微生物的适应性进化

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物的适应性进化

适应进化又称定向进化"实验室进化或驯化,是目前备受瞩目的菌种改良技术,能够使菌株在较短的时间内有效地改变菌株的某些表型或生理特性(如菌体生长速度,底物消耗速度,耐受高温高低pH值以及不同有机溶剂等),并且基本不会影响除目的表型外的其他优良性状。目前实验室最常用的适应进化方法是在特定条件(给予选择压力)下将微生物连续传代培养,通过菌株自发突变的不断富集,获得适应特定条件的表型或生理性能。

在微生物进化过程中,选择压力的存在可以保证微生物在与选择压力的相互作用下,菌种的随机变异实现定向淘汰,与环境相适应的基因型得以保存,特别是在人工选育过程中,通过人工施加定向的选择压力,使微生物沿着所需的方向的进化,从而获得目标性状的菌种。乙酸作为细胞毒素经常在很多生物过程中作为副产物不断积累,乙酸浓度逐渐升高的环境压力存在于许多工业微生物领域。以生物乙醇的生产为例,副产物乙酸会严重抑制乙醇的生产,Peter Steiner 等人将不耐受乙酸的野生型 Acetobacter aceti 进行适应性进化实验,将逐渐提高浓度的乙酸作为选择压力,经过 240 代的适应性进化,获得了能

够耐受50g/L 浓度的乙酸的菌株。Hillesland 和Stahl 首次将脱硫弧菌和产甲烷菌混合培养 300 代来研究混菌体系的进化历程,脱硫弧菌为产甲烷菌提供氢离子,产甲烷菌通过消耗氢离子为脱硫弧菌提供适宜生存的条件,两者通过代谢产物的交流实现专性的互利关系。虽然两种菌株都是从共生微生物体系中分离,但是它们是从不同的环境中分离出来,而且单独培养。将这一严格互利共生的混菌体系进行适应性进化实验,其实验核心就是将体系中的一种微生物作为另一微生物的选择压力进行了实验设计,这种生物选择压力的存在能够使适应彼此物质代谢交流的菌种得以保存和扩大种群优势,进化后的混菌体系生长速率提高了80%,生物量提高了30%。

单菌多次级代谢产物策略在“沉默代谢途径”的应用

在非自然条件下,微生物中很多编码次级代谢产物的基因簇是保持沉默的。在细菌和真菌中有关次级代谢产物合成的基因簇数目远远大于实验室条件下实际合成的天然产物的数目[29]。毫无疑问,这些沉默的基因簇是发现活性药物组分的巨大资源库,如何激活这些未表达或者表达量比较低沉默基因将是我发现新化合物的一种重要途径。

早期的发酵科学就发现培养基的改变会影响微生物次级代谢产物的数量及质量培养基微小的变化不仅能影响到主代谢产物,甚至能影响微生物代谢产物的类型,在单菌多次级代谢产物(One strain many compounds,OSMAC)策略的指导下,通常采用改变培养基,添加微量元素、前体化合物或酶抑制剂等,以及改变培养条件等方法实现增加化合物种类和数量的目的。

通过基因组学的研究同样表明由于在实验室单一或者相近的培养条件下,微生物中存在大量常规培养条件下未表达的代谢途径,叫着“沉默代谢途径”,进而造成微生物资源的浪费。改变微生物生长的微环境可以激活菌株的“沉默代谢途径”提高微生物次级代谢产物的多样性。德国Gottingen大学的Zeeck小组提出了单菌多次级代谢产物(One strain many compounds,OSMAC)策略,并对微生物株放线菌、的培养基,培养条件,添加前体或酶抑制剂等方法进行了研究,共获得了25类100余个化合物[32],许多化合物是传统培养方法无法获得的。Sarkar等研究了模式真菌A.nidulans在恒化器中连续发酵,通过维持微生物较慢的生长速度,改变培养基中硝酸盐(N源), 磷酸盐(P源),葡萄糖(C源)等成分的浓度,发现两个原本

沉默的聚酮合酶基因表达出了9个多酚类化合物。其中一个新化合物是烯化的苯甲酮衍生物(preshamixanthone),可能是氧杂蒽酮代谢途径的一个中间体,表明不同的培养条件可以诱导沉默的聚酮合基因表达[33]。Russell等在枝孢芽枝菌(Cladosporium cladosporioides)培养基中加入微生物表观遗传调控剂DNA甲基化酶抑制剂- 5-azacytidine(氮杂胞苷)和组蛋白去乙酰化酶抑制剂- suberoylanilide hydroxamic acid(SAHA),并分析和分离了发酵液的次级代谢产物,结果显示两种表观遗传调控剂可以产生不同的次级代谢产物,加入5-azacytidine能够产生羟脂类化合物,而加入SAHA 后能够产生7个二萘嵌苯醌类化合物,其中2个是新化合物[34]。

研究表明拟茎点菌属Phomopsis sp.的一些菌株能够产生具有生物活性的二苯并吡喃酮[35],Phomopsidin类化合物[36]。Christian OE[37]等所采集的同属天门冬拟茎点菌Phomopsis asparagi在实验室海水培养基的条件下并没有产生上述标志性的化合物,因此采取了(One strain many compounds,OSMAC)策略,通过加入促微丝聚合剂,得到了一系列Chaetoglobosins类化合物。Schiewe HJ[38]等通过改

变培养瓶及通气条件,从链霉菌属Gö 40/10菌株的代谢产物中分离得到一系列化合物,并证明由于培养基的改变,之前沉默的生物合成基因簇被打开,出现了新的生合成路径。

Jens 等[39-40]研究发现赭曲霉属DSM7428菌株在常规培养条件下,只得到了一种化合物,且产量较低,通过采用(One strain many compounds,OSMAC)策略,改变培养条件,如使用不同的培养瓶,改用静态培养等方法,使化合物产量由原来的8mg/L提高至94mg/L,并且产生了丰富的产物(14种)。海洋真菌Libertella sp与细菌a-proteobacterium联合培养后,得到了分别培养所没有得到的化合物,这些化合物对白色念珠菌仅有微弱的抗菌活性,但是对人结肠癌HCT-116具有较强的细胞毒活性[41]。这些研究均表明通过改变微生物的培养条件,能够诱导微生物次级代谢产物新的合成途径,是发现新的天然产物的有效手段,并且由此提出了 (One strain many compounds,OSMAC)理论,为深入开发放线菌天然产物提供了切实可行的新思路。

N-乙酰葡萄糖胺(N-acetylglucosamine)是链霉菌初级代谢中C源和N源主要来源之一,天蓝色链霉菌相对于葡萄糖也更偏好于利用N-乙醜葡萄糖胺作为

相关文档
最新文档