC S S S S == ,11,22BDE ABD CDE ACD S S S S == ,∴1122BCE BDE CDE ABD ACD S S S S S =+==+ 12ABC S =△∵点F 是CE 的中点111222BEF BCE ABC S S S ∴==⨯ 14ABC S =△24cm ABC S = 2141cm 4BEF S ∴=⨯= 故答案为:1【点睛】本题考查了三角形中线的性质和三角形面积的应用,熟知三角形中线平分三角形面积是解题的关键.20.11752n -⎛⎫⨯︒⎪⎝⎭【分析】先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个三角形中以A n 为顶点的底角度数.【详解】解:∵在△CBA 1中,∠B=30°,A 1B=CB ,∴∠BA 1C=1802B ︒-∠=75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×75°;同理可得,∠EA 3A 2=(12)2×75°,∠FA 4A 3=(12)3×75°,∴第n 个三角形中以A n 为顶点的底角度数是(12)n-1×75°.故答案为:(12)n-1×75°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.21.(1)()()()3232x y a b a b -+-;(2)(3)4x =-;(4)21a a --,a=-1时,原式=32【分析】(1)先提公因式(x ﹣y ),再利用平方差公式分解因式即可;(2)分别利用平方差公式、完全平方公式、零指数幂运算法则进行计算即可解答;(3)根据分式方程的解法步骤:化为整式方程、解方程、检验、写结论进行求解即可;(4)先通分化简括号内分式,再将除法算式化为乘法,同时分子、分母因式分解,约分化简原式,再代入使分式有意义的数值计算即可解答.【详解】(1)解:原式229()4()a x yb x y =---()(32)(32)x y a b a b =-+-解:原式207(141=---+=(3)解:方程两边都乘以()(33)x x +-,去分母得:23(3)9x x x ++=-去括号得:22339x x x ++=-移项、合并同类项得:312x =-化系数为1得:4x =-检验:当4x =-时,(3)(3)0x x +-≠所以4x =-是原分式方程的解(4)解:原式223(2)(2)2(1)a a a a a +-+-=⋅+-21a a -=-当2a =-,2,1时,分式无意义当1a =-时,原式123112--=--.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)12;(2)见解析.【分析】(1)本题是工程问题,也就是总工作量、效率与时间问题,根据题意,规定时间就是甲单独需要的时间,所以设规定时间是x 天,那么甲单独完成的时间就是x 天,乙单独完成的时间为2x ,甲乙一天的工作效率分别为1x ,12x ,甲、乙两工程队合作6天的工作量表示为6(1x +12x ),甲又单独干了3天表示为3x,没交代具体工作量是多少的情况下,一般是总工作量为1,所以列方程6(1x +12x )+3x=1;(2)由(1)可以知道甲乙分别单独做需要的时间,用工作量除以两队合作一天的工作效率就是二者合作所用的时间,就可以进一步求出所需的工资款,作出判断,是否够用.【详解】(1)设规定时间是x 天,根据题意得6(1x +12x )+3x =1,解得x=12,经检验:x=12是原方程的解.答:该县要求完成这项工程规定的时间是12天;(2)由(1)知,由甲工程队单独做需12天,乙工程队单独做需24天,则甲乙两工程队合作需要的天数是1÷(112+124)=8(天),所需工程工资款为(5+3)×8=64万>63万,故该县准备的工程工资款不够用.24.(1)见解析,'(2,1)A -,'(1,3)B --,'(3,2)C --;(2)3.5【分析】(1)根据关于x 轴对称的点的坐标特征写出A '、B '、C '的坐标,再描点顺次连接即可;(2)根据网格特点和割补法求图形的面积的方法求解即可.【详解】解:(1)如图,A B C ''' 为所作,'(2,1),'(1,3),'(3,2)A B C -----,故答案为:(2,﹣1),(﹣1,﹣3),(﹣3,﹣2);(2)如图,ABC ADB BEC CFAADEF S S S S S ∆∆=--- 矩形11125231215222=⨯-⨯⨯-⨯⨯-⨯⨯3.5=.【点睛】本题考查轴对称与坐标变换、三角形面积公式,解答的关键是掌握平面直角坐标系内轴对称与坐标变换规律,会利用割补法求解不规则图形的面积.25.等腰直角三角形,理由见解析【分析】根据等腰直角三角形的性质求出∠B=∠BAC=45°,再求出∠CAE=45°,从而得到∠B=∠CAE ,再利用“边角边”证明△ACE 和△BCD 全等,根据全等三角形对应边相等可得CD=CE ,全等三角形对应角相等可得∠ACE=∠BCD ,再求出∠DCE=90°,从而得解.【详解】证明:CDE 是等腰直角三角形.理由如下:90ACB ︒∠=,AC BC =,45B BAC ∴∠=∠=︒,AE AB ⊥ ,904545CAE ∴∠=︒-︒=︒,B CAE ∴∠=∠,在ACE △和BCD △中,AE BD B CAE AC BC =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴≅ CD CE ∴=,ACE BCD ∠=∠,90ACD BCD ACB ∠+∠=∠=︒ ,90DCE ACD ACE ∴∠=∠+∠=︒,CDE ∴ 是等腰直角三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.26.答案见解析.【分析】先由HL 证明两直角三角形全等,对应角相等,再由内错角相等两直线平行即可得证.【详解】∵ED ⊥AB ,FC ⊥AB ,∴∠DEA =∠FCB =90°,又∵AC =BD ,∴AD =BC ,在Rt △AED 和Rt △BFC 中,AE BF AD BC =⎧⎨=⎩,∴Rt △AED ≌Rt △BFC (HL )∴∠A =∠B ,∴AE ∥BF.27.(1)点C 的坐标为(6,2)--;(2)OP DE 2-=【分析】(1)如图1,过C 作CM ⊥x 轴于M 点,则可以求出△MAC ≌△OBA ,可得CM=OA=2,MA=OB=4,即可得到结论;(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE=OQ ,利用三角形全等的判定定理可得△AOP ≌△PQD ,进一步可得PQ=OA=2,即OP-DE=2.【详解】解:(1)如图1,过C 作CM ⊥x 轴于M 点.∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA .在△MAC 和△OBA 中,∵∠CMA=∠AOB=90°,∠MAC=∠OBA ,AC=AB ,∴△MAC ≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=OA+AM=2+4=6,∴点C 的坐标为(-6,-2).(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE=OQ ,∴OP-DE=OP-OQ=PQ .∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP .在△AOP 和△PQD 中,∵∠AOP=∠PQD=90°,∠OAP=∠QPD ,AP=PD ,∴△AOP ≌△PQD(AAS),∴PQ=OA=2,即OP-DE=2.【点睛】本题重点考查了三角形全等的判定定理,两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,关键还要巧妙作出辅助线,再结合坐标轴才能解出,本题难度较大.。
人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.将0.00000004米用科学记数法表示为()A .8410-⨯B .9410-⨯C .90.410⨯D .74010-⨯3.下列各式中,从左到右的变形是因式分解的是()A .()()2111x x x +-=-B .()24444x x x x -+=-+C .()()23412x x x x +-=--D .()()2422x x x -=+-4.使分式2x x +有意义的x 的取值范围是()A .2x ≠-B .0x ≠C .2x >-D .2x <-5.下列计算正确的是()A .336()x x =B .6424a a a ⋅=C .325a a a +=D .2232a a a-=6.下列选项中最简分式是()A .211x +B .224x C .211x x +-D .23x x x+7.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS8.如图,CE ∥BF ,AE=DF ,要使△EAC ≌△FDB .需要添加下列选项中的()A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC9.如图,AD 是△ABC 的角平分线,∠C=28°,AB+BD=AC 、将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E ,那么∠AED 的度数为()A .28°B .50°C .56°D .65°10.