(小升初)枫杨外国语数学考试题解析
枫杨外国语数学考题及答案-小升初

1.把一根绳子对折,再对折,然后把对折后绳子剪成三段,这根线绳总共被剪成了________小段。
解:首先分析对折后从中间剪断情况:如果绳首尾相连(一个圆),对折n 次后,段数是2^n,现在首尾断开,相当于多了一段,即段数为:2^n+1 再分析:把绳子剪成M截,相当于把两边的段数去掉后,中间增加的段数(由于中间的绳子没有相连,其段数=2^n。
即段数=2^n+1+2^n*(m-2)=2^2+1+2^2*(3-2)=4+1+4*1=92.浩浩拿了216元钱去买一种奥运纪念册,正好将钱用完,回家后他算了算,如果每本纪念册能便宜1元,那么他就可以多买3本,钱也正好用完。
那么,那所买的纪念册的单价是________元。
解:设原来买了X册纪念册,X/3=(216/X)-1 X=24,单价=216/24=93.有八个编号分别为①-⑧的小球,其中有六个一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④轻,第二次⑤+⑥比⑦+⑧重,第三次①+③+⑤和②+④+⑧一样重,那么这两个轻球的编号是________。
解:第一次可以初定轻球在1、2中第二次可以初定轻球在7、8中第三次可以确定轻球为1、84.吹泡机一次能吹出80个肥皂泡,每分钟吹一次,肥皂泡被吹出后,经过1分钟有一半破掉,经过2分钟还有没破,经过2.5分钟后就全破了。
吹泡机连续吹100次后,没有破的肥皂泡还有________个。
解:根据题意:97分钟及之前的泡泡到100分钟时全破了,只需计算98、99、100分钟的吹出来的泡泡数在100分钟时未破的数量,98分钟吹的泡未破数=80*1/20=4个99分钟泡未破数=80/2=40个,100分钟全未破,答案:4+40+80=124个。
5.一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合作18天完成,那么丙一个人来做,完成这项工作需要___48_____天。
枫杨外国语小升初数学试题及答案

枫杨入学测试填空题每题五分共20题满分100分不写过程1.把一根绳子对折,再对折,然后把对折后绳子剪成三段,这根线绳总共被剪成了________小段。
2.浩浩拿了216元钱去买一种奥运纪念册,正好将钱用完,回家后他算了算,如果每本纪念册能便宜1元,那么他就可以多买3本,钱也正好用完。
那么,那所买的纪念册的单价是________元。
3.有八个编号分别为①-⑧的小球,其中有六个一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④轻,第二次⑤+⑥比⑦+⑧重,第三次①+③+⑤和②+④+⑧一样重,那么这两个轻球的编号是________。
4.吹泡机一次能吹出80个肥皂泡,每分钟吹一次,肥皂泡被吹出后,经过1分钟有一半破掉,经过20分钟还有120没破,经过25分钟后就全破了。
吹泡机连续吹100次后,没有破的肥皂泡还有________个。
5.一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合休憩18天完成,那么丙一个人做,完成这项工作需要________天。
6.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和等于2113,则被除数是________7.某鞋店有旅游鞋和皮鞋400双,在售出旅游鞋的14后,又采购70双皮鞋,此时皮鞋恰好是旅游鞋的2位,问原两种鞋各有________双?8.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去。
小李骑自行车的速度是10.8千米/小时,从乙地到甲地去。
他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇。
问:小李骑车从乙地到甲地需要________分?9.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要________秒钟?10.柳阴街小学的校园里,原柳树的棵数是全校树木总棵数的25,今年又栽种了50棵柳树,这样,柳树的棵数就占全校树木总棵数的511,问柳阴街小学原一共有________棵树木?11.1000千克青菜早晨测得它的含水率为97%,这些菜到了下午测得含水率为95%,那么这些菜的重量减少了________千克?12.早上水缸放满了水,白天用去了其中的20%,傍晚又用去了27升,晚上用去剩下的10%,最后剩下的水是半水缸多1升,问早上放入________升水?13.粗蜡烛和细蜡烛长短一样。
郑州枫杨外国语学校小升初数学试题及答案

枫杨2021年3月10日数学考试题6. 如图为手的示用意,在各个手指间标记字母A,B,C,D,请依照图中箭头所示方向从A开始持续的正整数一、二、3、4、五、六、…,A B C D C B A B C…当字母C第201次显现时,恰好数到的数是_______7. 一只电子跳蚤在ABCDE五点之间跳跃,有两种跳跃方式,一种是一次蹦一格,另一种是一次蹦两格,问总共有种不同的跳法。
