2017年春季新版北师大版八年级数学下学期第6章、平行四边形单元复习试卷38
北师大版八年级下数学 第六章平行四边形 单元检测(PDF 含答案解析)

第六章平行四边形满分:100分,限时:60分钟一、选择题1.在平行四边形ABCD 中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2.如图6-5-1所示,△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为()图6-5-1A.4B.3C.23D.23.如图6-5-2所示,在平行四边形ABCD 中,AB=3cm,BC=5cm,对角线AC,BD 相交于点O,则OA 的取值范围是()图6-5-2A.2cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm4.下列条件中能判定四边形ABCD 是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠B,∠C=∠DC.AB=CD,AD=BCD.AB=AD,CB=CD5.如图6-5-3,在平行四边形ABCD 中,DE 是∠ADC 的平分线,点F 是AB 的中点,AB=6,AD=4,则AE∶EF∶BE 为()图6-5-3A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶26.如图6-5-4,P 是平行四边形ABCD 内部任意一点,△ABP、△BCP、△CDP、△ADP 的面积分别为S 1、S 2、S 3、S 4,则一定成立的是()图6-5-5A.55°B.35°C.25°D.30°8.已知多边形中除去一个内角外的其他各内角与同该内角相邻的一个外角之和为600°,则该多边形的边数为()A.5B.6C.5或6D.不存在这样的多边形9.如图6-5-6,▱ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD的中点,OF⊥BC,∠D=53°,则∠FOE的度数是()图6-5-6A.37°B.53°C.127°D.143°10.如图6-5-7,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ长度的最小值为()图6-5-7A.6B.8C.22D.42二、填空题11.如图6-5-8,∠2+∠3+∠4=320°,则∠1=.图6-5-812.如图6-5-9,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=18,BC=6,则△AOD的周长为.图6-5-913.如图6-5-10,▱ABCD的对角线AC,BD相交于点O,若△AOB的面积为6cm2,则▱ABCD的面积为.图6-5-1014.如图6-5-11,∠1+∠2+∠3+∠4+∠5+∠6=度.图6-5-1115.如图6-5-12,平行四边形ABCD中,BC=2AB,点M为AD的中点,则∠BMC=.图6-5-1216.如图6-5-13,平行四边形ABCD中,AE⊥BD,BE∶DE=3∶7,BD=20,AB=10,则AB与CD间的距离为.图6-5-1317.如图6-5-14,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.图6-5-14三、解答题19.(10分)如图6-5-16,在平行四边形ABCD 中,AE、BF 分别平分∠DAB 和∠ABC,交CD 于点E,F,AE、BF 相交于点M.(1)试证明:△BCF 为等腰三角形;(2)若AB=5,DF=1,求EF的长.图6-5-1618.如图6-5-15,直线AE∥BD,点C 在BD 上,若AE=5,BD=8,△ABD 的面积为16,则△ACE 的面积为.图6-5-1520.(10分)如图6-5-17所示的模板,按规定:AB、CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠A=122°,∠C=155°,如果你是质检员,如何知道模板是否合格?为什么?图6-5-1721.(12分)有下列命题:①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知,求证,并完成证明)已知:.求证:.证明:22.(14分)已知:如图6-5-18,在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上,点G,H 在BD上,且AE=CF,BG=DH.(1)若AC=6,BD=8,试求AD的取值范围;(2)若AC=AD,∠CAD=50°,试求∠ABC的度数;(3)求证:四边形EHFG是平行四边形.图6-5-18第六章平行四边形满分:100分,限时:60分钟一、选择题1.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°1.答案D∵四边形ABCD是平行四边形,∴∠D=∠B=60°,故A正确;∵AD∥BC,∴∠C+∠D=180°,故C正确;∵AD∥BC,∴∠A+∠B=180°,∴∠A=180°-∠B=120°,故B正确;∵四边形ABCD是平行四边形,∴∠C=∠A=120°,故D不正确,故选D.2.如图6-5-1所示,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()图6-5-1A.4B.3C.23D.22.答案D∵∠C=90°,∠A=30°,∴BC=12AB=4,∵DE是中位线,∴DE=12BC=2.3.如图6-5-2所示,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()图6-5-2A.2cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm3.答案C在△ABC中,BC-AB<AC<AB+BC,∵AB=3cm,BC=5cm,∴2cm<AC<8cm,∵四边形ABCD是平行四边形,∴OA=12AC,∴1cm<OA<4cm,故选C.4.下列条件中能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠B,∠C=∠DC.AB=CD,AD=BCD.AB=AD,CB=CD4.答案C 两组对边分别相等的四边形是平行四边形,故选C.5.如图6-5-3,在平行四边形ABCD 中,DE 是∠ADC 的平分线,点F 是AB 的中点,AB=6,AD=4,则AE∶EF∶BE 为()图6-5-3A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶25.答案A ∵DE 平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD 是平行四边形,∴AB∥CD,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=4,EB=AB-AE=2,∵F 为AB 的中点,∴EF=AE-AF=1,∴AE∶EF∶BE=4∶1∶2.6.如图6-5-4,P 是平行四边形ABCD 内部任意一点,△ABP、△BCP、△CDP、△ADP 的面积分别为S 1、S 2、S 3、S 4,则一定成立的是()图6-5-4A.S 1+S 2>S 3+S 4B.S 1+S 2=S 3+S 4C.S 1+S 2<S 3+S 4D.S 1+S 3=S 2+S 46.答案D 如图,过P 点作MN⊥AB 于M,交CD 于N,∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∴PN⊥CD,S 1+S 3=12·AB·PM+12CD·PN=12AB·(PM+PN)=12AB·MN=12S ▱ABCD ,∴S 2+S 4=12S ▱ABCD ,∴S 1+S 3=S 2+S 4.7.(2016山东济南长清期末)如图6-5-5所示,在▱ABCD 中,CE⊥AB,E 为垂足,如果∠A=125°,则∠BCE 的度数是()图6-5-5A.55°B.35°C.25°D.30°7.答案B在▱ABCD中,∠A=125°,AD∥BC,∴∠B+∠A=180°,∴∠B=55°.∵CE⊥AB,∴∠B+∠BCE=90°,∴∠BCE=35°.8.已知多边形中除去一个内角外的其他各内角与同该内角相邻的一个外角之和为600°,则该多边形的边数为()A.5B.6C.5或6D.不存在这样的多边形8.答案C设这个多边形边数为n,这个外角的度数为x,则与这个外角相邻的内角为(180°-x),由题意得x+(n-2)×180°-(180°-x)=600°,解得x=570°-90°n.∵0°<x<180°,n为大于或等于3的自然数,∴n=5或n=6.9.如图6-5-6,▱ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD的中点,OF⊥BC,∠D=53°,则∠FOE的度数是()图6-5-6A.37°B.53°C.127°D.143°9.答案D∵四边形ABCD是平行四边形,∴∠B=∠D=53°,AB∥CD.又∵AB⊥AC,OF⊥BC,∴∠BAC=90°,∠B+∠ACB=90°.∠COF+∠ACB=90°,∴∠COF=∠B=53°.∵O为AC的中点,E为AD的中点,∴OE∥CD∥AB.∴∠EOC=∠BAC=90°.∴∠FOE=∠COF+∠COE=53°+90°=143°.10.如图6-5-7,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ长度的最小值为()图6-5-7A.6B.8C.22D.4210.答案D∵四边形APCQ是平行四边形,∴AO=CO,OP=OQ,∴PQ最短时,PO最短,∴过O作OP'⊥AB于P',∵∠BAC=45°,∴△AP'O是等腰直角三角形,∵AO=12AC=4,∴OP'=22,∴PQ长度的最小值为2OP'=42.二、填空题11.如图6-5-8,∠2+∠3+∠4=320°,则∠1=.图6-5-811.答案40°解析∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.12.如图6-5-9,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=18,BC=6,则△AOD的周长为.图6-5-912.答案15解析∵四边形ABCD 是平行四边形,∴OA=12AC,OD=12BD,AD=BC=6,∴OA+OD=12(AC+BD)=9,∴△AOD 的周长=OA+OD+AD=9+6=15.13.如图6-5-10,▱ABCD 的对角线AC,BD 相交于点O,若△AOB 的面积为6cm 2,则▱ABCD 的面积为.图6-5-1013.答案24cm 2解析在▱ABCD 中,OA=OC,OB=OD,AB=CD,∴△AOB≌△COD,∴S △COD =S △AOB =6cm 2.又∵OA=OC,∴S △BOC =S △AOB =6cm 2.同理,S △AOD =6cm 2,∴S ▱ABCD =4×6=24cm 2.14.如图6-5-11,∠1+∠2+∠3+∠4+∠5+∠6=度.图6-5-1114.答案360解析∠1+∠2+∠3+∠4+∠5+∠6=3×180°-180°=360°.15.如图6-5-12,平行四边形ABCD 中,BC=2AB,点M 为AD 的中点,则∠BMC=.图6-5-1215.答案90°解析如图,∵四边形ABCD为平行四边形,∴AD BC,AB CD,∴∠ABC+∠BCD=180°,∵M是AD的中点,∴AM=DM=12AD,又∵BC=2AB,∴AB=AM,DM=DC,∴∠1=∠2,∠3=∠4,又∵AD∥BC,∴∠2=∠5=∠1,∠3=∠6=∠4,∴∠5+∠6=90°,∴∠BMC=90°.16.如图6-5-13,平行四边形ABCD中,AE⊥BD,BE∶DE=3∶7,BD=20,AB=10,则AB与CD间的距离为.图6-5-1316.答案16解析∵BE∶DE=3∶7,BD=20,∴BE=6,DE=14,∵AE⊥BD,AB=10,∴AE= 2-B 2=8,易证△ABD≌△CDB(SSS),∴S▱ABCD=2S△ABD=2×12×8×20=160,设AB与CD间的距离为h,则S▱ABCD=AB·h=160,∴h=16,故答案为16.17.如图6-5-14,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.图6-5-1417.