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中较小的值,如Min {2,4}=2,按照这个规定,方程Min {13,x x }=41x-的解为()A .1或3B .1或-3C .1D .3二、填空题11.(-2021)0=_________.12.点(1,2)A -关于x 轴对称点的坐标是___.13.已知三角形的两边分别为2和 7,则第三边c 的取值范围是_______.14.若46x =,412y =,则24x y -=________.15.分解因式:﹣x 2+2x ﹣1=_____.16.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于F 点,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若AB=8,AC=9,则△ADE 的周长为_______.17.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.18.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A ,△223A B A ,△334A B A ,…均为等边三角形,从左数起第1个等边三角形的边长记1a ,第2个等边三角形的边长记2a ,以此类推,若1OA =1,则2021=a ___.19.如图的三角形纸片中,AB=8cm ,BC=6cm ,AC=7cm ,沿过点B 的直线折叠三角形,使点C 落在AB 边的点E 处,折痕为BD ,则△AED 的周长为_____.20.如图,∠AOB=30°,OP 平分∠AOB ,PD ⊥OB 于D ,PC ∥OB 交OA 于C ,若PC=10,则PD=________.三、解答题21.计算:2(3)(6)x x x ---22.先化简,再求值:211()(4)22x x x +⋅--+,其中13x =.23.如图,△ABC中,∠B=2∠C,E为BC上一点,且到A、C两点的距离相等.(1)尺规作图:作出点E的位置(保留作图痕迹);(2)连接AE,求证:AB=AE.24.一网店经营的一个型号山地自行车,今年一月份销售额为27000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是24000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利44%,求每辆山地自行车的进价是多少元?25.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边三角形ABD,点E在BC垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)若CD与AE相交于点F,CD与AB相交于点G,求∠AFD的度数.26.如图,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,点O是△ABC内的一点,∠BOC=130°.(1)求证:OB=DC;(2)求∠DCO的大小;(3)设∠AOB=α,那么当α为多少度时,△COD是等腰三角形.27.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且BD=AE,AD与CE 交于点F(1)求证:AD=CE;(2)求∠DFC的度数.28.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.参考答案1.D【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.A【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将0.00000004米用科学记数法表示为4×10-8.故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;C、是整式的乘法,不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.4.A【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式2x x +有意义,∴x+2≠0,解得x≠-2.故选:A .【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.5.C【分析】根据幂的乘方运算法则、同底数幂的乘法法则、合并同类项法则进行运算,即可判定.【详解】A .339()xx =,故该选项不正确;B .6410a a a = ,故该选项不正确;C .325a a a +=,故该选项正确;D .22232a a a -=,故该选项不正确.故选:C .【点睛】本题考查了幂的乘方运算法则、同底数幂的乘法法则、合并同类项法则,掌握各运算法则是解决本题的关键.6.A【分析】一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.【详解】A.211x +,是最简分式;B.222142x x =,不是最简分式;C.211x x +-=1x 1-,不是最简分式;D.23x x x+=3x+1,不是最简分式.故选A【点睛】本题考核知识点:最简分式.解题关键点:理解最简分式的意义.7.D【分析】根据作图过程可知:OC=OD ,PC=PD ,又OP=OP ,从而利用SSS 判断出△OCP ≌△ODP ,根据全等三角形的对应角相等得出∠COP=∠DOP ,即OP 平分∠AOB ,从而得出答案.【详解】解:由画法得OC=OD ,PC=PD ,而OP=OP ,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.8.C【分析】由平行线的性质可得ACE DBF ∠=∠,结合AE DF =,则还需要一角,再结合选项可求得答案.【详解】解:∵CE BF ∥,ACE DBF ∴∠=∠.AE DF = ,∴要使EAC FDB ≌,利用判定三角形全等的”AAS “还需要A D ∠=∠或E F ∠=∠.故选:C .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.9.C【分析】根据折叠的性质可得BD=DE ,AB=AE ,然后根据AC=AE+EC ,AB+BD=AC 证得DE=EC ,再根据等边对等角以及三角形的外角的性质求解.【详解】解:根据折叠的性质可得BD=DE ,AB=AE .∵AB+BD=AC ,AC=AE+EC ,∴AB+BD=AE+EC ,∴DE=EC ,∴∠EDC=∠C=28︒,∴28+28=56AED EDC C ∠=∠+∠=︒︒︒.故选:C .【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE=EC是本题的关键.10.D【分析】分类讨论1x与3x的大小,列出分式方程,求出解即可.【详解】解:当13x x>时,x<0,方程变形为341x x=-,去分母得:3=4−x,解得:x=1,经检验x=1是分式方程的解,但是不符合题意;当13x x<时,x>0,方程变形得:141x x=-,去分母得:1=4−x,解得:x=3,经检验x=3是分式方程的解,故原方程的解为x=3故选:D.11.1【分析】根据零次幂进行计算即可求解.【详解】解:原式=1,故答案为:1.【点睛】本题考查了零次幂,掌握非零实数的零次幂为1是解题的关键.12.(1,2)--【分析】利用平面直角坐标系点对称的性质求解.【详解】解:关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数可知,(1,2)A-关于x轴对称点的坐标是(1,2)--.故答案是:(1,2)--.【点睛】本题考查点对称的性质,解题的关键是掌握坐标关于x轴对称的变化规律,即关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数.13.59c<<【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出c的取值范围.【详解】解:∵7-2=5,2+7=9,∴第三边c 的取值范围为5<c <9.故答案为:5<c <9.【点睛】本题考查了三角形三边关系,牢记“三角形的两边差小于第三边,三角形两边之和大于第三边”是解题的关键.14.3【分析】由同底数幂的除法,可知222444(4)4x y x y x y -=÷=÷,再把46x =,412y =代入,即可求得其值【详解】解:222444(4)4x y x y x y -=÷=÷,46x = ,412y =,224612=3x y -∴=÷.故答案为:3.15.﹣(x ﹣1)2【详解】试题分析:直接提取公因式﹣1,进而利用完全平方公式分解因式即可解:﹣x 2+2x ﹣1=﹣(x 2﹣2x+1)=﹣(x ﹣1)2.故答案为﹣(x ﹣1)2.考点:提公因式法与公式法的综合运用.16.17【分析】根据角平分线的定义可得∠DBF=∠CBF ,根据平行线的性质,可得∠CBF=∠BFD ,等量代换可得∠DBF=∠BFD ,根据等角对等边可得BD=FD ,同理可得CE=FE ,可求得△ADE 的周长为AB+AC ,据此即可求得.