智能变电站发展论文
变电站的现状及发展趋势

变电站的现状及发展趋势变电站是电力系统中起着关键作用的一个环节,其主要功能包括电压转换、电流变换、电能计量、保护控制等。
变电站的现状及发展趋势可以从以下几个方面进行分析。
首先,变电站的规模不断扩大。
随着电力系统的发展和电力需求的增长,变电站的容量也在不断提高。
现今,我国的变电站已经发展到了1000千伏的水平,且特高压变电站的规模也在增加。
这一趋势的原因是为了提高电力输送的效率和稳定性,提升电网的可靠性。
其次,变电站的自动化水平不断提高。
随着智能电网的发展,变电站的自动化程度不断提高。
自动化技术的应用不仅可以提高变电站的运行效率,还可以降低运维成本,提高电网的可靠性。
目前,智能变电站已经成为研究的热点,通过智能设备、传感器、通信技术等技术手段,实现对变电站的远程监控、自动控制和故障诊断等功能,进一步提升了变电站的性能和可靠性。
再次,变电站的环保性能要求越来越高。
随着社会对环境保护的重视程度不断提高,对变电站的环保性能要求也越来越高。
传统变电站中使用的硫化气体(SF6) 是一种温室气体,对环境有一定的影响。
因此,越来越多的变电站开始使用无环气体绝缘装置,如N2混合气体、干空气等,以减少温室效应和改善空气质量。
此外,变电站的设计和建设还会考虑噪音和电磁辐射等环境影响因素,以保护周边环境和居民的健康。
最后,变电站向多能联网的方向发展。
随着可再生能源的不断发展和普及,如风电、光伏等新能源的接入与利用,传统的变电站面临着新的能源接入和集成的挑战。
为了实现能源的高效利用和多能源互补,变电站需要具备多能联网的功能,即能够实现不同能源之间的互联互通,对电力进行合理分配和调度。
这一发展趋势促使变电站向能源互联网的方向发展,提高电力系统的灵活性和可持续发展能力。
总的来说,随着电力系统的发展和社会对电力供应的需求不断增长,变电站在规模、自动化水平、环保性能和能源联网方面都在不断发展和改进。
未来,变电站将更高效、智能、环保,为电力系统的稳定供电提供更好的支持。
论文IEEE1588精确时间协议在智能变电站中应用的关键技术

IEEE 1588 精确时间协议在智能变电站中应用的关键技术王佳兴,朱金垦,(市电力公司,市,325000)摘要:IEEE 1588精确时间同步协议(PTP)解决了通用以太网延迟时间和同步能力差的瓶颈,在自动化、通信等工业领域具有重要意义,本文介绍了IEEE 1588标准在智能变电站建设中应用的关键技术,包括PTP时钟同步模型以及同步过程,分析了PTP网络结构中的设备类型以及主从时钟的偏移和网络延时的修正,最后分析了PTP时钟设备冗余配置的必要性,给出了时钟设备冗余配置的方法。
关键字:IEEE 1588 PTP 智能变电站时钟同步引言目前,在变电站自动化系统中广泛应用的对时方式主要有GPS同步脉冲对时,NTP (Network Time Protocol)网络时间协议,SNTP(Simple Network Time Protocol)简单网络时间协议对时等对时方式。
随着数字化变电站的发展使得站二次硬接线逐渐被串行通信线所取代,GPS对时技术已不适用于新兴的数字化智能变电站网络系统,而NTP/SNTP 时间同步协议的时间同步精度仅能到到ms级,不能满足具有高精度和稳定性要求的电力自动化设备的需求,因此最终提出了IEEE 1588标准,它定义了一种用于分布式测量和控制系统的精密时间协议(Precision Time Protocol,PTP),其网络对时精度可达亚µs级,满足电力系统自动化设备对时间精度的要求,并且所占用网络和硬件资源较少,因此IEEE 1588网络对时方式是应用于智能变电站的理想对时方式[3]。
1 PTP时钟同步模型PTP系统是分布式网络系统,由PTP设备和非PTP设备组成。