答案5解析当B在x轴上时,对角线OB的长最小.如图所示,设直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCO是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,∵∠AOD=∠CBE,∠ADO=∠CEB,OA=BC,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5.故答案为5.18.如图6-5-15,直线AE∥BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE的面积为.图6-5-1518.答案10解析如图,过点A作AF⊥BD于点F,∵△ABD的面积为16,BD=8,∴12BD·AF=12×8×AF=16,解得AF=4,∵AE∥BD,∴AF⊥AE,∴S=12·AE·AF=12×5×4=10.△ACE三、解答题19.(10分)如图6-5-16,在平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E,F,AE、BF相交于点M.(1)试证明:△BCF为等腰三角形;(2)若AB=5,DF=1,求EF的长.图6-5-1619.解析(1)证明:在▱ABCD中,AB∥CD,∴∠ABF=∠CFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠CFB,∴CF=CB,∴△BCF是等腰三角形.(2)∵在平行四边形ABCD中,CD∥AB,∴∠DEA=∠EAB,又AE平分∠DAB,∴∠DAE=∠EAB,∴∠DEA=∠DAE,∴DE=AD,同理可得,CF=BC,又∵AD=BC,∴DE=CF,∴DE-EF=CF-EF,即DF=CE=1,∴EF=3.20.(10分)如图6-5-17所示的模板,按规定:AB、CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠A=122°,∠C=155°,如果你是质检员,如何知道模板是否合格?为什么?图6-5-1720.解析模板不合格.理由:∵∠A+∠E+∠F+∠C=122°+90°+90°+155°=457°,五边形的内角和=(5-2)×180°=540°,540°-457°=83°≠80°,∴模板不合格.21.(12分)有下列命题:①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知,求证,并完成证明)已知:.求证:.证明:21.解析(1)①②④(选对一个得1分,若选入③,则本小题得0分).(2)以命题①为例给出一种证明.已知:如图,AD∥BC,∠B=∠D.求证:四边形ABCD是平行四边形.证明:如图,连接AC.∵AD∥BC,∴∠1=∠2,又∵∠B=∠D,AC=CA,∴△ADC≌△CBA(AAS),∴AD=CB,∴四边形ABCD是平行四边形.22.(14分)已知:如图6-5-18,在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上,点G,H 在BD上,且AE=CF,BG=DH.(1)若AC=6,BD=8,试求AD的取值范围;(2)若AC=AD,∠CAD=50°,试求∠ABC的度数;(3)求证:四边形EHFG是平行四边形.图6-5-1822.解析(1)在▱ABCD中,OA=OC,OB=OD.∴OA=12AC=3,OD=12BD=4.在△AOD中,4-3<AD<4+3,∴1<AD<7.(2)∵AC=AD,∴∠ACD=∠ADC.又∵∠CAD=50°,∴∠ADC=180°-50°2=65°.在▱ABCD中,∠ABC=∠ADC=65°.(3)证明:在▱ABCD中,OA=OC,OB=OD,∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∵BG=DH,∴OB-BG=OD-DH,即OG=OH.∴四边形EHFG是平行四边形.。
(完整word版)新北师大版八年级下册第六章平行四边形练习题

15、平行四边形 ABCD 中,∠ A=50°,则∠ D=( )A. 40 °B. 50 °C. 130 °D. 不能确定16、 用两个形状大小相同的三角形按不同的方式拼成的平行四边形有( )个 A. 1 B. 2 C. 3 D. 417、平行四边形 ABCD 中,∠A :∠B :∠ C :∠D 的值可以是( ) A .1:2:3:4B. 3 :4:4:3C. 3 :3:4:4D. 3 :4:3:4 新北师大版八年级下册第六章平行四边形练习题 一、填空题 1、如图, □ ABCD 中,∠ A=120°,则∠ 1= ° 2、□ABCD 中,∠A 比∠B 大 20°,则∠ C 的度数为 __ 3、如图,平行四边形 ABCD 中, AB =6,BC =4,∠A =60°要用一块矩 形铝板切割出这样的平行四边形, 使废料最少, 则所需铝板的面积最小 应是 _____4、在 ABCD 中,对角线 AC 、BD 相交于点 0,点 E 在边 AD 上,且 AE :DE=1: 3,连结 BE ,BE 与 AC 相交于点M,若 AC=6 ,则 M0的长 是 .5、如图所示, E 、F 分别是平行四边形 的边 、 上 的点, 与 相交于点 , 与 相交于点 ,若 △APD , △ BQC ,则阴影部分的面积为 .6、□ ABCD 中, AB :BC=1:2,周长为 24cm, 则 AB= ____ c m, AD= ____ cm7、巳知 □ABCD ,周长为 36,相邻两边的差为 4,则相邻两边的 长分别为 _______ 8、平行四边形两个邻角的平分线互相 ____ ,两个对角的平分 第四题图线互相 _____ (填“平行”或“垂直”) 9、□ ABCD 中,∠ A=150°, AB=15cm ,则 AD 与 BC 间的距离为 _____ cm10、如图,在 □ABCD 中, BC=12, AD 与 BC 间的距离为 5,AC 与 BD 交于点 O ,则△ BOC 的面积为 11、如图 , 在□ABCD 中, 过其对角线的交点 O ,引一条 直线交 BC 于 E ,交 AD 于 F 。
新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习测试题第六章平行四边形一、选择题1、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是( )A.只有①和②相等 B.只有③和④相等 C.只有①和④相等 D.①和②,③和④分别相等2、如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的点,当点P在CD上从C向D移而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小 C.线段EF的长不变D.线段EF的长与点P的位置有关第二题图3、下面关于平行四边形的说法不正确的是() A.对边平行且相等 B.两组对角分别相等C.对角线互相平分 D.每条对角线平分一组对角4、四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD. 从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种5、如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为( ) A.5 B.7 C.10 D.146、如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( ) A.4 cm B.6 cm C.8 cm D.10 cm7、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG AE,垂足为G,BG=4,则的周长为()A. 8B.9.5C. 10D.11.58、如右图,在中,,平分交边于点,且,则的长为()A. 3B. 4C.D.29、如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A. 18° B. 36°C. 72° D. 108°10、如图,平行四边形纸片ABCD,CD=5,BC=2,∠A=60°,将纸片折叠,使点A落在射线AD上(记为点),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y与x之间关系的大致图象是()A.B. C. D.二、填空题11、已知:四边形ABCD的面积为1. 如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.12、如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE= cm.13、如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件_________ ,使四边形AECF是平行四边形(只填一个即可).14、如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 度.15、如图,在ABCD中,∠B的平分线BE交AD于E,AE=10,ED=4,那么ABCD的周长= 。
北师大版八年级数学下册 第六章 平行四边形 单元检测试题(有答案)

第六章平行四边形单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在下列给出的条件中,不能判定四边形一定是平行四边形的是()A.,B.,C.,D.,2. 点在同一平面内,从①,②,③,④这四个条件中任选两个,能使四边形是平行四边形的选法有( )A. 种B.种C.种D.种3. 已知直线,,互相平行,直线与的距离是厘米,直线与的距离是厘米,那么直线与的距离是( )A.厘米B.厘米C.厘米或厘米D.不能确定4. 平行线之间的距离是指()A.从一条直线上一点到另一直线的垂线段B.从一条直线上一点到另一条直线的垂线段长度C.从一条直线上一点到另一条直线的垂线的长度D.从一条直线上一点到另一条直线上的一点间线段的长度5. 如图,点是直线外一点,在上取两点,,分别以,为圆心,,的长为半径作弧,两弧交于点,分别连接,,.若,则的度数是()A. B. C. D.6. 如图,在中,对角线,交于点,点是的中点.若,则的长为( )A. B. C. D.7. 已知三角形的周长为,则它的三条中位线组成的三角形的周长是()A. B. C. D.8. 如图,平行四边形的周长为,若点是的中点,则线段与线段的和为()A. B. C. D.9. 在四边形中,若有下列四个条件:①;②;③;④,现以其中的两个条件为一组,能判定四边形是平行四边形的条件有()组.A. B. C. D.10. 如图,任意四边形各边中点分别是,,,,若对角线,的长都为,则四边形的周长是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一个边形的内角和是________,外角和是________,由一个顶点出发可以画________条对角线.12. 已知平行四边形中,,则________.13. 已知,在中,,、分别是、的中点,则的长是________.14. 已知一个多边形的内角和与外角和的差为,则这个多边形是________边形.15. 平行四边形中,若,则________.16. 如图,在平行四边形中,过对角线与的交点作的垂线交于点,连接,若,,则的周长是________.17. 将平行四边形放置在如图所示的平面直角坐标系中,点为坐标原点.若点的坐标为,点的坐标为,则点的坐标为________.18. 如图,直线,,是直线上的两点,,是直线上的两点,,若要使,可添加一个条件________.19. 已知:在同一平面内,直线,且直线到直线的距离是;直线,直线到直线的距离为,则直线到直线的距离为________.20. 在矩形中,为边的中点,为上一点,,当,满足________条件时,四边形为矩形.三、解答题(本题共计6 小题,共计60分,)21. 如图,平行四边形的对角线、相交于点,、是直线上的两点,并且.求证:四边形是平行四边形.22. 如图,中,点,分别是边,的中点,连接,,点在的延长线上,且,连接,判断四边形的形状,并加以证明.23. 如图,▱的对角线,相交于点,且,,,分别是,,,的中点.求证:四边形是平行四边形.24. 