【详解】解:∵BF 平分∠ABC ,∴∠DBF=∠CBF ,∵DE//BC ,∴∠CBF=∠BFD ,∴∠DBF=∠BFD ,∴BD=FD ,同理可得CE=FE ,∵DE=FD+FE ,∴DE=BD+CE ,∴△ADE 的周长为:AD+DE+AE =AD+BD+CE+AE=AB+AC=8+9=17.故答案为:17.17.36【分析】首先求得正五边形内角∠C 的度数,然后根据CD =CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【详解】解:∵正五边形的外角为360°÷5=72°,∴∠C =180°﹣72°=108°,∵CD =CB ,∴∠CDB =36°,∵AF ∥CD ,∴∠DFA =∠CDB =36°,故答案为36.18.20202【分析】根据等腰三角形的性质以及平行线的性质得出112233A B A B A B ∥∥,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2,…,依此类推进而得出答案.【详解】解:如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,即△A 1B 1A 2的边长为0112a ==;∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠10=∠11=60°,∠12=∠13=60°,∴112233A B A B A B ∥∥,1223B A B A ∥,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2=21,即△A 2B 2A 3的边长为122a =同理得B 3A 3=2B 2A 3=4=22,即△A 3B 3A 4的边长为232a =,…,∴1n n n A B A + 的边长为12n n a -=,∴202120212022A B A △的边长为202020212a =.故答案为:20202.【点睛】本题考查的是平行线的判定与性质、等边三角形的性质以及等腰三角形的性质,根据已知得出规律是解决本题的关键.19.9cm【详解】试题分析:先根据图形翻折不变性的性质得出△DEB ≌△DCB ,故DE=CD ,EB=BC ,故可得出结论.解:∵△DEB 由△DCB 翻折而成,∴△DEB ≌△DCB ,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,AC=7cm ,∴△AED 的周长=AD+DE+AE=(AD+CD )+(AB ﹣BE )=AC+AB ﹣BC=7+8﹣6=9cm .故答案为9cm考点:翻折变换(折叠问题).20.5【详解】解:∵OP 平分∠AOB ,∴∠AOP=∠BOP ,∵PC ∥OB ,∴∠CPO=∠BOP ,∴∠CPO=∠AOP ,∴PC=OC .∵PC=10,∴OC=PC=10,过P 作PE ⊥OA 于点E ,∵PD ⊥OB ,OP 平分∠AOB ,∴PD=PE ,∵PC ∥OB ,∠AOB=30°∴∠ECP=∠AOB=30°在Rt △ECP 中,PE=12PC=5,∴PD=PE=5,故答案为5.21.9【分析】首先根据完全平方公式及单项式乘以多项式法则运算,再根据去括号法则去括号,最后合并同类项,即可求得【详解】解:2(3)(6)x x x ---2269(6)x x x x =-+--22696x x x x=-+-+9=22.2x ;23【分析】先将x 2-4根据平方差公式分解为(x+2)(x-2),再进行乘法运算,可得最简的式子2x ,最后将13x =代入计算即可.【详解】解:211((4)22x x x +⋅--+11=()(2)(2)22x x x x +⋅+--+=x+2+x-2=2x .把13x =代入最简式子,得原式12233=⨯=.23.(1)见解析;(2)见解析.【分析】作线段AC 的垂直平分线,交BC 于点E ,点E 即为所求的点;(2)根据线段垂直平分线的性质,可得AE=CE ,再根据三角形外角的性质,可证得∠AEB=2∠C ,由∠B=2∠C ,可得∠AEB=∠B ,据此即可证得结论.(1)解:如图:作线段AC 的垂直平分线MN ,交BC 于点E ,点E 即为所求的点.(2)解:∵MN 垂直平分AC ,∴AE=CE ,∴∠EAC=∠C ,∴∠AEB=∠EAC+∠C=2∠C ,∵∠B=2∠C ,∴∠AEB=∠B ,∴AB=AE .24.(1)800元;(2)500元.【分析】(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y 元,根据利润=售价−进价,即可得出关于y 的一元一次方程,解之即可得出结论.(1)解:二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据题意得:27002400100x x=+解得:x=800,经检验:x=800是原分式方程的解,故二月份每辆车售价为800元;(2)解:设每辆山地自行车的进价为y 元,根据题意得:800(110%)44%y y ⨯--=,解得:y=500,故每辆山地自行车的进价为500元.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:找准等量关系,正确列出方程;注意分式方程要检验.25.(1)等边三角形,理由见解析;(2)见解析;(3)60°.【分析】(1)根据垂直平分线的性质可得EC=EB ,再算出∠CBE=60°,可判定△CBE 是等边三角形;(2)根据SAS 可证明△ABE ≌△DBC ,即可得出结论;(3)由(2)中全等可得∠EAB=∠CDB ,再根据三角形内角和可得∠AFD 的度数.(1)解:△CBE 是等边三角形.理由如下:∵点E 在BC 垂直平分线上,∴EC=EB ,∵EB ⊥AB ,∴∠ABE=90°,∵∠ABC=30°,∴∠CBE=60°,∴△CBE 是等边三角形.(2)解:∵△ABD 是等边三角形,∴AB=DB ,∠ABD=60°,∵∠ABC=30°,∴∠DBC=90°,∵EB ⊥AB ,∴∠ABE=90°,∴∠ABE=∠DBC ,由(1)可知:△CBE 是等边三角形,∴EB=CB ,在△ABE 与△DBC 中,===AB DBABE DBC EB CB⎧⎪∠∠⎨⎪⎩∴△ABE ≌△DBC(SAS),∴AE=DC ;(3)解:如图,∵△ABE ≌△DBC ,∴∠EAB=∠CDB ,又∵∠AGC=∠BGD ,∴∠AFD=∠ABD=60°.26.(1)证明见解析;(2)40°;(3)当α的度数为115°或85°或145°时,△AOD 是等腰三角形【分析】(1)由已知证明△AOB ≌△ADC ,根据全等三角形的性质即可证得;(2)由∠BOC=130°,根据周角的定义可得∠BOA+∠AOC=230°,再根据全等三角形的性质继而可得∠ADC+∠AOC=230°,由∠DAO=90°,在四边形AOCD 中,根据四边形的内角和即可求得∠DCO 的度数;(3)分三种情况进行讨论即可得.【详解】(1)∵∠BAC=∠OAD=90°,∴∠BAC ﹣∠CAO=∠OAD ﹣∠CAO ,∴∠DAC=∠OAB ,在△AOB 与△ADC 中,AB AC OAB DAC AO AD =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△ADC ,∴OB=DC ;(2)∵∠BOC=130°,∴∠BOA+∠AOC=360°﹣130°=230°,∵△AOB≌△ADC∠AOB=∠ADC,∴∠ADC+∠AOC=230°,又∵△AOD是等腰直角三角形,∴∠DAO=90°,∴四边形AOCD中,∠DCO=360°﹣90°﹣230°=40°;(3)当CD=CO时,∴∠CDO=∠COD=1801804022DCO︒-∠︒-︒==70°,∵△AOD是等腰直角三角形,∴∠ODA=45°,∴∠CDA=∠CDO+∠ODA=70°+45°=115°,又∠AOB=∠ADC=α,∴α=115°;当OD=CO时,∴∠DCO=∠CDO=40°,∴∠CDA=∠CDO+∠ODA=40°+45°=85°,∴α=85°;当CD=OD时,∴∠DCO=∠DOC=40°,∠CDO=180°﹣∠DCO﹣∠DOC=180°﹣40°﹣40°=100°,∴∠CDA=∠CDO+∠ODA=100°+45°=145°,∴α=145°,综上所述:当α的度数为115°或85°或145°时,△AOD是等腰三角形.27.(1)见解析;(2)60°【分析】(1)根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,(2)根据全等三角形的性质得到∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【详解】(1)证明:∵△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.又∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE(2)解:由(1)得△ABD≌△CAE∴∠ACE=∠BAD.∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°.28.证明见解析【详解】试题分析:(1)首先由AE=AB可以得到∠B=∠AEB,然后由AD∥BC可以得到∠AEB=∠DAE,由此即可证明题目的结论;(2)利用(1)的结论,而且AD=BC,AE=AB,由此即可证明△ABC≌△EAD.证明:(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,∴∠DAE=∠B;(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.。