下图1-1为一个典型的PTP分布式系统。
图1-1 典型的PTP分布式系统其中,OC(Ordinary Clock)为普通时钟,普通时钟可能是一个系统的最高级主时钟(Grandmaster Clock,GC),也可能是主、从时钟体系中的从时钟(Slave)。
一键顺控技术在智能变电站中的应用分析与研究

一键顺控技术在智能变电站中的应用分析与研究摘要:新时期各行业对电力能源的需求量持续增大,变电站建设数量越来越多,但运维工作人员数量却有所减少,这与巨大的维修工作量之间存在极大的矛盾。
为了有效解决此类矛盾,智能变电站一键顺控技术应运而生,该项技术操作简单、安全系数高,能够实现对变电站一二次设备的动态化实时监控,大幅度提高了变电站倒闸操作自动化水平。
一键顺控技术的实施无需人工干预,只需一键即可完成一系列复杂的系统操控,有效提高了设备操作效率,降低了操作失误发生概率,保障了变电站设备运行的安全性和稳定性。
鉴于此,本文就主要针对一键顺控技术操作流程及其在智能变电站中的应用进行简要分析,旨在能推动我国智能变电站的长足稳健发展。
关键词:一键顺控技术;智能变电站;应用引言电力系统和电网运行过程中,变电站主要承担着电压调节的作用,变电站工作质量对整个系统电力供应效率及服务质量都具有极大的影响。
随着社会经济的飞速发展,我国电网越来越完善,变电站建设规模不断扩大,智能电网大发展促使各大变电站也逐步转变为智能化厂站工作模式,自动化程度的提升使得设备操控难度大幅提升。
现如今我国智能变电站设备操控水平已经取得了很大的进步,但实践中依然存在一定的缺陷,特别是操作系统响应时间偏长,请求用户数量比较大的情况下更是反应迟钝,降低了电网运行效率,增加了设备管理成本[1]。
一键顺控技术的引入很好地解决了操作系统响应迟缓的问题,在操控指令发出之后,系统便会按照任务执行顺序严格落实各项系统指令,保证了整个任务落实过程的高效性和有效性,为变电站设备的有效调度与管控提供了良好的技术保障。
1智能变电站一键顺控操作流程分析1.1 顺控操作流程顺控主机的主要功能是对变电站内相关数据信息进行采集和处理,包括:一键顺控、运行监视、操作及防误闭锁等,其中防误闭锁是指在预演模拟期间和指令执行过程中,基于双套防误机制规避各类操作失误的发生,这里所说的双套防误机制包括顺控主机内存在的防误逻辑闭锁和独立智能防误主机中的防误逻辑两种。
变电站综合自动化技术论文

变电站综合自动化技术研究[摘要]变电站综合自动化替代了变电站常规二次设备,简化了变电站二次接线。
变电站综合自动化是提高变电站安全稳定运行水平、降低运行维护成本、提高经济效益、提供高质量电能的一项重要技术措施。
功能的综合是其区别于常规变电站的最大特点,它以计算机技术为基础,以数据通讯为手段,以信息共享为目标. 目前为止该系统经历了集中式、分布集中式、分布分散式等发展阶段。
其中分布分散式为今后的发展方向。
[关键词]变电站综合自动化技术研究中图分类号:tm76 文献标识码:a 文章编号:1009-914x(2013)04-0207-01变电站自动化技术经过多年的发展已经达到一定的水平,在电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kv及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。
然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
变电站综合自动化系统是利用先进的计算机技术、现代电子技术、通信技术和信息处理技术等实现对变电站二次设备的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。