(A、B、C、D、E 是一条直线上等间距的五个点)8. 某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现打算全数改换为新型的路灯,且相邻两盏灯的距离变成70米,那么需改换的新型节能灯有________盏。
9. 在长为10米,宽为8米的矩形空地中,沿平行于矩形各边的方向分割出三个完全相同的小矩形花园,其示用意如下图,那么花园的面积______平方米。
8米10.如图,甲、乙两人沿着边长为70米的边长,按逆时针的方向行走,甲从A 以65米/分的速度行走,乙从B以72米/分的速度行走,当乙第一次追上甲时,是在正方形的边______(AB、BC、CD或DA)上。
B CA D11. 2020年4月25日,全国人大常委会发布《中华人民共和国个人所得税法修正案(草案)》,向社会公布征集意见。
草案规定,公民全月工薪不超过3000元的部份没必要纳税,超过3000元的部份为全月应纳税所得额,此项税款按下表分段累进计算。
级数全月应纳税所得额税率1 不超过1500元的部份5%2 超过1500元至4500元的部份10%3 超过4500元至9000元的部份20% …………依据草案规定,解答以下问题:李工程师的月工薪8000元,那么他每一个月应当纳税_______元。
12.将正方体骰子(相对面上的点数别离为1和六、2和五、3和4)放置于水平桌面上,如图5,在图6中,将骰子向右翻腾90°,然后在桌面上按逆时针方向旋转90°,那么完成一次变换,假设骰子的初始位置为图5所示的状态,那么按上述规那么持续完成16次变换后,骰子朝上一面的点数是_________13. 一项工程,甲先单独做2天,然后与乙合作7天,如此才完成全工程的一半。
河南省郑州市枫杨外国语学校小升初数学试卷(含解析)

河南省郑州市枫杨外国语学校小升初数学试卷一.填空(共6题,每题5分)1.(5分)现在是4点20分,再过分时针和分针第一次的夹角为30度.2.(5分)现有甲3千克纯酒精,乙2千克纯水,从甲取a千克倒入乙杯,搅拌均匀后,再从乙取a千克到甲杯,这时,甲的纯净水比乙的酒精多千克.3.(5分)一个圆柱侧面展开长18.宽12的长方形,圆柱的体积是(π取3)4.(5分)一个工程队18天修了三分之一,如果做了3天后,效率提高五分之一,一共要天完成一半.5.(5分)若自然数n使得作连式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”,如因为12+13+14不产生进位现象,所以12是连绵数,但13+14+15产生进位现象,所以12是连绵数,则不超过200的连绵数有个.二.应用题(共6题,共55分)6.(7分)一个小孩拿40块糖说分给了9个人,每个人的糖都不一样.每人至少有一个,问成不成立.7.有一个商厦,进4万元的货,卖完之后,又进了8.8万元的货,进的货是第一次的两倍,并且每一次都比第一次贵4元,现在每件58元,卖完还剩150件时,打八折.问商厦一共赚了多少钱?8.两辆同一型号的汽车从同地同时同速沿一个方向出发,每年最多能带30桶汽油,每桶汽油使汽车前进60千米,每车都须返回出发点,两车可以找对方借油,为了使其中一辆车尽可能远离出发点,那么这辆汽车最远能离出发点多少千米?9.(10分)如图1,某容器由A.B.C三个长方体组成,其中A.B.C的底面积分别为25cm2.10cm2.5cm2,C的容积是容器容积的(容器各面的厚度忽略不计).现在以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止,图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.问题:(1)在注水过程中,注满A所用的时间为s;(2)求A的高度h A及注水的速度V;(3)求所注满容器所需时间及容器的高度.10.如图,纸上画了四个大小一样的圆,圆心分别是A.B.C.D,直线m通过A.B,直线n通过C.D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S﹣1),直线m.n之间被圆盖住的面积是8,阴影部分的面积是S1.S2.S3满足关系式S3=S2=S1,求S.参考答案与试题解析一.填空(共6题,每题5分)1.(5分)现在是4点20分,再过7分时针和分针第一次的夹角为30度.【分析】分针每分钟=6°,时针每分钟走=0.5°,4点20分时,分针从数字12走到数字4,时针从数字4走了0.5°×20=10°,分针和分针第一次的夹角为30度时,分针要比时针多走30°+10°,根据追及问题即可解答.【解答】解:(30+10)÷(6﹣0.5)=40÷5.5=7(分)答:再过7分时针和分针第一次的夹角为30度.故答案为:7.2.(5分)现有甲3千克纯酒精,乙2千克纯水,从甲取a千克倒入乙杯,搅拌均匀后,再从乙取a千克到甲杯,这时,甲的纯净水比乙的酒精多0千克.