人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。
新人教版八年级数学上册期末试题

新人教版八年级数学上册期末试题校6公里,私家车的速度是每小时50公里,公交车的速度是每小时30公里,问XXX家乘坐私家车上学需要多少时间?解答:私家车比公交车快15分钟,换算成小时就是0.25小时。
距离为6公里,私家车速度为每小时50公里,所需时间为6÷50=0.12小时。
因此,XXX家乘坐私家车上学需要的总时间为0.12-0.25=-0.13小时,即7.8分钟。
但是,时间不能为负数,因此XXX家只能选择乘坐公交车上学。
校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍。
设乘公交车平均每小时走x千米,则乘私家车每小时走2.5x千米。
根据题意可列方程为:8/x = 8/(2.5x),解得x=3.2.所以乘公交车平均每小时走3.2千米,乘私家车平均每小时走8/3.2=2.5千米。
1.x≠1.x≠22.x(x-4)(x-1)3.k=-2或k=34.AB=EF5.1cm6.60°7.1/38.1/49.6/521.先化简,再求值:(112m,其中m=9.+)÷(2m-3m+3m-6m+9) = (112m / 9) ÷ (2m - 6) = (16m / 3) ÷ (m - 3) = 16 / 3 + 16 / (3(m - 3))22.(1) x(x+1)(x-1) (2) (m²-9n²)(m²+9n²)23.x=1或x=-124.(1) 因为∠A和∠B都是直角,所以AD=AB=CE;(2) AD和CE垂直,因为AD和BC互为垂直平分线,CE和AB 互为垂直平分线。
25.作AO和BO的平分线,交于点O。
作OM和ON垂直于AO和BO。
则点P在MN上,且OP垂直于AB,OP=OM=ON。
B。
(1) 甲队完成工程所需时间为20天。
(2) 甲队和乙队合做完成工程所需费用为20×(6500+3500) = 元。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下列关于x 的方程是分式方程的是()A .2356x x ++=B .323x x -=C .137x x -=+D .351x =2.下面四个图形中,是轴对称图形的是()A .B .C .D .3.下列运算错误的是()A .()23924b b =B .235a a a ⋅=C .()ax ay a x y +=+D .32a a a ÷=(a≠0)4.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm (其中91nm 10m -=),用科学记数法表示这个最小刻度(单位:m ),结果是()A .8210m -⨯B .9210m -⨯C .10210m-⨯D .11210m -⨯5.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是()A .∠B =∠C B .BE =CD C .AD =AED .BD =CE 6.已知等腰三角形的两条边长分别为4和9,则它的周长为()A .17B .22C .23D .17或227.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A .32°B .33°C .34°D .38°8.如图,M 、N 分别是正五边形ABCDE 的边BC 、CD 上的点,且BM=CN ,AM 交BN 于点P ,则∠APN 的度数是()A .120°B .118°C .110°D .108°9.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 是BC 的中点,连结AD ,AE 是∠BAD 的平分线,DF ∥AB 交AE 的延长线于点F ,若EF=3,则AE 的长是()A .3B .6C .9D .1210.如图,点E 是BC 的中点,AB BC ⊥,DC BC ⊥,AE 平分BAD ∠,下列结论:①90AED ∠= ;②ADE CDE ∠=∠;③DE BE =;④AD AB CD =+.其中正确的是()A .①②④B .①②③④C .②③④D .①③11.如图,已知∠BAC=∠DAE=90°,AB=AD ,下列条件能使△ABC ≌△ADE 的是()A .∠E=∠CB .AE=AC C .BC=DED .ABC 三个答案都是12.(-2)2011×22012的计算结果是()A .0B .-24023C .24023D .-4402313.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC二、填空题14.分解因式:29x y y -=_______.15.若210m =,23n =,则22m n +=______________.16.若一个多边形的外角和是内角和的13,则这个多边形的边数是_____.17.若点M (32,a )关于y 轴的对称点是点N (b ,12),则()2022a b +=________.18.若关于x 的分式方程1233a x x-=--有增根,则a 的值为_____.19.如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D .若AD=3cm ,BE=1cm ,则DE=_________.20.如图,在平面直角坐标系中,已知(0,5),(2,0)A B ,在第一象限内的点C ,使ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为_____.三、解答题21.计算:()()()222x y y x y x +-+-.22.解分式方程:2321212141x x x x +-=+--.23.先化简,再求值:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a ,其中()02022a π=-,13b =.24.如图,在△ABC 中,∠ABC=30°,∠C=80°,AD 是△ABC 的角平分线,BE 是△ABD 中AD 边上的高,求∠ABE的度数.25.如图,已知点A (-2,4),B (4,2),C (2,-1).(1)先画出△ABC ,再作出△ABC 关于x 轴对称的图形△111A B C ,则点1C 的坐标为________;(2)P 为x 轴上一动点,请在图中画出使△PAB 的周长最小时的点P ,并直接写出此时点P 的坐标(保留作图痕迹).26.如图,ABD ,AEC 都是等边三角形,BE ,CD 相交于点O .(1)求证:BE DC =;(2)求BOC ∠的度数.27.某单位准备购买A 、B 两种型号的分类垃圾桶,购买时发现,A 种型号的单价比B 种型号的单价少50元,用2000元购买A 种垃圾桶的个数与用2200元购买B 种垃圾桶的个数相同.(1)求A 、B 两种型号垃圾桶的单价各是多少元?(2)若单位需要购买分类垃圾桶6个,总费用不超过3100元,求出所有不同的购买方式?28.阅读材料:若满足()()863x x --=-,求()()2286x x -+-的值.解:设8x a -=,6x b -=,则()()863x x ab --==-,862a b x x +=-+-=,所以()()()()22222286222310x x a b a b ab -+-=+=+-=-⨯-=请仿照上例解决下面的问题:(1)问题发现:若x 满足()()3210x x --=-,求()()2232x x -+-的值;(2)类比探究:若x 满足()()22202220212020x x -+-=.求()()20222021x x --的值;(3)拓展延伸:如图,正方形ABCD 和正方形和MFNP 重叠,其重叠部分是一个长方形,分别延长AD 、CD ,交NP 和MP 于H 、Q 两点,构成的四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形.若正方形ABCD 的边长为x ,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).29.在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连结AE.若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE=2,求AG的长.参考答案1.C2.D3.A4.C5.B6.B7.A8.D9.B10.A11.D12.B13.C14.y(x+3)(x-3)15.9016.817.118.119.2cm20.(7,2)或(5,7)【分析】分别从当∠ABC=90°,AB=BC时,当∠BAC=90°,AB=AC时去分析求解,利用全等三角形的判定与性质,即可求得点C的坐标.