通过变电站综合自动化系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。
一、常规变电站的二次系统的缺点:常规变电站的二次系统远方集中控制、操作的手段较少,提供给调度中心的信息量少、精度差,难以满足电网实时监控和控制的要求;站内各种继电保护、自动装置和远动装置等大多为晶体管或小规模集成电路形式,结构及接线复杂,二次设备主要依靠电缆,通过模拟信号来交换信息,其安全性、可靠性不高;监控以人为主,工作人员面对大量信息十处理的准确性和可靠性不高;电缆用量多,调试和维护工作量大;二次设备冗余配置多,占地面积大,增加了征地投资;不能满足现代电力系统高可靠性的要求,不适应电力系统快速计算和实时控制的要求,不利于提高运行管理水平和自动化水平。
330kV蒋家南数字化变电站技术特征论文

浅析330kV蒋家南数字化变电站的技术特征摘要:在智能电网建设的大背景下,数字化变电站快速发展是必然趋势,宁夏电力公司于2010年9月30日投运国内首座数字化330kv蒋家南变电站,本文对蒋家南330kv变电站的技术特征、系统组成、网络结构及应用中存在的问题等几个方面进行论述。
关键词:数字化 iec61850 特征数字化变电站是由智能化一次设备(电子式互感器、智能化开关等)和网络化二次设备分层(过程层、间隔层、站控层)构建,建立在iec61850通信规范基础上,能够实现变电站内智能电气设备间信息共享和互操作的现代化变电站。
1 数字化变电站的主要特征数字化变电站三个主要的特征就是“一次设备智能化,二次设备网络化,符合iec61850标准”,即数字化变电站内的信息全部做到数字化,信息传递实现网络化,通信模型达到标准化,使各种设备和功能共享统一的信息平台。
这使得数字化变电站在系统可靠性、经济性、维护简便性方面均比常规变电站有大幅度提升。
1.1 一次设备智能化智能化的一次设备包括光电/电子式互感器,智能化断路器等。
对于一次设备被检测的信号回路和被控制的操作驱动回路,将采用微处理器和光电技术设计,使传统机电式继电器及控制回路的结构大大简化;数字程控器及数字公共信号网络要取代传统的导线连接;可编程序取代二次回路中传统的继电器及其逻辑回路;光电数字和光纤取代常规的强电模拟信号和控制电缆。
1.2 二次设备网络化二次设备的网络化,是适应光电式互感器的应用、智能化一次设备和iec61850通讯规约的需要。
我们所熟知传统二次设备,如继电保护装置、防误闭锁装置、测量控制装置、故障录波装置、稳控装置、vqc将等全部基于标准化、模块化的微处理机设计制造,各设备之间的连接均采用高速的网络通讯,二次设备没有重复的i/o现场接口,主要靠网络真正实现数据共享、资源共享。
1.3 符合iec61850标准 iec61850是面向未来的变电站自动化技术标准,也是全世界关于变电站自动化系统的第1个完整的通信标准体系。
基于变电站数字化改造技术论文

基于变电站数字化改造技术研究【摘要】分析了实现数字化变电站改造的设备和网络结构的特点,并根据工程实例,介绍了常规站数字化经过改造后的效果和运行中存在的问题。
【关键词】变电站;整体构架;改造实例1.变电站的整体构架数字化变电站按照一次设备智能化、二次设备网络化的设计思路,参照iec61850的标准将变电站分为过程层、间隔层和站控层3个部分,其中过程层由模拟量收集终端合并单元和实现开关输入、输出的智能单元构成;间隔层主要由保护装置和测控装置组成;站控层主要包括监控、远动和故障信息子系统。
2.过程层的数字化改造常规变电站一次设备与保护和测控装置之间通过电缆直接联系,完成电气量的采集、开关和刀闸的控制。
基于常规一次设备的数字化改造借助于智能终端,它包括常规合并单元、变压器智能单元和智能操作箱。
智能终端与常规一次设备通过电缆连接,将电信号转换为光信号,以光纤网络为媒介,完成常规一次设备和间隔层装置之间的信息交互。