如图,、是平行四边形的边、上的点,与相交于点,与相交于点.若=,=,则阴影部分的面积为.25. 如图,已知,,,求证:四边形是平行四边形.26. 如图,已知,,,且点和点,,分别在直线,上,平分,,线段的长是否是两条平行线,之间的距离?为什么?参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:、,能判定四边形为平行四边形,故此选项不符合题意;、,不能判定四边形为平行四边形,故此选项符合题意;、,能判定四边形为平行四边形,故此选项不符合题意;、,能判定四边形为平行四边形,故此选项不符合题意;故选:.2.【答案】B【解答】解:根据平行四边形的判定,符合条件的有种,分别是:①②、③④、②④、①③.故选.3.【答案】C【解答】解:有两种情况:如图直线与的距离是厘米厘米厘米;直线与的距离是厘米厘米厘米;故选.4.【答案】B【解答】解:平行线之间的距离是指:从一条直线上一点到另一条直线的垂线段长度.故选.5.【答案】C【解答】略6.【答案】B【解答】解:∵四边形是平行四边形,∴,又∵点是的中点,∴,∴.故选.7.【答案】C【解答】解:根据连接三角形的两边中点的线段叫三角形的中位线以及三角形的中位线等于第三边的一半,则它的三条中位线组成的三角形的周长是原三角形的周长的一半,即为.故选.8.【答案】C【解答】∵平行四边形的周长为,∴=,∵四边形是平行四边形,∴是的中点,∴=,又∵点是的中点,∴是的中位线,∴,,∴=.9.【答案】D【解答】解:①③组合能根据平行线的性质得到,从而利用两组对角分别相等的四边形是平行四边形判定平行四边形;①④组合能利用一组对边平行且相等的四边形是平行四边形判定平行四边形;②④组合能利用两组对边分别相等的四边形是平行四边形判定,故选.10.【答案】B【解答】∵,,,,是四边形各边中点∴,,=∴四边形的周长是=二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】,,【解答】解:一个边形的内角和是,外角和是,由一个顶点出发可以画条对角线.故答案为:,,.12.【答案】【解答】解:∵四边形是平行四边形,∴,,∴,∵,∴,∴,故答案为:.13.【答案】【解答】解:∵,分别是边、的中点,∴,∵,∴,故答案为:.14.【答案】十【解答】解:根据题意,得,解得:.那么这个多边形是十边形.故答案为:十.15.【答案】【解答】解:由已知,因为,所以,又因为,所以.故答案为:.16.【答案】【解答】∵四边形是平行四边形,∴,,,∵,,∴,∵,∴,∴的周长为:.17.【答案】【解答】此题暂无解答18.【答案】【解答】解:∵直线,,∵,∴,∴,故答案为:.19.【答案】或【解答】解:①,则直线到直线的距离为;②,则直线到直线的距离为.故答案为或.20.【答案】【解答】略三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】证明:∵四边形是平行四边形,∴,.又∵,∴.∴四边形是平行四边形.【解答】证明:∵四边形是平行四边形,∴,.又∵,∴.∴四边形是平行四边形.22.【答案】四边形是平行四边形.证明:∵点,分别是边,的中点,∴,,∵,∴,∴四边形是平行四边形.【解答】此题暂无解答23.【答案】证明:∵四边形是平行四边形,∴.∵,,,分别是,,,的中点,∴,,∴,∴四边形为平行四边形.【解答】证明:∵四边形是平行四边形,∴.∵,,,分别是,,,的中点,∴,,∴,∴四边形为平行四边形.24.【答案】.【解答】如图,连接∵与同底等高,∴=,即=,即==,同理可得==,∴阴影部分的面积为==.25.【答案】证明:∵,∴,在和中,,∴,∴,又∵,∴四边形是平行四边形.【解答】证明:∵,∴,在和中,,∴,∴,又∵,∴四边形是平行四边形.26.【答案】解:∵,,∴,,∵,∴,∵平分,∴,∴,即,∴,∴线段的长是否是两条平行线,之间的距离.【解答】解:∵,,∴,,∵,∴,∵平分,∴,∴,即,∴,∴线段的长是否是两条平行线,之间的距离.。
(北师大版)北京市八年级数学下册第六单元《平行四边形》测试卷(含答案解析)

一、选择题1.下列命题是假命题的是( )A .三角形的外角和是360°B .线段垂直平分线上的点到线段两个端点的距离相等C .有一个角是60°的等腰三角形是等边三角形D .有两边和一个角对应相等的两个三角形全等2.一个多边形的内角和等于它的外角和的3倍,则它是( )边形.A .六B .七C .八D .九3.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 边于点E ,已知BE =4cm ,AB =6cm ,则AD 的长度是( )A .4cmB .6cmC .8cmD .10cm 4.如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,过点O 作线段EF ,使点E ,点F 分别在边AD ,BC 上(不与四边形ABCD 顶点重合),连结EB ,EC .设ED kAE =,下列结论:①若1k =,则BE CE =;②若2k =,则EFC 与OBE △面积相等;③若ABE FEC ≌,则EF BD ⊥.其中正确的是( )A .①B .②C .③D .②③ 5.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 6.如图,将四边形ABCD 去掉一个60°的角得到一个五边形BCDEF ,则∠1与∠2的和为( )A .60°B .108°C .120°D .240°7.如图,平行四边形ABCD 的周长为36cm ,若点E 是AB 的中点,则线段OE 与线段AE 的和为( )A .18cmB .12cmC .9cmD .6cm 8.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是BC 的中点,若AB =16,则OE的长为( )A .8B .6C .4D .39.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④ 10.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为( )A .6B .12C .24D .48 11.如图,P 为□ABCD 对角线BD 上一点,△ABP 的面积为S 1,△CBP 的面积为S 2,则S 1和S 2的关系为 ( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法判断 12.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为 ( )A .1B .2C 3D .13二、填空题13.如图,在四边形ABCD 中,AB 与CD 不平行,M ,N 分别是AD ,BC 的中点,4AB =,2DC =.对于MN 的长,给出了四种猜测:①4MN =;②3MN =;③2MN =;④1MN =.猜测错误的是(______) A .① B .② C .③ D .④14.如图,在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,ABCD 的周长为40,则S ABCD 四边形为______.15.如图,Rt △ABC 中,∠C =90°,∠A =30°,AB =20,点P 是AC 边上的一个动点,将线段BP 绕点B 顺时针旋转60°得到线段BQ ,连接CQ ,则在点P 运动过程中,线段CQ 的最小值为_____.16.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是__.18.如图,在△ABC 中,∠ACB =90°,AB =13 cm ,BC =12 cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =______cm .19.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若AB =12,AC =10,则BD 的长为_____.20.在四边形ABCD 中,AB =CD ,请添加一个条件_____,使得四边形ABCD 是平行四边形.三、解答题21.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.22.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,延长BC 到点E ,使CE BC =,连接DE .(1)求证:四边形ACED 是平行四边形;(2)已知5AB =,6AC =,若12CD BE =,求BDE 的周长. 23.在ABC 中,AB AC =,36BAC ∠=︒,将ABC 绕点A 顺时针旋转一个角度α得到ADE ,点B 、C 的对应点分别是D 、E .(1)如图1,若点E 恰好与点B 重合,DF AB ⊥,垂足为F ,求BDF ∠的大小; (2)如图2,若108α=︒,连接EC 交AB 于点G ,求证:四边形ADEG 是平行四边形.24.如图,四边形ABCD 中,//AD BC ,12cm AD =,15cm BC =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止;点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,直线PQ 分原四边形为两个新四边形;则当P ,Q 同时出发_____秒后其中一个新四边形为平行四边形.25.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求△OEF 的周长.26.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 交于点E ,点E 是BD 的中点,延长CD 到点F ,使DF =CD ,连接AF ,(1)求证:AE =CE ;(2)求证:四边形ABDF 是平行四边形;(3)若AB =2,AF =4,∠F =30°,则四边形ABCF 的面积为 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D根据三角形外角和的性质即可对A进行判断;根据垂直平分线的性质即可对B进行判断;根据等边三角形的判定即可对C进行判断;根据三角形全等的证明即可对D进行判断;【详解】A、三角形的外角和为360°,故A正确;B、垂直平分线上的点到线段两端的距离相等,故B正确;C、有一个角是60°的等腰三角形是等边三角形,故C正确;D、由两边和它们的夹角对应相等的两个三角形全等,故D错误;故选:D.【点睛】本题考查了命题与定理,命题的真假是就命题的内容而言,正确掌握定理是解题的关键.2.C解析:C【分析】根据多边形的内角和等于它的外角和的3倍可列方程求得边数.【详解】解:设多边形的边数为n,根据题意得:(n−2)×180°=360°×3.解得n=8.故选:C.【点睛】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.3.D解析:D【分析】由已知平行四边形ABCD,DE平分∠ADC可推出△DCE为等腰三角形,所以得CE=CD=AB=6,那么AD=BC=BE+CE,从而求出AD.【详解】解:已知平行四边形ABCD,DE平分∠ADC,∴AD∥BC,CD=AB=6cm,∠EDC=∠ADE,AD=BC,∴∠DEC=∠ADE,∴∠DEC=∠CDE,∴CE=CD=6cm,∴BC=BE+CE=4+6=10cm,∴AD=BC=10cm,故选:D.此题考查的知识点是平行四边形的性质及角平分线的性质,关键是由平行四边形的性质及角平分线的性质得等腰三角形通过等量代换求出AD .4.B解析:B【分析】由1k =,则有E ,F 分别是AD ,BC 的中点,进而可判定①,当2k =时,则有EFC 的面积=12BEF S ,OBE △的面积=12BEF S ,然后可判定②;若EF ⊥BD 成立,则必须BE BF =,因为前提ABE △≌FEC ,BE CE =,进而可判定③.【详解】 解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴∠EDO=∠FBO ,∠DEO=∠BFO ,∵点O 是对角线BD 的中点,∴BO=DO ,∴△DEO ≌△BFO (AAS ),∴DE=BF ,∵1k =,∴E ,F 分别是AD ,BC 的中点,∴EC AF BE =≠,故①错;连接EC ,如图所示:∵2k =,∴EFC 的面积=12BEF S , ∵点O 是EF 的中点, ∴OBE △的面积=12BEF S ,所以EFC 与OBE △面积相等,故②对;若EF ⊥BD 成立,则必须BE BF =,因为前提ABE △≌FEC ,BE CE =,得不到CE BF =,故③错;故选B .