【详解】如图①,当∠ABC=90°,AB=BC时,过点C作CD⊥x轴于点D,∴∠CDB=∠AOB=90°,∵∠OAB+∠ABO=90°,∠ABO+∠CBD=90°,∴∠OAB=∠CBD,在△AOB 和△BDC 中,AOB BDCOAB CBD AB BC∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△BDC (AAS ),∴BD=OA=5,CD=OB=2,∴OD=OB+BD=7,∴点C 的坐标为(7,2);如图②,当∠BAC=90°,AB=AC 时,过点C 作CD ⊥y 轴于点D ,同理可证得:△OAB ≌△DCA ,∴AD=OB=2,CD=OA=5,∴OA=OA+AD=7,∴点C 的坐标为(5,7);综上所述点,点C 的坐标为(7,2)或(5,7).21.252x xy+【分析】先运用乘法公式进行计算,再合并同类项即可.【详解】解:()()()222x y y x y x +-+-,=()222224x xy y y x ++--,=222224x xy y y x ++-+,=252x xy +.【点睛】本题考查了整式的乘法,解题关键是熟记乘法公式,准确进行计算.22.x=6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】等式两边同时乘241x -得:3(21)2(21)1x x x --+=+整理得:63421x x x ---=+,解得:x =6,经检验x =6是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.13b a ,.【分析】将括号内利用平方差公式和完全平方式通分化简,再将除法改为乘法,最后约分即可化简.根据零指数幂计算出a 的值,再将a 、b 的值代入化简后的式子求值即可.【详解】解:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a 222()()()()()()b a b a b a a b a a b a b a b ⎡⎤-+-=÷-⎢⎥---⎣⎦22()()()()b a b a b a a a b a b -+-=÷--2()()b a b a a b b-=⨯-ba=∵()020221a π=-=,13b =,∴11313a b ==.24.55°【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD 度数,由AE ⊥BE 可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD 是∠BAC 的平分线,∴∠BAD=12×70°=35°,∵AE ⊥BE ,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.25.(1)作图见解析,(2,1);(2)作图见解析,(2,0).【分析】(1)在坐标系中标出A 、B 、C 三点,再顺次连接,即为ABC ;根据轴对称的性质找到A 、B 、C 三点关于x 轴的对应点1A 、1B 、1C ,再顺次连接,即为111A B C △,最后写出1C 的坐标即可.(2)根据轴对称的性质结合两点之间线段最短,即可直接连接1A B ,即1A B 与x 轴的交点为点P ,再直接写出点P 坐标即可.【详解】(1)ABC 和111A B C △如图所示,根据图可知1(21)C ,.故答案为:(2,1).(2)∵AB 长度不变,PAB 的周长PA PB AB =++,∴只要PA PB +最小即可.如图,连结1A B 交x 轴于点P ,∵两点之间线段最短,∴11PA PB PA PB A B +=+≥,设1A B 解析式为y kx b =+,过1A (-2,-4),B(4,2),代入得,4224k b k b-=-+⎧⎨=+⎩解得:12k b =⎧⎨=-⎩,∴1A B 的解析式为2y x =-,当0y =时,即02x =-,解得:2x =.∴点P 坐标为(2,0).当点P 坐标为(2,0)时,APB △周长最短.【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质.26.(1)见解析;(2)120°.【分析】(1)由条件可证明△ADC ≌△ABE ,可证得BE=DC ;(2)由(1)可得出∠ADC=∠ABE ,根据三角形的内角和定理求出∠BOD=180°-∠ODB-∠DBA-∠ABE=60°,最后求出BOC ∠的度数.【详解】(1)证明:∵△ABD 与△AEC 都是等边三角形,∴AD=AB ,AE=AC ,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC ,∴∠DAC=∠BAE ,在△DAC 和△BAE 中AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE (SAS ),∴BE=DC ;(2)由(1)可得出∠ADC=∠ABE ,∵∠BOD=180°-∠ODB-∠DBA-∠ABE=180°-∠ODB-60°-∠ADC=120°-(∠ODB+∠ADC )=120°-60°=60°,∴∠BOC=180°-∠BOD=180°-60°=120°.27.(1)A 、B 两种型号垃圾桶的单价是500元和550元;(2)购买A 种型号垃圾桶为4个,B 种型号垃圾桶为2个;A 种型号垃圾桶为5个,B 种型号垃圾桶为1个;A 种型号垃圾桶为6个,B 种型号垃圾桶为0个.【分析】(1)设A 、B 两种型号垃圾桶的单价分别为x 元,y 元,由题意列方程2000220050x x =+,求出x 的值即为A 种型号垃圾桶的单价,再由50x +求出B 种型号垃圾桶的单价.(2)设购买A 种型号垃圾桶a 个,则由题意,列式()50055063100a a +-≤,解出a 的范围,分类讨论即可.【详解】(1)设A 、B 两种型号垃圾桶的单价分别为x 元,y 元,由题意列方程:2000220050x x =+解得:500x =经检验知:500x =是原方程的解,符合题意∴50550x +=即A 、B 两种型号垃圾桶的单价是500元和550元.(2)设购买A 种型号垃圾桶为a 个,则:()50055063100a a +-≤解得:4a ≥,又∵单位需要购买分类垃圾桶6个∵46a ≤≤且a 为整数,∴4,5,6a =所以购买A 种型号垃圾桶为4个,B 种型号垃圾桶为642-=个;A 种型号垃圾桶为5个,B 种型号垃圾桶为651-=个;A 种型号垃圾桶为6个,B 种型号垃圾桶为660-=.综上所述,共有三种购买方式,即购买A 种型号垃圾桶为4个,B 种型号垃圾桶为2个;A 种型号垃圾桶为5个,B 种型号垃圾桶为1个;A 种型号垃圾桶为6个,B 种型号垃圾桶为0个.【点睛】本题考查分式方程的应用,以及一元一次不等式的应用,根据相关知识点列出关系式是解题关键.28.(1)21;(2)1009.5;(3)900【分析】(1)令a=3-x ,b=x-2,整体代入后利用完全平方和公式求解;(2)令a=2021-x ,b=2020-x ,再利用完全平方差公式求代数式的值;(3)设a=x-20,b=x-10,由题意列出方程ab=200,再结合正方形和矩形的面积公式求四边形MFNP 的面积.【详解】解:(1)设a=3-x ,b=x-2,∴ab=-10,a+b=1,∴(3-x )2+(x-2)2,=a 2+b 2=(a+b )2-2ab=12-2×(-10)=21;(2)设a=2022-x ,b=2021-x ,∴a-b=1,a 2+b 2=2020,∴()()20222021x x --=ab =−12[(a−b)2−(a 2+b 2)]=−12×(12−2020)=1009.5;(3)∵EF=DG=x-20,ED=FG=x-10,∵四边形MEDQ 与NGDH 为正方形,四边形QDHP 为长方形,∴MF=EF+EM=EF+ED=(x-20)+(x-10),FN=FG+GN=FG+GD ,∴FN=(x-10)+(x-20),∴MF=NF ,∴四边形MFNP 为正方形,设a=x-20,b=x-10,∴a-b=-10,∵S EFGD =200,∴ab=200,∴S MFNP =(a+b)2=(a-b )2+4ab=(-10)2+4×200=900.29.(1)见详解;(2)见详解;(3【分析】(1)根据平行线的性质和等腰三角形的判定定理解答即可;(2)根据三角形的内角和解答即可;(3)过点C作CR⊥AE于R,过点R作RT⊥CE于T,先证明△ABG≌△CAR,再根据全等三角形的性质解答即可.【详解】证明:(1)∵AB=AC,∴∠B=∠ACB,∵DE∥AC,∴∠ACB=∠E,∴∠B=∠E,∴DB=DE;(2)令∠DEA=α,则∠FEA=α,∠FED=2α,∵EF是△DBE的高,∴EF⊥DB,∴∠DFE=90°,∴∠D=90°-∠DEF=90°-2α,∵∠B+∠DEB+∠D=180°,∴2∠DEB+90°-2α=180°,∴∠DEB=45°+α,∴∠AEB=∠DEB-∠DEA=45°+α-α=45°,(3)如图3,过点C作CR⊥AE于R,过点R作RT⊥CE于T,则∠CRE=∠CTR=∠ETR=90°,∵∠AEB=45°,∴∠RCE=∠ERT=45°=∠CRT,CE∴RC=2∵DE∥AC,∴∠CAR=∠DEA,∵BG⊥AE,∴∠BGE=90°,∴∠GBE=90°-∠AEB=45°,即∠GBE=∠AEB,∴∠ABG=∠ABC-∠GBE=∠DEB-∠AEB=∠DEA=∠CAR,又∵AB=AC,∠AGB=∠CRA=90°,∴△ABG≌△CAR(AAS),∴AG=.。