2.1常规合并单元变电站常规互感器的数据合并单元采取就地安装的原则,通过交流头就地采样电缆传送模拟信号,并将采样数据处理后通过iec61850-9-1、iec61850-9-2或者iec60044-8的协议借助光纤通道发送到网络交换机供需要该模拟量的保护或者测控装置共享数据。
2.2变压器智能单元变压器智能单元受传统变压器制造特点的限制,变压器本体非电气量保护、有载调压和本体信号的传输通过电缆连接,以驱动继电器的方式完成。
数字化变电站中,过程层和间隔层之间通过光纤组网进行信息交换,按照变压器非电气量相对独立的特点,采用变压器本体智能单元,将有载调压、非电气量保护和测控一体化。
本体智能单元按照常规变电站的方式,实现变压器非电量保护和本体测控功能,并借助光纤网络将变压器非电气量信息输送给间隔层装置共享。
2.3智能操作箱智能操作箱解决了传统一次设备和数字化网络的接口问题,智能操作箱作为数字化变电站一次开关设备操作的智能终端,将传统一次设备和保护、测控等装置通过光纤网络连接,完成对断路器、刀闸的分合操作,智能操作箱接收保护和测控装置通过goose网下发的断路器或刀闸的分、合及闭锁命令,然后转换成相应的继电器硬接点输出。
人工智能+5G技术在智慧变电站建设中的研究与应用

人工智能 +5G技术在智慧变电站建设中的研究与应用摘要:现阶段智慧变电站建设,重视人工智能与5G技术的应用,将智能电网与物联网建设有效结合,能够逐步提升变电站自身性能。
根据国家电网提出的“三型两网,世界一流”的建设规划,不断提升智慧变电建设工作。
本文主要介绍了人工智能与5G技术,并且分析了智慧变电站的基本概念,提出了四种新技术在智慧变电站中的使用,以供相关技术人员借鉴分析。
关键词:人工智能;5G技术;智能监控;巡检机器人引言:当前信息技术是推进社会发展的重要力量,在智能电网建设中,发挥智慧变电站的重要作用,能够提高输配电工作质量,为区域经济发展提供充足电能。
人工智能与5G技术的使用,为智慧变电站的建设提供了技术支持,技术人员能够借助该技术,逐步改善整体工作质量,发挥信息技术的优势,降低变电站技术人员的工作强度。
1.人工智能与5G技术的兴起人工智能技术的应用,借助配套的软硬件设施,能够实现快速识别,对整体智慧变电站日常工作进行监测。
如果发生异常情况,可以通过人工智能技术,实现对故障的分析,制定有效的维修方案,及时将异常情况传达给维修人员,从而实现对变电站设备的有效管理。
并且,人工智能技术旨在让机器拥有一定的智能,能够处理日常生活中遇到的各种问题。
随着科学技术的发展,人工智能已经能够在部分领域,已经实现了应用,能够代替人们从事危险工作,并且降低人们劳动强度[1]。
5G技术是现阶段最为先进的通信技术,能够实现信息数据的高效传输,为现阶段物联网建设提供了有效支持。
现阶段建设中,需要发挥5G技术的重要作用,为不同设备之间的信息交互提供相应的支持。
5G技术的快速发展,带动了物联网建设,为实现万物互联做出了重要贡献。
5G技术的兴起,为智慧变电站建设作出了贡献。
相关设备能够及时将收集到的数据传输给中控设备,借助人工智能技术,能够对智慧变电站的运行状况进行分析。
1.智慧变电站的基本概念变电站是现阶段智能电网建设的重要工作,能够将高压输电网络中的高压电转化为低压电,供区域经济建设的需要。
智慧变电站:新一代智能变电站的概念及建设目标阐述

智慧变电站新一代智能变电站的概念及建设目标阐述导读智能变电站是建设智能电网的关键环节和重要内容,一次设备的智能化是智能变电站与传统变电站的重要区别,研究智能变电站一次设备智能化技术具有重要的意义和价值。
智能变电站是建设智能电网的关键环节和重要内容,一次设备的智能化是智能变电站与传统变电站的重要区别,研究智能变电站一次设备智能化技术具有重要的意义和价值。