【点睛】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.5.B解析:B【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.6.D解析:D【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选D.【点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.7.C解析:C【分析】结合已知证明EO是△ABC的中位线,进而得出答案.【详解】解:∵平行四边形ABCD的周长为36cm,∴AB+BC=18cm,∵四边形ABCD是平行四边形,∴O是AC的中点,又∵点E是AB的中点,∴EO是△ABC的中位线,∴EO=12BC,AE=12AB,∴AE+EO=12×18=9(cm).故选:C.【点睛】本题考查了平行四边形的性质和中位线定理,熟知“平行四边形的对角线互相平分”和“三角形的中位线平行于第三边,且等于第三边的一半”是解题关键.8.A解析:A【分析】直接利用平行四边形的性质结合三角形中位线定理得出EO的长.【详解】解:∵在□ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点,又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=12AB=8.故选:A.【点睛】此题主要考查了平行四边形的性质以及三角形中位线定理,正确得出EO是△ABC的中位线是解题关键.9.B解析:B【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【详解】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.④∵四边形ABCD 是平行四边形,∴∠B=∠D ,∵∠BAE=∠DCF ,∴∠AEB=∠CFD .∵AD ∥BC ,∴∠AEB=∠EAD .∴∠CFD=∠EAD .∴AE ∥CF .∵AF ∥CE ,∴四边形AECF 是平行四边形.综上所述,不能使四边形AECF 是平行四边形的条件有1个.故选:B .【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.10.C解析:C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为3264285210⨯=⨯=⨯=,,,2226810+=,∴此三角形为直角三角形,168242S ∴=⨯⨯=, 故选C .【点睛】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.11.B解析:B【解析】分析:根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底等高的三角形的面积相等.详解:∵在□ABCD中,点A、C到BD的距离相等,设为h.∴S1= S△ABP=12BP h ,S2= S△CPB=12BP h.∴S 1=S2,故选B.点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质.12.A解析:A【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:如图∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2又∵点D. E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=12AB=1故选:A【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题13.ABD【分析】连接BD取BD中点G连接MGNG根据三角形中位线平行且等于第三边的一半可得:AB=2MGDC=2NG再根据三角形两边之和大于第三边两边之差小于第三边即可得出MN的取值范围继而即可求解【解析:ABD【分析】连接BD,取BD中点G,连接MG、NG,根据三角形中位线平行且等于第三边的一半可得:AB=2MG,DC=2NG,再根据三角形两边之和大于第三边,两边之差小于第三边即可得出MN 的取值范围,继而即可求解.【详解】解:如图,连接BD ,取BD 中点G ,连接MG 、NG ,∵点M 、N 分别是AD 、BC 的中点,∴MG 是△ABD 的中位线,NG 是△BCD 的中位线,∴AB =2MG ,DC =2NG ,∵4AB =,2DC =,∴MG =2,NG =1,由三角形三边关系:MG -NG <MN <MG +NG ,∴1<MN <3,∴③2MN =猜测正确,故答案为:ABD .【点睛】本题考查三角形中位线定理及三角形三边关系,熟练掌握三角形中位线平行且等于第三边的一半,三角形任意两边之和大于第三边,任意两边之差小于第三边,解题的关键是根据不等关系作辅助线构造以MN 为一边的三角形.14.48【分析】首先根据平行四边形的性质可得AB =CDAD =BC 可得AB +BC =20再利用其面积的求法S =BC×AE =CD×AF 可得4AE =6CD 列出方程组求出平行四边形的各边长再求其面积【详解】解:设解析:48【分析】首先根据平行四边形的性质可得AB =CD ,AD =BC ,可得AB +BC =20,再利用其面积的求法S =BC×AE =CD×AF ,可得4AE =6CD ,列出方程组,求出平行四边形的各边长,再求其面积.【详解】解:设BC =x ,CD =y ,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∵▱ABCD 的周长为40,∴x +y =20,∵AE =4,AF =6,S ABCD 四边形=BC×AE =CD×AF ,∴4x =6y ,得方程组:2046x y x y +⎧⎨⎩==, 解得:128x y =⎧⎨=⎩∴S 平行四边形ABCD =BC×AE =12×4=48.故答案为:48.【点睛】此题主要考查了平行四边形的性质与其面积公式,解题的关键是根据性质得到邻边的和,根据面积公式得到方程,再解方程组即可.15.5【分析】将Rt △ABC 绕B 点顺时针旋转60°得到Rt △EBD 首先证明Q 随着P 的运动在ED 上运动然后求解CQ 的最小值即为求C 到ED 的距离当CQ ⊥ED 时CQ 的长度即为最小结合题意求解即可【详解】如图所解析:5【分析】将Rt △ABC 绕B 点顺时针旋转60°得到Rt △EBD ,首先证明Q 随着P 的运动在ED 上运动,然后求解CQ 的最小值即为求C 到ED 的距离,当CQ ⊥ED 时,CQ 的长度即为最小,结合题意求解即可.【详解】如图所示,将Rt △ABC 绕B 点顺时针旋转60°得到Rt △EBD ,则此时E 、C 、B 三点在同一直线上,∵∠ABC=60°,∠PBQ=60°,∴∠ABP=∠EBQ ,随着P 的运动,总有AB=EB ,PB=QB ,∴总有△APB ≌△EQB (SAS ),即:E 、Q 、D 三点在同一直线上,∴Q 的运动轨迹为线段ED ,∴当CQ ⊥ED 时,CQ 的长度最小,∵Rt △ABC 中,∠C =90°,∠A =30°,AB =20,∴BC =BD =10,EC =10,即:C 为EB 的中点,∵CQ ⊥ED ,∠D=90°,∴CQ ∥BD ,CQ 为△EBD 的中位线, ∴152CQ BD ==, 故答案为:5.【点睛】本题考查了旋转的性质,三角形的中位线定理等,解题关键是能够熟练运用旋转的性质,确定点Q的轨迹在线段ED上.16.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=1×90°=45°,2∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.17.12【分析】多边形的外角和为360°而多边形的每一个外角都等于30°由此做除法得出多边形的边数【详解】∵360°÷30°=12∴这个多边形为十二边形故答案为:12【点睛】本题考查了多边形的内角与外角解析:12【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的内角与外角.关键是明确多边形的外角和为360°.18.4【分析】根据勾股定理求出AC得到BD的长根据等腰三角形的性质得到CE=DE根据三角形中位线定理解答即可【详解】在△ABC中∠ACB=90°∴AC===5∴AD=AC=5∴BD=AB−AD=13−5解析:4【分析】根据勾股定理求出AC,得到BD的长,根据等腰三角形的性质得到CE=DE,根据三角形中位线定理解答即可.【详解】在△ABC中,∠ACB=90°,∴AC5,∴AD=AC=5,∴BD=AB−AD=13−5=8,∵AC=AD,AE⊥CD,∴CE=DE,∵CE=DE,CF=BF,∴EF是△CBD的中位线,∴EF=1BD=4,2故答案为:4.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.【分析】利用平行四边形的性质可知AO=5在Rt△ABO中利用勾股定理可得BO=13即可得出BD=2BO=26【详解】解:∵四边形ABCD是平行四边形∴BD=2BOAO=OC=AC=5∵AB⊥AC∴∠解析:【分析】利用平行四边形的性质可知AO=5,在Rt△ABO中利用勾股定理可得BO=13,即可得出BD=2BO=26.【详解】解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=1AC=5,2∵AB⊥AC,∴∠BAC=90°,在Rt△ABO中,由勾股定理可得:BO13,∴BD=2BO=26,故答案为:26.【点睛】本题考查了平行四边形对角线互相平分性质和勾股定理运用,解题关键是熟悉相关性质.20.AB//CD等【分析】根据平行四边形的判定方法结合已知条件即可解答【详解】∵AB=CD∴当AD=BC(两组对边分别相等的四边形是平行四边形)或AB∥CD(一组对边平行且相等的四边形是平行四边形)时四解析:AB//CD等【分析】根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.三、解答题21.(1)见解析;(2)平行四边形,理由见解析【分析】(1)根据中心对称的性质,连接对应点AD、CF,交点即为旋转中心;(2)根据旋转的性质,对应点的连线段互相平分,再根据对角线互相平分的四边形是平行四边形证明.【详解】解:(1)对称中心O如图所示;(2)∵A与F,C与D是对应点,∴AO=DO,CO=FO,∴四边形ACDF是平行四边形.【点睛】本题考查了利用旋转变换作图,熟练掌握旋转的性质是解题的关键.22.(1)见解析;(2)24【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,结合CE=BC,得到AD=CE,可证明四边形ACED 是平行四边形;(2)根据四边形ACED 是平行四边形得到DE =AC =6,再证明∠BDE =90°,得到BE =2CD =2AB =10,利用勾股定理求出BD ,可得△BDE 的周长.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵CE =BC ,∴AD =CE =BC ,∵AD ∥BC ,∴AD ∥CE ,∴四边形ACED 是平行四边形;(2)∵四边形ACED 是平行四边形,∴DE =AC =6,∵CD =BC =CE =12BE , ∴∠CBD =∠CDB ,∠CDE =∠CED ,∴∠BDE =∠CDB +∠CDE =11802⨯︒=90°, ∴BE =2CD =2AB =10,∴BD,∴△BDE 的周长=BD +BE +DE =8+10+6=24.【点睛】本题考查了平行四边形的性质与判定、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理论证与计算是解决问题的关键.23.(1)18BDF ∠=︒;(2)见解析.