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.计算23x x ⋅的结果为()A .6x B .5x C .4x D .3x 2的值在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.如图,A D ∠=∠,ACB DBC ∠=∠,那么ABC DCB △≌△的依据是()A .SASB .ASAC .AASD .SSS 4.如图,△ABC ≌△ADE ,下列说法错误的...是()A .BC=DEB .AB ⊥DEC .∠CAE=∠BAD D .∠B=∠D5.用直尺和圆规作一个角等于已知角,如图,能得出∠A O B '''=∠AOB 的依据是()A .(SAS )B .(SSS )C .(ASA )D .(AAS )6.在综合实践活动课上,小明用三根木棒首尾顺次相接摆三角形.下列每组数分别是三根木棒的长度(单位:cm ),其中能摆出直角三角形的一组是()A .4,4,7B .32,42,52C .9,12,15D .6,7,87.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A .1:1:1B .1:2:3C .2:3:4D .3:4:58.如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到BC 的距离等于()A B .CD9.若实数m ,n 满足30m -=,且m ,n 恰好是Rt ABC 的两条边长,则第三条边长为()A .3或4B .5C .5D10.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF AC ∥交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF ,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有()A .4个B .3个C .2个D .1个二、填空题11.已知一个等腰三角形的两边分别为4和10,则它的周长为_____.12.计算:23(66)32ab ab a b --+=______.13.分解因式26m m +=_________.14.如图, ABE ≌ DCE ,AE =2cm ,BE =1.2cm ,∠A =25°,∠B =48°,那么DE =_____cm ,∠C =_________°.15.如图,在Rt △ABC 中,∠ACB=90°,∠B=15°,AB 的垂直平分线与BC 交于点D ,交AB 于点E ,连接AD .则∠CAD 的度数为_________.16.在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 和直线AC 于D 、E 两点,且∠EBC =30°,则∠A 的度数为___________.17.等腰ABC 一腰上的高与另一腰的夹角为50°,则ABC 顶角的度数为________.18.如图,Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,利用尺规在AC ,AB 上分别截取AD ,AE .使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为________.19.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.20.如图所示,在ABC ∆中,90,C DE AB ∠=︒⊥于点,E AC AE =,且55CDA ∠=︒,则B ∠=___度.三、解答题21.化简:(1)223x y x y -++;(2)22224(3)3(4)x y xy xy x y ---+.22.如果a 的算术平方根是4,b ﹣1是8的立方根,求a ﹣b ﹣4的平方根.23.分解因式:(1)22363x xy y -+(2)328x x-24.如图,AB =AD ,BC =DC ,求证:∠ABC =∠ADC .25.已知MAN ∠.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作MAN ∠的平分线AE ;②在AE 上任取一点F ,作AF 的垂直平分线分别与AM 、AN 交于P 、Q ;(2)在(1)的条件下线段AP 与AQ 有什么数量关系,请直接写出结论.26.如图,在△ABC 中,点D 是AB 的中点,点F 是BC 延长线上一点,连接DF ,交AC 于点E ,连接BE ,∠A =∠ABE .(1)求证:ED 平分∠AEB ;(2)若AB =AC ,∠A =40°,求∠F 的度数.27.如图,长方形纸片ABCD ,AD ∥BC ,将长方形纸片折叠,使点D 与点B 重合,点C 落在点C'处,折痕为EF .(1)求证:BE =BF .(2)若AB =4,AD =8,求AE 的长.28.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接,CD DE 、已知,6EDB ACD BC ∠=∠=,(1)求证:DEC ∆是等腰三角形(2)当5,8,2BDC EDB EC AD ∠=∠==时,求EDC ∆的面积.参考答案1.B2.C3.C4.B5.B6.C7.C8.C9.B10.A11.2412.222244a b a b ab -+-【分析】根据单项式乘以多项式计算即可;【详解】原式222244a b a b ab =-+-;故答案是:222244a b a b ab -+-.13.(6)m m +【分析】直接提取公因式m ,进而分解因式得出答案.【详解】解:26m m+=m (m+6).故答案为:m (m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.248【分析】根据全等三角形的性质即可求得结果.【详解】∵ ABE ≌ DCE∴DE=AE=2cm ,∠C=∠B=48°故答案为:2,48【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是关键.15.60°##60度【分析】由垂直平分线的性质可求得BD=DA,且可求得∠ADC=2∠B=30°,在Rt△ACD中可求得∠CAD的度数.【详解】解:∵DE为线段AB的垂直平分线,∴BD=DA,∴∠DAB=∠B=15°,∴∠ADC=2∠B=30°,∵∠ACD=90°,∴∠CAD=90°-∠ADC=90°-30°=60°,故答案为:60°.【点睛】本题主要考查线段垂直平分线的性质及等腰三角形的性质,利用线段垂直平分线上的点到线段两端点的距离相等得到BD=DA是解题的关键.16.40°或160°或80°【分析】结合题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;根据等腰三角形的性质得到∠ABC=∠ACB,根据线段垂直平分线的性质得到EA=EB,得到∠ABE=∠EAB,结合三角形的内角和的性质,列一元一次方程并求解,即可得到答案.【详解】解:根据题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;当E在线段AC上,如图:∵AB=AC,∴∠ABC=∠ACB,∠ABC+∠ACB+∠A=180°,∵DE垂直且平分AB,∴EA=EB,∴∠ABE=∠A,∴∠ABC=∠ACB=∠ABE+∠EBC=∠A+30°,∴∠A+2(∠A+30°)=180°,解得∠A =40°;当E 在CA 延长线上,如图∵AB =AC ,∴∠ABC =∠ACB ,∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠BAE ,∴∠ABC =∠ACB =∠EBC ﹣∠ABE =∠EBC ﹣∠BAE =30°﹣∠BAE ,∵∠ABC+∠ACB =∠BAE ,∴2(30°﹣∠BAE )=∠BAE ,解得∠BAE =20°,∴∠A =180°﹣20°=160°.当E 在AC 延长线上,如下图:∵AB =AC ,∴∠ABC =∠ACB ,∠ABC+∠ACB+∠A =180°,∴∠ABC =1802A︒-∠∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠A ,∴∠ABE=∠ABC+∠EBC=1802A︒-∠+30°,∴∠A=1802A︒-∠+30°,解得∠A=80°;故答案为:40°或160°或80°.17.40°或140°【分析】由于等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不符合题意,分两种情况讨论:①若∠A<90°;②若∠A>90°;求出顶角∠BAC的度数.【详解】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,AB=AC,∴∠A+∠ABD=90°,∵∠ABD=50°,∴∠A=90°−50°=40°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°−50°=40°,∴∠BAC=180°−40°=140°;综上所述,ABC顶角的度数为40°或140°,故答案为:40°或140°.18.83【分析】利用角平分线的性质设出GC=GP=x ,根据等积法得到方程168452x x ⨯⨯=+,得出结果.