出了智能变电站一次设备智能化的相关建议。
智能电网是构建全球互联、高度智能、清洁环保、高效利用、友好互动的全球能源互联网的重要支撑,是承载和推动新一轮能源革命的基础平台。
发展智能电网有利于清洁可再生能源的开发利用、资源的最优配置、雾霾的治理以及电动汽车等新型高科技产业的快速发展,发展智能电网已成为我国能源发展的战略目标。
未来的智能电网将采用先进的材料技术、可再生能源发电技术、传感技术、通信技术、超导技术、储能技术、先进控制理论,使得能源开发更清洁,利用更高效,配置更优化,碳排放量更低。
未来的智能电网将实现微电网与特高压骨干电网协同发展,电网与用户友好互动,从而更好的服务于国民经济的发展。
“绿色供电、智慧用电”是智能电网内涵的深刻体现。
智能变电站是坚强智能电网的基石和重要支撑,而一次设备的智能化是智能变电站建设的关键环节。
1.智能变电站概念及其建设目标智能变电站采用先进、环保、集成、可靠、低碳的智能设备,能够自动完成信息采集、测量、计量、保护、在线监测、自诊断等基本功能,支持电网实时智能调节、自动控制、协同互动、在线分析决策等功能[1-4]。
新一代智能变电站技术是在传统变电站技术基础上的不断创新和变革,其不断融合先进、前瞻的新技术,运行经济环保,设备先进适用可靠,使电网运行更安全稳定。
新一代智能变电站为集自我保护、控制和管理功能于一体的高度智能体,具备智能化、协同互动、即插即用和集成化等技术特征。
新一代智能变电站建设的目标:采用先进的技术手段将站内的高压一次设备高度集成、二次设备高度集成、设备与建筑物高度集成,高度集成设备的设计、制造、调试均在工厂内一体化完成,设备技术先进可靠;新一代智能变电站功能齐全、智能化程度高、调试及维护灵活方便、运行稳定可靠;装配式建设、标准化设计、工厂化加工是新一代智能变电站设备模块化的主要体现;新一代智能变电站内部之间及其与站外的通信准确可靠,结构布局合理,尽可能地节约土地、能源、水、材料等资源,有效减少环境污染和生态破坏;新一代智能变电站具有效率最大化、维护量最小化、资源节约化、环境友好化、信息资源最优化的优势;新一代智能变电站支持与多级调控中心的信息传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能变电站发展论文 摘要:目前,国内外正在积极的发展变电站智能化的关键设备以及主要技术,进一步推动智能变电站的建设与发展。虽然智能变电站的研究成果比较丰富,工程建设上也取得了一定的成绩,但是总的来说我国智能变电站的发展还处于初期阶段,智能化的程度还不高,不论是工程建设还是运行维护都缺乏相关经验,智能变电站的发展需要经历一个逐步智能化的过渡过程,具有长期性和渐进性。
引言 智能化变电站技术有效的衔接了整个智能电网的运行,它大大提升了电网的数字化和自动化。但还是处于变电站智能化的初级阶段,智能变电站技术在产品研发、设计与集成、运行维护等方面均存在一定的问题,距离成熟应用还要一段时间。
一、 智能化变电站的功能特征 智能化变电站的设计和建设,必须在智能电网的背景下进行,要满足我国智能电网建设和发展的要求,体现我国智能电网信息化、数字化、自动化、互动化的特征。智能化变电站应当具有以下功能特征:
(一)紧密联结全网 从智能化变电站在智能电网体系结构中的位置和作用看,智能化变电站的建设,要有利于加强全网范围各个环节间联系的紧密性,有利于体现智能电网的统一性,有利于互联电网对运行事故进行预防和紧急控制,实现在不同层次上的统一协调控制,成为形成统一坚强智能电网的关节和纽带。智能化变电站的“全网”意识更强,作为电网的一个重要环节和部分,其在电网整体中的功能和作用更加明显和突出。