【分析】(1)根据等腰三角形的性质求出∠ACB=72゜,再由旋转的性质得∠DBF=∠ACB=72゜,最后根据直角三角形两锐角互余可得结论;(2)分别证明∠DEC=108゜,∠DAG =108゜,可得EG//AD ,AG//DE ,从而可证四边形ADEG 是平行四边形.【详解】解:(1)∵AB AC =,36BAC ∠=︒∴72ABC ACB ∠=∠=︒∴72ADB ABD ∠∠==︒∵DF AB ⊥,∴90DFB ∠=︒∴∠DBF+∠BDF=90゜∴907218BDF ∠=︒-︒=︒(2)∵108α=︒,即108CAE ∠=︒又AE AC =∴36ACE AEC ∠=∠=︒∵∠AED=∠ADE=72゜∴∠DEC=72゜+36゜=108゜∴∠ADE+∠CED=180゜∴EG//AD∵∠DAE=∠BAC∴∠DAE+∠EAG=∠CAB+∠EAG=108゜∴∠DAG+∠ADE=180゜∴AG//DE∴四边形ADEG 是平行四边形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.24.4或5【分析】结合题意,根据平行四边形的性质,列一元一次方程并求解,即可得到答案.【详解】设点P 和点Q 运动时间为t∵12cm AD =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止∴点P 运动时间121AD t ≤=秒 ∵15cm BC =,点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止 ∴点Q 运动时间1522BC t ≤=秒 ∴点P 和点Q 运动时间152t ≤直线PQ 分原四边形为两个新四边形,其中一个新四边形为平行四边形,分两种情况分析:当四边形PDCQ 为平行四边形时PD QC =结合题意得:12PD AD AP t =-=-,2QC t =∴122t t -=∴4t =,且满足152t ≤ 当四边形APQB 为平行四边形时AP BQ =结合题意得:AP t =,152BQ BC QC t =-=-∴152t t =-∴5t =,且满足152t ≤ ∴当P ,Q 同时出发秒4或5后其中一个新四边形为平行四边形.【点睛】本题考查了平行四边形、一元一次方程、一元一次不等式的知识;解题的关键是熟练掌握平行四边形、一元一次方程、一元一次不等式的性质,从而完成求解.25.(1)详见解析;(2)14【分析】(1)由平行四边形的性质可得AO=CO ,BO=DO ,由中点的性质可得EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ,由对角线互相平分的四边形是平行四边形可得结论; (2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AO=CO ,BO=DO∵E 、F 、 G 、H 分别是AO 、BO 、CO 、DO 的中点∴EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ∴EO=GO ,FO=HO∴四边形EFGH 是平行四边形(2)∵E 、F 分别是AO 、BO 的中点∴EF=12AB ,且AB=10 ∴EF=5∵AC+BD=36∴AO+BO=18∴EO+FO=9∴△OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 26.(1)见解析;(2)见解析;(3)6【分析】(1)根据平行线的性质得出ADE CBE ∠=∠,根据全等三角形的判定得出ADE CBE ∆≅∆,根据全等三角形的性质得出即可;(2)根据平行四边形的判定推出即可;(3)求出高DQ 和CH ,再根据面积公式求出即可.【详解】解:(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD ∥BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CBE (ASA ),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF ∥AB ,∴四边形ABDF 是平行四边形;(3)解:过C 作CH ⊥BD 于H ,过D 作DQ ⊥AF 于Q ,∵四边形ABCD 和四边形ABDF 是平行四边形,AB =2,AF =4,∠F =30°,∴DF =AB =2,CD =AB =2,BD =AF =4,BD ∥AF ,∴∠BDC =∠F =30°,∴DQ =12DF =122⨯=1,CH =12DC =122⨯=1, ∴四边形ABCF 的面积S =S 平行四边形BDFA +S △BDC =AF×DQ+1BD CH 2⨯⨯=4×1+1412⨯⨯=6, 故答案为:6.【点睛】 本题考查了平行四边形的性质和判定,三角形的面积等知识点,能综合运用定理进行推理是解此题的关键.。
北师大版八年级数学下册 第6章 平行四边形 单元测试试题(有答案)

北师大版八年级数学下册第6章平行四边形单元测试题一.选择题(共10小题)1.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°2.等腰梯形两底的差是4,两腰的长也是4,则这个等腰梯形的两锐角都是()A.75°B.60°C.45°D.30°3.在如图所示的正方形网格中,确定点D的位置,使得以A、B、C、D为顶点的四边形为等腰梯形.则点D的位置应在()A.点M处B.点N处C.点P处D.点Q处4.在平行四边形ABCD中,AB=5,则对角线AC、BD的长度不可能为()A.10,10B.2,4C.6,8D.5,125.如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AD∥BC,AB=DC D.AB∥DC,AB=DC6.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE =CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个7.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12B.14C.24D.218.过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数为()A.10B.9C.8D.79.正五边形ABCDE中,∠BEC的度数为()A.18°B.30°C.36°D.72°10.下列多边形中,内角和是外角和的2倍的是()A.六边形B.五边形C.四边形D.三角形二.填空题(共8小题)11.已知一个多边形,少算一个的内角的度数,其余内角和为2100°,求这个多边形的边数.12.在如图所示的“北京2008年奥运会开幕小型张”中,邮票的形状是一个多边形.这个多边形的内角和等于°.13.如图,△ABC中,BC边上的中线AD将∠BAC分成了两角∠BAD、∠DAC分别为70°和40°,若中线AD长为2.4cm,则AC长为cm.14.如图,在平行四边形ABCD中,对角线AC、BD交于点O,点E、F在BD上,请你添加一个条件使四边形AECF是平行四边形(填加一个即可).15.如图,在平面直角坐标系中,已知Rt△ABC顶点的坐标分别为A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),且△A1AC1是由△ABC旋转得到,若点P在AB上,点Q在x轴上,要使四边形PQA1C1为平行四边形,则满足条件的点P的坐标为.16.在▱ABCD中,DE⊥AB于点E:DF⊥BC.已知▱ABCD的周长为48,DE=5,DF=10.则▱ABCD 的面积为.17.如图,在等腰梯形ABCD中,BC∥AD,AB=DC,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是.18.如图,▱ABCD中,EF过对角线的交点O如果AB=4cm,AD=3cm,OF=1cm,则四边形BCFE 的周长为.三.解答题(共8小题)19.如图,在平行四边形ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,求OA的长度范围.20.如图,等腰梯形ABCD中,AD∥BC,P为等腰梯形内部一点,若PA=PD,试说明PB=PC.21.如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD 的周长.22.如图,在△ABC中,AB=BC,∠ABC=84°,点D是AC的中点,DE∥BC.求∠EDB的度数.23.如图,在四边形ABCD中,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.求证AD∥BC.24.如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC边上点P,AD=5.(1)求线段AB的长.(2)若BP=6;求△ABP的周长.25.如图,在平行四边形ABCD中,AE、AF是平行四边形的高,∠BAE=30°,BE=2,CF=1,DE交AF于G.(1)求线段DF的长;(2)求证:△AEG是等边三角形.26.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,求∠2的度数.参考答案与试题解析一.选择题(共10小题)1.解:设平行四边形的一个内角为x°,则另一个内角为(4x)°,根据平行四边形对边平行,同旁内角互补,得x°+(4x)°=180°,解得x=36.故选:B.2.解:如图所示:梯形ABCD是等腰梯形,且AD∥BC,过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD,AD=EC,∵BE=BC﹣CE=BC﹣AD=AB=CD=4,∴∠B=60°.∴这个等腰梯形的锐角为60°.故选:B.3.解:①若AB为底,如图所示:此时没有符合题意的点D.②若AB为腰,如图所示:此时符合题意的点为点P.故选:C.4.解:如图,∵四边形ABCD是平行四边形,∴AC=2AO,BC=2BO,∵OA+OB>AB=5,∴对角线AC、BD的长度不可能为2和4,故选:B.5.解:平行四边形的判定条件:1、两组对边分别平行的四边形是平行四边形(定义判定法);即选项A;2、一组对边平行且相等的四边形是平行四边形;即选项D;3、两组对边分别相等的四边形是平行四边形;即选项B故选:C.6.解:①正确,理由如下:∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF,∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形,∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.7.解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=BC,EF=GH=AD,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=7,∴四边形EFGH的周长=7+5=12.故选:A.8.解:由题意得,n﹣2=7,解得:n=9,即这个多边形是九边形.故选:B.9.解:根据正五边形的性质,△ABE≌△DCE,∴∠BEA=∠CED=(180°﹣108°)=36°,∴∠BEC=108°﹣36°﹣36°=36°.故选:C.10.解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:A.二.填空题(共8小题)11.解:2100÷180=11,则正多边形的边数是11+1+2=14边形.故答案为:1412.解:(6﹣2)×180°=720°.故答案为:72013.解:如图,作CE∥AD交BA的延长线于E.∵AD∥CE,BD=CD,∴AB=AE,∴EC=2AD=4.8cm,∵∠E=∠BAD=70°,∠ACE=∠DAC=40°,∴∠CAE=180°﹣∠ACE﹣∠E=180°﹣40°﹣70°=70°,∴∠E=∠CAE=70°,∴AC=EC=4.8cm.14.解:添加BE=DF,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴BO﹣BE=DO﹣DF,∴EO=FO,∴四边形AECF是平行四边形.故答案为:BE=DF.15.