【详解】解:如图,当GP ⊥AB 时,GP 最小,根据作图知AG 平分∠BAC ,∠C=90°,∴GC=GP ,设GC=GP=x ,在直角△ABC 中,∠C=90°,10==,又∵ABCACG ABG S S S =+△△△,即11168=45222AC x AB x x x ⨯⨯⋅+⋅=+,解得x=83,故答案为83.【点睛】本题考查角平分线的性质,注意掌握利用等积法求三角形的高或点的线的距离的方法.19.k<6且k≠3【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【详解】解:233x k x x -=--,方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解,∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.【点睛】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.20.20【分析】利用HL 得到△ACD ≌△AED ,由此可得到∠CDA=∠ADE ,再通过三角形内角和及角的和与差求出∠CAE ,可得到最终结果.【详解】解:∵DE ⊥AB ,∠C=90°,AC=AE ,AD=AD ,∴△ACD ≌△AED (HL ),∴∠CDA=∠ADE=55°,∠CAD=∠DAE ,∵∠CAD=180°-90°-55°=35°,∴∠CAE=70°,∴∠B=180°-90°-70°=20°.故答案为:20.【点睛】本题考查了全等三角形的判定与性质,属于基础题,熟练掌握全等三角形的判定与性质是解决本题的关键.21.(1)4x(2)2xy -【分析】(1)合并同类项即可.(2)去括号后,合并同类项,即可.(1)解:223x y x y -++=2(31)(11)x y ++-=4x .(2)解:22224(3)3(4)x y xy xy x y ---+=2222124312x y xy xy x y-+-=22(1212)(43)x y xy -+-+=2xy -.【点睛】本题考查了整式的加减、去括号、合并同类项,熟练掌握去括号法则,准确进行合并同类项是解题的关键.22.3±【分析】首先根据算术平方根的性质求出a 的值,然后根据立方根的性质求出b 的值,最后代入a ﹣b ﹣4即可求出平方根.【详解】解:由题意2416a ==,12b -==,3b ∴=,49a b ∴--=4a b ∴--的平方根为3±.【点睛】此题考查了平方根,算术平方根和立方根的性质,解题的关键是熟练掌握平方根,算术平方根和立方根的性质.23.(1)23()x y -;(2)2(2)(2)x x x +-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可.【详解】解:(1)22363x xy y -+()2232x xy y =-+23()x y =-;(2)328x x-()224x x =-2(2)(2)x x x =+-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.见解析.【分析】连接AC ,根据SSS 证明△ACD ≌△ACB 即可得到结论.【详解】证明:连接AC在△ACD 与△ACB 中,AD AB AC AC CD CB =⎧⎪=⎨⎪=⎩,∴△ACD ≌△ACB ,∴ABC ADC ∠=∠.25.(1)①作图见解析;②作图见解析;(2)AP=AQ ,理由见解析【分析】(1)①根据角平分线的作图方法求解即可;②根据线段垂直平分线的作图方法求解即可;(2)只需要证明△ATP ≌△ATQ 即可得到AP=AQ .【详解】解:(1)①如图所示,以A 为圆心,以任意长为半径画弧,分别与AM ,AN 交于点H 、G ,再分别以H 、G 为圆心,以大于HG 长的一半为半径画弧,二者交于点O ,过点O 作射线AE即为所求;②如图所示,分别以A 、F 为圆心,以大于AF 长的一半为半画弧,二者分别交于J 、K ,连接JK 分别交AM 于P ,AN 于Q ,AE 于T ;(2)AP=AQ,理由如下:∵JK是线段AF的垂线平分线,∴∠PTA=∠QTA=90°,∵AE是∠MAN的角平分线,∴∠MAE=∠NAE,又∵AT=AT,∴△ATP≌△ATQ(ASA),∴AP=AQ.【点睛】本题主要考查了角平分线和线段垂直平分线的尺规作图,角平分线的定义,线段垂直平分线的性质,全等三角形的性质与判定等等,解题的关键在于能够熟练掌握相关知识进行求解.26.(1)证明见解析;(2)∠F=20°.【分析】(1)先证EA=EB,再利用等腰三角形的三线合一性质即可得出结论.(2)根据等腰三角形的性质求出∠ABE,再由等腰三角形的性质证明∠BDF=90°,然后由直角三角形的性质即可得出答案.【详解】(1)证明:∵∠A=∠ABE,∴EA=EB,∵AD=DB,∴ED平分∠AEB;(2)解:∵∠A=40°,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠ACB=70°,∵EA =EB ,AD =DB ,∴ED ⊥AB ,∴∠FDB =90°,∴∠F =90°﹣∠ABC =20°.【点睛】本题考查的是线段垂直平分线的判定与性质、等腰三角形的判定与性质以及三角形内角和定理等知识,熟练掌握等腰三角形的判定与性质是解题的关键.27.(1)证明见解析;(2)3.【分析】(1)先根据折叠的性质可得BEF DEF ∠=∠,再根据平行线的性质可得BFE DEF ∠=∠,从而可得BEF BFE ∠=∠,然后根据等腰三角形的判定即可得证;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,设BE DE x ==,从而可得8AE x =-,然后在Rt ABE △中,利用勾股定理可求出x 的值,由此即可得出答案.【详解】证明:(1)由折叠的性质得:BEF DEF ∠=∠,AD BC ,BFE DEF ∴∠=∠,BEF BFE ∴∠=∠,BE BF ∴=;(2) 四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,4AB =,90A ∠=︒,222AB AE BE ∴+=,即2224(8)x x +-=,解得5x =,8853AE x ∴=-=-=.【点睛】本题考查了折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握折叠的性质是解题关键.28.(1)证明见解析;(2)16【分析】(1)证明:根据等边三角形的性质得到60ABC ACB ∠=∠=︒,推出∠E=∠BCD ,得到DE=DC ,由此得到结论;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,求出15x =o ,得到690EDC x ∠==︒,推出△DEC 是等腰直角三角形,过点D 作DF EC ⊥于点F ,证得△DFE 、△DFC 都是等腰直角三角形,求出DF=4,即可根据三角形的面积公式求出答案.【详解】(1)证明:ABC ∆ 是等边三角形60ABC ACB ∴∠=∠= ,E EDB ACD BCD ∠+∠=∠+∠∴,EDB ACD ∠=∠ ,E BCD ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,60ACB ∠=60BCD x ∠=∴- ,60E x ∠=∴- ,在DEC ∆中,180E EDC DCE ∠+∠+∠=︒,60560180x x x x ∴+ ,解得15x =o ,690EDC x ∴∠== ,DEC ∴∆是等腰直角三角形,过点D 作DF EC ⊥于点F ,如图所示,DF EC ⊥ ,,DFE DFC ∆∆∴都是等腰直角三角形,12DF EC∴=8EC = ,∴DF=4,EDC ∴∆的面积为:11841622EC DF ⋅⋅=⨯⨯=。
湖南省邵阳市十五中八年级数学上学期期末考试试题 新
湖南省邵阳市十五中2015-2016学年八年级数学上学期期末考试试题(全卷满分:120分,考试时间:120分钟)一、请你精心选一选:(本题共10小题,每题3分,共30分) 1、以下列各组长度的线段为边,能构成三角形的是 ( )A . 3,4 ,7B .5,6,12C .3,4,5D .1,2, 3 2、下列二次根式中属于最简二次根式的是 ( ) A 、44 a B 、48 C 、21D 、143、如果a >b,那么下列不等式中不成立的是 ( )A . a ―3>b ―3B . ―3a >―3bC . 3a >3bD . ―a <―b4、Rt △ABC 中,∠C=90°,∠B=54° ,则∠A=( ) A.66° B.36° C.56° D.46°5、与三角形三个顶点的距离相等的点是 ( ) A .三条角平分线的交点 B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点 6、点A 和B 关于X 轴对称,已知点A 坐标是(4,4), 则点B 的坐标是 ( ) A .(4,-4) B .(4,-2) C .(-2,4) D .