(二)支撑智能电网 从智能化变电站的自动化、智能化技术上看,智能化变电站的设计和运行水平,应与智能电网保持一致,满足智能电网安全、可靠、经济、高效、清洁、环保、透明、开放等运行性能的要求。在硬件装置上实现更高程度的集成和优化,软件功能实现更合理的区别和配合。应用FACTS技术,对系统电压和无功功率,电流和潮流分布进行有效控制。
(三)高电压等级的智能化变电站满足特高压输电网架的要求 特高压输电线路将构成我国智能电网的骨干输电网架,必须面对大容量、高电压带来的一系列技术问题。特高压变电站应能可靠地应对和解决在设备绝缘、断路开关等方面的问题,支持特高压输电网架的形成和有效发挥作用。
(四)中低压智能化变电站允许分布式电源的接入 在未来的智能电网中,一个重要的特征是大量的风能、太阳能等间歇性分布式电源的接入。智能化变电站是分布式电源并网的入口,从技术到管理,从硬件到软件都必须充分考虑并满足分布式电源并网的需求。大量分布式电源接入,形成微网与配电网并网运行模式。这使得配电网从单一的由大型注入点单向供电的模式,向大量使用受端分布式发电设备的多源多向模块化模式转变。与常规变电站相比,智能化变电站从继电保护到运行管理都应做出调整和改变,以满足更高水平的安全稳定运行需要。
(五)远程可视化 智能化变电站的状态监测与操作运行均可利用多媒体技术实现远程可视化与自动化,以实现变电站真正的无人值班,并提高变电站的安全运行水平。
(六)装备与设施标准化设计,模块化安装 智能化变电站的一二次设备进行高度的整合与集成,所有的装备具有统一的接口。建造新的智能化变电站时,所有集成化装备的一、二次功能,在出厂前完成模块化调试,运抵安装现场后只需进行联网、接线,无需大规模现场调试。一二次设备集成后标准化设计,模块化安装,对变电站的建造和设备的安装环节而言是根本性的变革。可以保证设备的质量和可靠性,大量节省现场施工、调试工作量,使得任何一个同样电压等级的变电站的建造变成简单的模块化的设备的联网、连接,因而可以实现变电站的“可复制性”,大大简化变电站建造的过程,而提高了变电站的标准化程度和可靠性。出于以上需求的考虑,智能化变电站必须从硬件到软件,从结构到功能上完成一个飞越。 二、智能变电站技术发展现状及存在问题 (一)电子式互感器制造水平尚未成熟,可靠性不高 目前电子式互感器的设备制造水平尚未成熟,在使用过程中暴露出精度问题、温度问题、稳定性、抗干扰性差、缺陷率高、使用寿命短、调试维护问题等。目前电子式互感器应用过程中暴露出来的问题主要有2类,一类是与产品设计及选用器件有关的问题,例如开关操作引起电子式互感器采样异常甚至造成采集器损坏、测量误差波动较大等,另一类是与生产工艺、生产过程的质量控制不严、产品安装调试规程不完善及现场施工不规范等有关,例如接线松动引起信号不稳、光纤损耗偏大等。电子式互感器运行时间不长,目前还缺乏相应的现场交接试验及维修检验相关试验规程。以上问题造成电子式互感器并未在智能变电站中大量使用,仍然采用传统的互感器,通过合并单元上送的模式。
(二)标准和规程不完善,设计手段缺乏 目前,智能变电站的管理并不能很好地适应新技术的应用,除了管理手段缺乏外,专业人才的缺乏同样困扰着智能变电站的发展,管理的变革迫在眉睫。当前,智能变电站建设的框架未定型,还缺乏一套规范的运行管理、作业表单等标准制度体系。国内已经出台了一些企业标准或指导意见,在一定程度上填补了智能变电站工程建设标准的空白,但是由于智能变电站处于初期阶段,一些技术原则缺乏实际运行的检验,且国内各个地区的经济发展程度不相同,调度、生产运行等部门对变电站的智能化还存在认识差异,已经制定的这些标准还不能完全满足工程设计的要求,标准本身还要随着工程建设经验的积累和技术的不断发展而完善。目前的管理模式基于常规站,智能变电站的设计、建设、验收、运行、定检等环节依然高度依赖厂家,暴露出许多问题智能变电站相关标准和规程很多是指导性的,可操作性不强。需要根据国家电网公司的特点,结合现场实际情况总结,进一步完善运行、检修、试验等相关规程。此外,目前设计院处于摸索学习阶段,缺乏有效的手段介入智能变电站设计,工程设计文件往往通过表格、文本这些不直观的方式表现出来。