解:由题可知,A(﹣1,3),B(﹣3,﹣1)∴直线AB的解析式为:y=2x+5;要使四边形PQA1C1为平行四边形,∴PQ=A1C1且PQ∥A1C1,假设P(m,n)∵PQ∥A1C1∴Q(m,0)∴PQ=A1C1=2∴n=2又∵P在直线AB上令y=2,则x=﹣1.5即m=﹣1.5∴P的坐标为(﹣1.5,2)故答案为(﹣1.5,2)16.解:设AB=x,则BC=24﹣x,根据平行四边形的面积公式可得5x=10(24﹣x),解之得,x=16.则平行四边形ABCD的面积等于5×16=80.故答案为:80.17.解:∵在等腰梯形ABCD中,BC∥AD,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB,BE=AD,∵AB=DC,AD=5,DC=4,EC=3,∴AB=4,BC=BE+CE=AD+CE=5+3=8,∴梯形ABCD的周长是:AD+AB+BC+CD=5+4+8+4=21.故答案为:21.18.解:根据平行四边形的性质,得DO=OB,∠FDO=∠EBO,又∠DOF=∠BOE,∴△ODF≌△OBE,∴OF=OE=1,DF=BE,根据平行四边形的对边相等,得CD=AB=4,AD=BC=3,故四边形EFCB的周长=EF+EB+FC+BC=OE+OF+DF+FC+BC=1+1+4+3=9.故答案为9cm.三.解答题(共8小题)19.解:∵AB=3,BC=5,∴2<AC<8,∵四边形ABCD是平行四边形,∴OA=AC,∴1<OA<4.20.证明:∵四边形ABCD是等腰梯形,且AD∥BC,∴∠BAD=∠CDA,AB=DC.2分∵PA=PD,∴∠PAD=∠PDA.3分∴∠BAP=∠CDP.4分在△ABP和△DCP中,,5分∴△ABP≌△DCP.6分∴PB=PC.7分21.解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC+BD=28,∴AO+OD=14,∵AD=BC=12,∴△AOD的周长=AO+OD+AD=14+12=26.22.解:∵AB=BC,点D是AC的中点,∴∠DBC=∠ABC=42°.又∵DE∥BC,∴∠EDB=∠DBC=42°.23.解:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC.24.解:(1)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,(2)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;在Rt△APB中,AB=10,BP=6,∴AP==8,∴△APB的周长=6+8+10=24;25.解:(1)∵在平行四边形ABCD中AE、AF是高,∴∠AEB=∠AEC=90°,∠AFD=90°,AD∥BC∴∠DAE=∠AEB=90°,∠ADE=∠DEC,∵Rt△ABE中∠BAE=30°,BE=2,∴AB=4,∠ABE=60°,∵四边形ABCD是平行四边形,∠ABE=60°,AB=4,∴∠ABE=∠ADC=60°,CD=AB=4,∵CF=1,CD=4,∴DF=CD﹣CF=4﹣1=3;(2)证明:∵△ADF中∠ADC=60°,∠AFD=90°,∴∠DAF=30°,∴AD=6,∵四边形ABCD是平行四边形,∠ABE=60°,∴∠DAB=∠C=120°,BC=AD=6,∴EC=4∴EC=CD=4,∴∠DEC=∠EDC=30°,∵由(1)知∠AEC=90°∴∠AEG=60°∵∠BAE=30°,∠DAF=30°,∴∠EAG=∠DAB﹣∠BAE﹣∠DAF=60°,∴∠AGE=∠EAG=∠AED=60°,∴△AEG是等边三角形.26.(1)证明:如图,∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.。
北师大版八年级数学下册第六章 平行四边形练习(含答案)
北师大版八年级数学下册第六章 平行四边形练习(含答案)一、单选题1.下列性质中,平行四边形一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直2.如图,将折叠,使点分别落在点处(点都在所在的ABCD D C 、F E 、F E 、AB 直线上),折痕为,若,则等于( )MN 50AMF ∠=︒A ∠A .B .C .D .50︒55︒60︒65︒3.已知四边形的对角线相交于点,则下列条件中不能判定ABCD ,AC BD ,O OB OD =四边为平行四边形的是( )ABCD A .B .C .D .OA OC =//AB CD //AD BCAB CD =4.点A 、B 、C 、D 在一个平面内,若从①AB ∥CD ;②AB=CD ;③BC ∥AD ;④BC=AD . 这四个条件中选两个,但不能推导出四边形ABCD 是平行四边形的选项是()A .①②B .①④C .②④D .①③5.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等6.多边形每个外角为45°,则多边形的边数是( )A.8 B.7 C.6 D.57.如图,在三角形模板ABC中,∠A=60°,D、E分别为AB、AC上的点,则∠1+∠2的度数为()A.180°B.200°C.220°D.240°8.下列图形中,周长不是32 m的图形是( )A.B.C.D.A9.如图,小明从点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转A20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地点时,一共走了()A .80米B .160米C .300米D .640米10.如图,已知四边形中,,,平分,ABCD //AD BC ABC ACD D ∠=∠=∠AE CAD ∠下列说法:①;②;③;④,//AB CD AE CD ⊥AEF BCF S S =△△AFB BAD ABE ∠=∠-∠其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题11.如图,已知等边△ABC 的边长为10,P 是△ABC 内一点,PD 平行AC ,PE 平行AD ,PF 平行BC ,点D ,E ,F 分别在AB ,BC ,AC 上,则PD+PE+PF=_______________.12.如图,在平行四边形ABCD 中,AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠B =_____,∠AED 的度数为_____.13.D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .14.如图,以正六边形的边为直角边作等腰直角三角形,使点在ABCEDF AB ABG G 其内部,且,连接,则的大小是__________度.90BAG ∠=︒FG EFG Ð三、解答题15.如图,ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA .(1)求∠APB 的度数;(2)如果AD =5cm ,AP =8cm ,求△APB 的周长.16.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 交于点E ,点E 是BD 的中点,延长CD 到点F ,使DF =CD ,连接AF ,(1)求证:AE =CE ;(2)求证:四边形ABDF 是平行四边形;(3)若AB =2,AF =4,∠F =30°,则四边形ABCF 的面积为 .17.如图,等边的边长是4,,分别为,的中点,延长至点,ABC ∆D E AB AC BC F 使,连接和.12CF BC =CD EF (1)求证:;DE CF =(2)求的长;EF (3)求四边形的面积.DEFC 18.提出问题:(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为_______.(2)如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度数.由(1)结论得:∠AOC =∠PAO +∠PCO+∠P所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P因为∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D所以2∠AOC=∠BAO +∠DCO+∠B +∠D所以∠P=_______.解决问题:(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______;(4)如图(4),直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______.答案1.B 2.D 3.D 4.B5.C6.A7.D8.B9.A10.D11.1012.60°85°13.11.14.4515.(1)∵四边形是平行四边形,ABCD ∴∥ ,∥, ,AD CB AB CD AD BC,AB DC ==∴ ,DAB CBA 180∠∠+= 又∵和分别平分和,AP BP DAB ∠CBA ∠∴ ,()1PAB PBA DAB CBA 902∠∠∠∠+=+= ∴ ;()APB 180PAB PBA 90∠∠∠=-+= (2) ∵平分,∥ ,AP DAB ∠AB CD ∴ ,DAB PAB DPA ∠∠∠==∴ ,同理: ,AD DP 5cm ==PC BC AD 5cm ===∴ ,AB DC DP PC 10cm ==+=在中, , ∴ ,Rt APB AB 10cm,AP 8cm ==()BP 6cm ==∴△的周长.ABP ()681024cm ++=16.解:(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD ∥BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CBE (ASA ),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF ∥AB ,∴四边形ABDF 是平行四边形;(3)解:过C 作CH ⊥BD 于H ,过D 作DQ ⊥AF 于Q ,∵四边形ABCD 和四边形ABDF 是平行四边形,AB =2,AF =4,∠F =30°,∴DF =AB =2,CD =AB =2,BD =AF =4,BD ∥AF ,∴∠BDC =∠F =30°,∴DQ =DF ==1,CH =DC ==1,12122⨯12122⨯∴四边形ABCF 的面积S =S 平行四边形BDFA +S △BDC =AF×DQ+=4×1+=6,1BD CH 2⨯⨯1412⨯⨯故答案为:6.17.(1)在中,ABC ∆、分别为、的中点,D E AB AC 为的中位线,DE ∴ABC ∆,12DE BC ∴=,12CF BC = .DE CF ∴=(2),,AC BC =AD BD =,CD AB ∴⊥,,4BC = 2BD =CD ∴==,,//DE CF DE CF =四边形是平行四边形,∴DEFC.EF CD ∴==(3)过点作于,D DH BC ⊥H ,,90DHC ∠=︒ 30DCB ∠=︒12DH DC ∴==,2DE CF ==.2DEFC S CF DH ∴=⋅==四边形18.(1)如图,延长CO ,交AP 与B ,∵∠AOC=∠A+∠ABO ,∠ABO=∠C+∠P ,∴∠AOC=∠A+∠P+∠C ,故答案为∠AOC=∠A+∠P+∠C ,(2)∵2∠AOC =∠BAO +∠DCO+2∠P ,2∠AOC=∠BAO +∠DCO+∠B+∠D ,∴2∠P=∠B+∠D ,∴∠P=(28°+48°)=38°,12故答案为38°(3)∵直线AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,∴∠PAB=∠PAD ,∠PCB=∠PCE ,∴2∠PAB+∠B=180°-2∠PCB+∠D ,∴180°-2(∠PAB+∠PCB )+∠D=∠B∵∠P=∠PAB+∠B+∠PCB ,∴∠PAB+∠PCB=∠P-∠B ,∴180°-2(∠P-∠B )+∠D=∠B ,即∠P=90°+(∠B+∠D ).12(4)∵直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠FAP=∠PAO ,∠PCE=∠PCB ,在四边形APCB 中,(180°-∠FAP )+∠P+∠PCB+∠B=360°①,在四边形APCD 中,∠PAD+∠P+(180°-∠PCE )+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,12∴∠P=180°-(∠B+∠D)。