(-4,2)7、下列条件不能判定两个直角三角形全等的是( )A 、两条直角边对应相等B 、有两条边对应相等C 、一条边和一个锐角对应相等D 、两个锐角对应相等 8、在△ABC 和△A ’B ’C ’中,已知AB=A ’B ’,∠A=∠A ’, ∠C=∠C ’, 直接判定△ABC ≌△A ’B ’C ’的根据是: ( )A 、SSSB 、ASAC 、AASD 、SAS9、将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕, D则CBD ∠的度数为: C A 、60° B 、75° C 、90° D 、95° B10、以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A .211 B .1.4 C .3 D .2二、细心填一填(每空3分,共24分,请把你的答案写在答题卷上) 11、计算:3133⨯÷的结果为_____________12、若三角形的三边分别为3,1+2a ,8,那么a 的取值范围是 13、如右图,以Rt △ABC 的三边向外作正方形,其面积分别为1S ,2S ,3S 且14S =,28S =,则3S = ;以Rt ∆ABC 的三边向外 作等边三角形,其面积分别为 1S ,2S ,3S , 则1S ,2S ,3S 三者之间的关系为 .14、如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为第14题图 15.如图,在Rt△ABC 中,斜边AB 上的垂直平分线交直角边BC 于D ,交AB 于E ,若BC=10cm ,AC=6cm ,则△ADC 的周长为 cm.16.若点M(1+x,2x-3)在第四象限,求那么x 的取值范围是17、将命题:“全等三角形对应边相等”改写成“如果……那么……”的形式: 。
新人教版八年级数学上学期期末考试
八年级数学上学期期末考试 一、选择题(本大题共8小题,每小题3分,共24分,每一小题只有一个正确答案)
1.如图所示的标志中,是轴对称图形的有( )
A.1个 B.2个 C.3个 D.4个 2、下列计算中,正确的是( ) A、222baba B、62342aa C、6332aaa D、11aa 3、已知点A(x,3)和B(4,y)关于y轴对称,则2014yx的值为( ) A、2014 B、1 C、1 D、20147 4、已知等腰三角形的一个外角和等于100°,则它的顶角等于( ) A、80° B、50° C、20°或50° D、20°或80° 5、如图,△ABC中,C=90°,A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC的长为( ) A、3 B、4 C、5 D、6 6、如图,在Rt△ABC中,∠B=90°.若BC=10,AD平分∠BAC,交BC于点D,且BD:CD=2:3,则点D到线段AC的距离为( ) A、4 B、6 C、8 D、10 7、若0a,且xa=2,ya=3,则yxa的值为( ) A、—1 B、1 C、32 D、23 8、如图,在△ABC中,BE=CF,DE=DF,DE⊥AB于E,DF⊥AC于F,则有下列结论: ①AB=AC ②AD⊥BC ③AD上任何一点到B、C两点的距离相等,其中( ) A、全部正确 B、仅①和②正确 C、仅①正确 D、仅①和③正确 二、填空题(本大题共9小题,每小题3分,共27分) 9、计算:0)3(+1= 。 10、化简:计算223)3(aa= 。 11、如图所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____. 12、如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处) 在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是 m。 13、如图,在△ABC 中,BC =8,AB 的中垂线交BC于D,AC 的中垂线交BC 与E,则△ADE 的周长等于______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免费会员专享精品
1 / 8
【最新】2019年八年级数学上学期期末考试试题新人教版
(考试时间120分钟,共150分)
一、选择题(本大题共12小题,每小题3分,共36分)
1.如图案是轴对称图形的有
( )
A.1个 B.2个 C.3个 D.4个
2.点M(-3,2)关于X轴对称的点的坐标为
( )
A.(-3,-2) B.(3,-2) C.(3,2)
D.(-3,2)
3.下列计算正确的是
( )
A.x2·x2=2x4 B.(-2a)3= -8a3 C.(a3)2=a5
D. m3÷m3=m
4.关于分式方程的解的情况,下列说法正确的是
( )
A.有一个解是x=2 B.有一个解是x=﹣2
C.有两个解是x=2和x=﹣2 D.没有解
5.下列运算错误的是
( )
免费会员专享精品
2 / 8
A.x2•x4=x6 B.(﹣b)2•(﹣b)4=﹣b6
C.x•x3•x5=x9 D.(a+1)2(a+1)3=(a+1)5
6.下列各式由左边到右边的变形中,是分解因式的为
( )
A、a (x + y) =a x + a y B、x2-4x+4=x(x-4)+4
C、10x2-5x=5x(2x-1) D、x2-16+3x=(x-4)(x+4)+3x
7.如果a:b=1:2,那么=
( )
A.﹣2 B.2 C.3 D.﹣3
8.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的
是 ( )
A.∠DAE=∠CBE B.ΔDEA不全等于ΔCEB
C.CE=DE D.ΔEAB是等腰三角形
9.已知4x2-kxy+ y2是完全平方式,则常数k等于
( )
A.4 B.-4 C. D.2
10.若分式的值为零,那么x的值为
( )
A.x=1或x=﹣1 B.x=1
C.x=﹣1 D.x=0
11.如图所示,已知∠C=∠D=90°,AB=AE,增加下列一个条件(1)
A
B
C
D
E
1
2
免费会员专享精品
3 / 8
AC=AD,(2)BC=ED,(3)∠B=∠E,(4)∠1=∠2,其中能使
△ABC≌△AED成立的条件有 ( )
A.4个 B.3个 C.2个 D.1个
12.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一
个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合
条件的动点P的个数为 ( )
A.2 B.3 C.4 D.5
二、填空题(本大题共8小题,每小题4分,共32分)
13.在直角坐标系中,若点A(m+1,2)与点B(3,n﹣2)关于y轴
对称,则m=___,n=_____.
14.已知一个n边形的内角和是其外角和的5倍,则n=__________.
15.如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的
周长是__________.
16.在△ABC中,∠C=90°,AD平分∠BAC,若DC=7,则D点到AB的
距离为__________
17.若,,则a+b的值为 .
18.计算:()2008×(-)2009×(-1)2007=_____________.
522
5
19.如图,已知△ABC是等边三角形,点D、E在BC的延长线上,G是
AC上一点,且CG=CD,F是GD上一点,且DF=DE,则∠E=
度.
20.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,
点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添
免费会员专享精品
4 / 8
加以下四个条件中的某一个即可,请写出所有可能的条件的序号
____ .______.
①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.
三、解答题(共82分)
21.计算:
(1)(2+1)(22+1)(24+1)+1(4分) (2) (4分)
abbbaba
2
(3)解方程:= l + (5分) (4)解方程: + = 1 (5分)
22.分解因式(共8分):
(1)2n2(m﹣2)+8(2﹣m) (2)﹣
8a2b+2a3+8ab2
23.(10分)先化简代数式,求:当 a=2时代数式
值.
24.(10分)如图,△ABC与△DCB中,AC与BD交于点E,且
∠A=∠D,AB=DC.
(1)求证:△ABE≌DCE;
(2)当∠AEB=50°,求∠EBC的度数?
25.(10分)如图,AB=AC,AB的垂直平分线DE交BC的延长线于点
E,交AC于点F,∠A=50°,AB+BC=6.求:
(1)△BCF的周长;
免费会员专享精品
5 / 8
(2)∠E的度数.
26.(12分)某商店第一次用600元购进2B铅笔若干支,第二次又用
600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量
比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于
420元,问每支售价至少是多少元?
27.(14分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的
中点,点E是AB边上一点.
(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:
AE=CG;
(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如
图2),找出图中与BE相等的线段,并证明.