(三)建设、调试周期长,运行维护人员经验不足 智能变电站的调试周期长,通常是传统变电站的 5 ~10 倍,主要原因是:标准的支撑不够,导致工具开发困难,没有功能强大、自动化程度高的工程综合调试支持系统;缺乏合理的调试步骤,例如在系统集成时,没有遵循合理的集成步骤,造成多次迭代与返工等。另一方面,运行维护人员对智能变电站熟悉程度不够、进入角色慢等问题,维护过程处于厂家手把手教的过程,如何实施安全措施等问题困扰运行单位。运行维护人员对智能变电站的关键性配置文件的管理意识不够强。由于变电站的改扩建、保护升级、回路修改等内容均可能影响这些个文件,因此需要严格进行管理,但由于缺乏通用的软件进行此类文件的管理,运行维护人员介入难度大。由于光缆代替了传统的电缆,变电站的二次设备结构发生了颠覆性的变化,也因此带来了一些设备运行维护方面的问题。智能变电站的检修方式发生了颠覆性的变化,如何定检、如何进行安全措施等问题始终困扰着运行单位,因此扩大停电范围成了一种无奈的检修策略,特别是在组网方式下,牵一发动全身,运行维护难度急剧增加。
三、智能变电站的发展对策及未来形势 (一)强化智能变电站的电压稳定性,实现安全评估 随着电网规模不断扩大以及电网负荷的不断加大,电力系统运行时的电压经常出现不稳定。智能变电站必须持续加强电压稳定评估控制,保证其安全性。国内状态监测厂家独立于一次设备发展,缺乏对一次设备特征的深入研究,在具体工程应用中存在传感器故障率较高,部分监测数据与实测数据差距较大,缺乏统一的设计标准和验收标准,工程项目中状态监测系统的配置和选型随意性较大,一般由状态监测厂家负责系统集成、现场施工和调试,施工工艺和质量以及建成后状态监测系统的实际功能都难以保证。在智能变电站的应用时,实现对电网的快速评估,从而快速、可靠的获得电压稳定裕度,可以依据电压稳定裕度与控制表实行快速的补偿投切,同时,也可以实时的将数据传输到调度中心以便随时监控。
(二)生产管理制度需适应智能变电站技术的发展 智能变电站大量采用新技术、新设备和新工艺,打破了现有的一次设备和二次设备之间的界限,实现了保护、测量、控制、计量等功能的高度集成,传统意义上的专业划分已不适应智能变电站技术的发展,现有的生产管理制度需有针对性的调整以适应智能化技术的应用,充分发挥智能变电站的功能优势,促进智能电网技术的发展。
(三)加强设计的标准化,研究新型的技术设备 智能变电站的大力推广,使得整个电网系统也实现了智能化,这就有效的保证了电网的顺利运行。针对目前智能变电站的建设情况,未来对智能变电站的研究与建设可从以下几个方面考虑。首先是加强设计的标准化及技术的理论研究,统一智能变电站内部的各级标准;其次是加强对以太网技术的研究,以太网可以实现站内的相互通信,建设一个智能变电站的通信平台;最后,深入研究新型的技术设备,特别是互感器技术,借助智能化一次设备,分析在线监测设备以及电器设备,提高智能控制技术,同时,使用智能调度设备与技术,采用高级应用技术,使得智能变电站能更好的服务于智能电网系统。
四、结语 目前,国内外正在积极的发展变电站智能化的关键设备以及主要技术,进一步推动智能变电站的建设与发展。虽然智能变电站的研究成果比较丰富,工程建设上也取得了一定的成绩,但是总的来说我国智能变电站的发展还处于初期阶段,智能化的程度还不高,不论是工程建设还是运行维护都缺乏相关经验,智能变电站的发展需要经历一个逐步智能化的过渡过程,具有长期性和渐进性。智能变电站是智能电网的主要构成要素,是智能调度系统的信息采集与命令执行的重要