北师大版数学八年级下册:第六章 平行四边形 单元测试(附答案)
第六章平行四边形单元测试(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,AB=3,AD=2,则CD=()A.3 B.2 C.1 D.5第1题图第3题图2.一个正n边形的每一个外角都是45°,则n=()A.7 B.8 C.9 D.103.如图,等边△ABC的边长为2,连接其三边的中点构成一个新的三角形,则新的三角形周长为()A.1 B.2 C.3 D.44.如图,在▱ABCD中,F是AD上的一点,CF=CD.若∠B=72°,则∠AFC的度数是()A.144°B.108°C.102°D.78°第4题图第5题图5.如图所示,在平面直角坐标系内,原点O恰好是▱ABCD对角线的交点.若A点坐标为(2,3),则C点坐标为()A.(-3,-2)B.(-2,3)C.(-2,-3)D.(2,-3)6.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B,C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是()A.24B.18C.16D .127.某班同学对《多边形的内角和与外角和》的内容进行激烈地讨论,小丽说:“多边形的边数每增加1,则内角和增加180°”,小钟说:“多边形的边数每增加1,则外角和增加180°”,小刚说:“多边形的内角和不小于其外角和”,小华说:“只要是凸多边形,不管有几边,其外角和都是360°”.你认为正确的是( )A .小丽和小华B .小钟和小刚C .小刚和小华D .以上都不对8.如图,▱ABCD 纸片,∠A =120°,AB =4,BC =5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF =1,HG =2,则这个六边形的周长为( )A .12B .15C .16D .18第8题图 第9题图9.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,给出下列四个条件:①AE =CF ;②DE =BF ;③∠ADE =∠CBF ;④∠ABE =∠CDF.其中能判定四边形DEBF 是平行四边形的有( )A .0个B .1个C .2个D .3个10.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P.若BC =10,则PQ 的长为( )A.32 B.52 C .3 D .4二、填空题(每小题4分,共20分)11.在四边形ABCD 中,AB ∥CD ,AD ∥BC.如果∠B =50°,那么∠D = . 12.如图,在△ABC 中,M ,N 分别是AB ,AC 的中点,且∠A +∠B =136°,则∠ANM = .第12题图第13题图13.已知:如图,在▱ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE =8 cm,CE=6 cm,则▱ABCD的周长为cm.14.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于.第14题图第15题图15.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D,E分别是BC,AD 的中点,AF∥BC交CE的延长线于点F,则四边形AFBD的面积为.三、解答题(共50分)16.(6分)如果两个多边形的边数之比为1∶2,这两个多边形的内角之和为1 440°,请你确定这两个多边形的边数.17.(8分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.18.(10分)已知:如图,在△ABC中,中线BE,CD交于点O.F,G分别是OB,OC 的中点,连接DF,FG,EG,DE,求证:DF=EG.19.(12分)如图,已知四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.20.(14分)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)参考答案:一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,AB=3,AD=2,则CD=(A)A.3 B.2 C.1 D.5第1题图第3题图2.一个正n边形的每一个外角都是45°,则n=(B)A.7 B.8 C.9 D.103.如图,等边△ABC的边长为2,连接其三边的中点构成一个新的三角形,则新的三角形周长为(C)A.1 B.2 C.3 D.44.如图,在▱ABCD中,F是AD上的一点,CF=CD.若∠B=72°,则∠AFC的度数是(B)A.144°B.108°C.102°D.78°第4题图第5题图5.如图所示,在平面直角坐标系内,原点O恰好是▱ABCD对角线的交点.若A点坐标为(2,3),则C点坐标为(C)A.(-3,-2)B.(-2,3)C.(-2,-3)D.(2,-3)6.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B,C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是(C)A.24B.18C.16D.127.某班同学对《多边形的内角和与外角和》的内容进行激烈地讨论,小丽说:“多边形的边数每增加1,则内角和增加180°”,小钟说:“多边形的边数每增加1,则外角和增加180°”,小刚说:“多边形的内角和不小于其外角和”,小华说:“只要是凸多边形,不管有几边,其外角和都是360°”.你认为正确的是(A )A .小丽和小华B .小钟和小刚C .小刚和小华D .以上都不对8.如图,▱ABCD 纸片,∠A =120°,AB =4,BC =5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF =1,HG =2,则这个六边形的周长为(B )A .12B .15C .16D .18第8题图 第9题图9.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,给出下列四个条件:①AE =CF ;②DE =BF ;③∠ADE =∠CBF ;④∠ABE =∠CDF.其中能判定四边形DEBF 是平行四边形的有(D )A .0个B .1个C .2个D .3个10.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P.若BC =10,则PQ的长为(C )A.32 B.52 C .3 D .4二、填空题(每小题4分,共20分)11.在四边形ABCD 中,AB ∥CD ,AD ∥BC.如果∠B =50°,那么∠D =50°. 12.如图,在△ABC 中,M ,N 分别是AB ,AC 的中点,且∠A +∠B =136°,则∠ANM =44°.第12题图 第13题图13.已知:如图,在▱ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE =8 cm,CE=6 cm,则▱ABCD的周长为30cm.14.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108°.第14题图第15题图15.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D,E分别是BC,AD 的中点,AF∥BC交CE的延长线于点F,则四边形AFBD的面积为12.三、解答题(共50分)16.(6分)如果两个多边形的边数之比为1∶2,这两个多边形的内角之和为1 440°,请你确定这两个多边形的边数.解:设边数较少的多边形的边数为n,则(n-2)·180+(2n-2)·180=1 440.解得n=4,则2n=8.答:这两个多边形的边数分别为4,8.17.(8分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.∴四边形BEDF是平行四边形.∴OE=OF.18.(10分)已知:如图,在△ABC中,中线BE,CD交于点O.F,G分别是OB,OC 的中点,连接DF,FG,EG,DE,求证:DF=EG.证明:由题意,得点E ,D 分别是AC ,AB 的中点, ∴ED 是△ABC 的中位线. ∴ED ∥BC ,ED =12BC.∵F ,G 分别是BO ,CO 的中点, ∴FG 是△OBC 的中位线. ∴FG ∥BC ,FG =12BC.∴ED ∥FG ,ED =FG.∴四边形EDFG 是平行四边形. ∴DF =EG.19.(12分)如图,已知四边形ABCD 是平行四边形,把△ABD 沿对角线BD 翻折180°得到△A′BD.(1)利用尺规作出△A′BD (要求保留作图痕迹,不写作法); (2)设DA′与BC 交于点E ,求证:△BA′E ≌△DCE.解:(1)如图所示,△A ′BD 即为所求. (2)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,∠BAD =∠C.由折叠的性质可得∠BA′D =∠BAD ,A ′B =AB , ∴∠BA ′D =∠C ,A ′B =CD. 在△BA′E 和△DCE 中,⎩⎨⎧∠BA′E =∠C ,∠BEA ′=∠DEC ,A ′B =CD ,∴△BA ′E ≌△DCE (AAS ).20.(14分)在△ABC 中,AB =AC ,点P 为△ABC 所在平面内一点,过点P 分别作PE ∥AC 交AB 于点E ,PF ∥AB 交BC 于点D ,交AC 于点F.(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)解:(1)如图2,PD+PE+PF=AB.证明:∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形.∴PE=AF.∵AB=AC,∴∠B=∠C.∵PF∥AB,∴∠B=∠FDC.∴∠C=∠FDC.∴FD=FC.∴PD+PE+PF=FD+PE=FC+AF=AC=AB.(2)如图3,PE+PF-PD=AB.。
北师大版八年级数学下册第六章平行四边形全章综合复习练习(无答案)
全章综合复习一、选择题1.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个2.如图,AC、BD是平行四边形ABCD的对角线,AC与BD交于点O,AC=4,BD=5,BC=3,则△BOC 的周长是()A.7.5B.12C.6D.无法确定3.直角三角形两直角边边长分别为6和8,则连结这两条直角边中点的线段长为()A.3B.4C.5D.104.若一个多边形的内角和与外角和相加是1800°,则此多边形是()A.八边形B.十边形C.十二边形D.十四边形5.下列度数中,不可能是某个多边形的内角和的是()A.180°B.270°C.2700°D.1800°6.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.2B.3C.4D.3.75二、填空题7.如图所示,EF是△ABC的中位线,BD平分∠ABC,交EF于D,若DE=2,则EB=.8.如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,▱ABCD的周长为40,则▱ABCD 的面积为.9.如图,平行四边形ABCD中,AC=4cm,BC=5cm,CD=3cm,则▱ABCD的面积.10.如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2017个三角形的周长为___.11.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.12.如图所示,在▱ABCD中,E为AD中点,CE交BA的延长线于F,若BC=2AB,∠FBC=70°,则∠EBC的度数为度.三、解答题13.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.14.已知:如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:四边形ABFC是平行四边形;(2)在不添加任何辅助线的情况下,请直接写出图中与△ABC面积相等的三角形.15.如图,在△ABC中,△ACB=90°,CD△AB垂足为D,AE平分△CAB交CD于点F,交BC于点E,EH△AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形。
北师大版八年级下册数学第六章 平行四边形含答案(典型题)
北师大版八年级下册数学第六章平行四边形含答案一、单选题(共15题,共计45分)1、下列结论:①一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角度数之比为5:3:1;②在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°;④一个五边形最多有3个内角是直角;⑤两条直线被第三条直线所截,同位角的角平分线互相平行.其中正确结论有()A.2个B.3个C.4个D.5个2、四边形的四个内角( )A.可以都是锐角B.可以都是钝角C.可以都是直角D.必须有两个锐角3、如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度4、已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是A.8B.6C.5D.35、如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.180°B.360°C.540°D.720°6、下列结论中,错误结论有();①三角形三条高(或高的延长线)的交点不在三角形的内部,就在三角形的外部;②一个多边形的边数每增加一条,这个多边形的内角和就增加360º;③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行;④三角形的一个外角等于任意两个内角的和;⑤在中,若,则为直角三角形;⑥顺次延长三角形的三边,所得的三角形三个外角中锐角最多有一个A.6个B.5个C.4个D.3个7、一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8、若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°9、一个多边形的每个内角都等于135°,则这个多边形的边数为()A.5B.6C.7D.810、将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°11、如图,从△ABC纸片中剪去△CDE,得到四边形ABDE,若∠C=60°.则∠1+∠2等于()A.240°B.120°C.230°D.200°12、如图,M是正六边形ABCDEF的边CD延长线上的一点,则∠ADM的度数是()A.135°B.120°C.108°D.60°13、把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9B.10C.11D.以上都有可能14、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A.90°B.84°C.72°D.88°15、正十边形的每一个内角的度数为( ).A.120ºB.135ºC.140ºD.144º二、填空题(共10题,共计30分)16、六边形是中国传统形状,象征六合、六顺之意.比如首饰盒、古建的窗户、古井的口、佛塔等等.化学上一些分子结构、物理学上的螺母,也采用六边形.正六边形,从中心向各个顶点连线是等边三角形,从工程角度,是最稳定和对称的.正六边形外角和为________.17、如果一个多边形的内角和是外角和的3倍,则这个多边形边数为________.18、已知:在▱ABCD中,∠A+∠C=160°,则∠B的度数是________.19、一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为________s.20、如图,平行四边形ABCD中,顶点A的坐标是(0,2),AD//x轴,BC交y 轴于点E,点E的纵坐标是﹣4,平行四边形ABCD的面积是24,反比例函数y=的图象经过点B和D.则k=________.21、如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是________.22、有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A点处行走的路程是________.23、一个多边形的内角和为540°,并且每一个内角都相等,则这个多边形的每一个内角是________°.24、在四边形ABCD中,AB=CD,M、N分别是AD和BC的中点,延长BA和CD分别交射线NM于点E和点F,若tan∠F=, FC=FN,EN=,则EF=________25、如图,平行四边形ABCD中,∠BAD的平分线交BC边于点M,而MD平分∠AMC,若∠MDC=45°,则∠BAD=________,∠ABC=________三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、已知,如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF∥AC交BC于F,请判断BE与FC的数量关系,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版八年级下册第六章平行四边形练习题
一、填空题
1、如图,□ABCD中,∠A=120°,则∠1= °
2、□ABCD中,∠A比∠B大20°,则∠C的度数为_____
3、如图,平行四边形ABCD中,AB=6,BC=4,∠A=60°要用一块矩形铝板切割出这样的平行四边形,使废料最少,则所需铝板的面积最小应是_______
4、在ABCD中,对角线AC、BD相交于点0,点E在边AD上,且AE:DE=1:3,连结BE,BE与AC相交于点M,若AC=6,则M0的长是.
5、如图所示,E、F
分别是平行四边形的边、上的点,与相交于点
,
与相交于点,若
△APD
,
△BQC
,则阴影部分的面积
为
.
6、□ABCD中, AB:BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm
7、巳知□ABCD,周长为36,相邻两边的差为4,则相邻两边的长分别为_________
8、平行四边形两个邻角的平分线互相______,两个对角的平分线互相______(填“平行”或“垂直”)
9、□ABCD中,∠A=150°,AB=15cm,则AD与BC间的距离为______cm
第四题图
2
10、如图,在□ABCD 中,BC=12,AD 与BC 间的距离为5,AC 与BD 交于点O ,则△BOC 的面积为______
11、如图, 在□ABCD 中, 过其对角线的交点O ,引一条直线交BC 于E ,交AD 于F 。
若AB=5,BC=8,OE=2.5,则四边形CDFE 的周长为
12、如果一个平行四边形的一条边长为8,一条对角线长为6,那么它的另一条对角线长m 的取值范围是 。
二、选择题
13、在下列命题中,正确的是( )
A .一组对边平行的四边形是平行四边形
B .有一个角是直角的四边形是矩形
C .有一组邻边相等的平行四边形是菱形
D .对角线互相垂直平分的四边形是正方形
14、平行四边形ABCD ,AC 、BD 交于O ,则图中共有( )对形状大小相同的三角形。
A. 2 B. 3 C. 4 D. 5
15、平行四边形ABCD 中,∠A=50°,则∠D=( ) A. 40° B. 50° C. 130° D. 不能确定
16、 用两个形状大小相同的三角形按不同的方式拼成的平行四边形有( )个 A. 1 B. 2 C. 3 D. 4
17、平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )
A .1:2:3:4 B. 3:4:4:3 C. 3:3:4:4 D. 3:4:3:4
18、下列条件中,能判定四边形是平行四边形的是( )
A. 一组对边相等
B. 对角线互相平分
C. 一组对角相等
D. 对角线互相垂直
19、如图,在□ABCD中,点E为AB的中点,点F为AD上一点,EF交AC于点G,AF=4cm,DF=8cm,AG=5cm,则AC的长为( )
A.7.5cm
B.15cm C
.12.5cm
D.25cm
第19题图第20题图
20、如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若
①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()(A)48cm (B)36cm (C)24cm (D)18cm
21、如图,在平行四边形ABCD中,BD=4cm,将平行四边形ABCD绕其对称中心O旋转90°,则点D经过的路径长为( )
(A)4πcm (B)3πcm (C)2πcm (D) πcm
第21题图
22、已知□ABCD的周长为32,AB=4,则BC等于【】
A.4 B.12 C.24 D.28
三、简答题
23、如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.求证:四边形AECF 是平行四边形;
24、平行四边形ABCD中,已知:∠A=2∠B,试求平行四边形各内角的度数
25、平行四边形ABCD中,已知AB:BC=3:5,周长为48cm,求CD、DA长。
26、如图,已知平行四边形ABCD和平行四边形BFDE的顶点A、E、F在同一直线上,求证:AE=CF。
4
27、如图,村子里有一四边形的池塘,在它的四个角的顶点A、B、C、D处均种了一棵大树,村子准备开挖池塘建渔塘,想使池塘的面积扩大一倍,又想保持大树不动,并要求扩建后的池塘成平行四边形的形状,请问能否实现这一设想?若能,请你设计出所要画的图形,若不能,请说明理由。
28、如图,在平行四边形ABCD中,E、F分别在,BA、DC延长线上,且AE=CF,连接EF分别交AD、BC于G、H、求证:AC与GH互相平分。
29、如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD.求证:四边形ABCD是平行四边形.
30、已知:如图,□ABCD中,∠ABC的平分线交AD于E,
∠CDA的平分线交BC于F.
(1)求证:△ABE≌△CDF;(2)连接EF、BD,求证:EF与BD互相平分.
6
31、已知:如图,□ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.
32、已知:如图,□ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=,求四边形EBFD的周长.
33、已知:如图,在□ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.
8
34、如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上, 请按要求完成下列各题:
(1)请你通过计算说明△ABC 的形状为____.; (2)画线段AD ∥BC 且使AD =BC ,连接CD .
请你判断四边形ABCD的形状,求出它的面积是;
(3)若E为AC 中点,则sin ∠ABE =_______,cos ∠CAD =____.
35、如图,在平行四边形中,,,,垂足为,
.
(1)求BE 、的长; (2)求的正切值.
36、如图,已知平行四边形ABCD 中,点为
边的中点,延长
相交于点
.
求证:
.
37、已知:如图,在□ABCD 中,E 是CA 延长线上的点,F 是AC 延长线上的点,且AE =CF .求证:(1)△ABE ≌△CDF ;(2)BE ∥DF .
38、已知:如图,在△ABC 中,D 、E 、F 分别是各边的中点,AH 是边BC 上的高.那么,图中的∠DHF 与∠DEF 相等吗?为什么?
10
39、已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F . 求证:AB =AF .
40、如图所示,在平行四边形
的各边上,分别取点
,使
.
求证:四边形
为平行四边形.。