【分析】由甲中取出a千克纯酒精倒入乙,算出此时乙杯中纯酒精的浓度,进而根据一个数乘分数的意义,用乘法求出这时从乙中取a千克混合液中水的质量,即为甲中水的质量,再求出a千克中纯酒精的质量,用a减去这个质量,即为乙中纯酒精的质量,然后进行比较,即可得出结论.【解答】解:从甲杯中取出a千克纯酒精到入乙杯搅匀后,乙杯中酒精的浓度为,则从乙杯中取出a千克混合液中水有a•=千克,即为这时甲杯中含有的水,而乙杯中纯酒精的含量为(a﹣a•)千克,因为a﹣a•=﹣=,所以甲杯中含有的水与乙杯中含有的纯酒精一样多,即这时甲杯中混入的纯净水比乙杯中的纯酒精多0千克;故答案为:0.3.(5分)一个圆柱侧面展开长18.宽12的长方形,圆柱的体积是324或216(π取3)【分析】根据题意,本题可分别把18.12作为圆柱的底面周长进行作答,可利用圆的周长公式计算出这个圆柱的底面半径是多少,然后再利用圆柱的体积=底面积×高进行计算圆柱的体积,列式解答即可得到答案.【解答】解:(1)假设圆柱的底面周长是18,那么圆柱的高为12,圆柱的底面半径为:18÷3÷2=3,圆柱的体积为:3×32×12=27×12,=324;(2)假设圆柱的底面周长是12,则圆柱的高为18,圆柱的底面半径为:12÷2÷3=2,圆柱的体积为:3×22×18,=12×18,=216;答:这个圆柱的体积可能是324或216.故答案为:324或216.4.(5分)一个工程队18天修了三分之一,如果做了3天后,效率提高五分之一,一共要23天完成一半.【分析】先根据工作效率=工作总量÷工作时间,求出工程队的工作效率,再依据分数乘法意义,求出效率提高五分之一后的工作效率,以及做3天后,完成的工作总量,最后根据工作时间=工作总量÷工作效率即可解答.【解答】解:(﹣18×3)÷[18×(1)]+3,=()÷[]+3,=+3,=20+3,=23(天),答:一共要23天完成一半.故答案为:23.5.(5分)若自然数n使得作连式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”,如因为12+13+14不产生进位现象,所以12是连绵数,但13+14+15产生进位现象,所以12是连绵数,则不超过200的连绵数有24个.【分析】首先根据题意求出个位数和十位数满足的条件,然后根据能构成“连绵数”的条件求出不超过100的“连绵数”的个数.【解答】解:根据题意个位数需要满足要求:∵n+(n+1)+(n+2)<10,即N<2.3,∴个位数可取0,1,2三个数,∵十位数需要满足:3n<10,∴n<3.3,∴十位可以取0,1,2,3四个数,小于200的连绵数共有3×4×2=24个.故答案为:24.二.应用题(共6题,共55分)6.(7分)一个小孩拿40块糖说分给了9个人,每个人的糖都不一样.每人至少有一个,问成不成立.【分析】假设最少的一个同学有一块,由于“每个人的糖都不一样.”,所以相邻的两个人的块数的差最小为1,也就是说,这9个人的块数最少为1~9的等差数列,那么至少需要的块数是:(1+9)×9÷2=45(块),与题干40块不符.【解答】解:根据分析可得,题设不成立.因为这9个人的块数最少为1~9的等差数列,所需块数:(1+9)×9÷2=45(块),45≠40,所以题设不成立.7.有一个商厦,进4万元的货,卖完之后,又进了8.8万元的货,进的货是第一次的两倍,并且每一次都比第一次贵4元,现在每件58元,卖完还剩150件时,打八折.问商厦一共赚了多少钱?【分析】如果第二次进和第一次同样的货要8.8÷2=4.4万元,又4.4﹣4=0.4万元=4000元,则第一次进货4000÷4=1000件,共进货2000+1000=3000件,又都定价58元,还有150件打8折,没打折部分卖的钱数是(3000﹣150)×58元,打折部分为150×58×0.8元,又总成本为4万元+8.8万元=12.8万元,即128000元,所以共赢利(3000﹣150)×58+150×58×0.8﹣128000=44260(元).【解答】解:(8.8÷2)﹣4=4.4﹣4=0.4(万元).0.4万元=4000元;4000÷4=1000(件),1000+1000×2=1000+2000=3000(件).4万元+8.8万元=12.8万元,12.8万元=128000元,(3000﹣150)×58+150×58×0.8﹣128000=3850×58+6960﹣128000=223300+6960﹣128000=44260(元).答:共赢利44260元.8.两辆同一型号的汽车从同地同时同速沿一个方向出发,每年最多能带30桶汽油,每桶汽油使汽车前进60千米,每车都须返回出发点,两车可以找对方借油,为了使其中一辆车尽可能远离出发点,那么这辆汽车最远能离出发点多少千米?【分析】甲车可以行驶到汽油用掉的时候,留汽油返程,给另一车加汽油,因为此时乙车也刚好用掉汽油的,所以乙车实际可用的汽油,所以它最远可达60×30÷2×千米.据此解答即可.【解答】解:甲车可以行驶到汽油用掉的时候,留汽油返程,给另一车加汽油,因为此时乙车也刚好用掉汽油的,所以乙车实际可用的汽油,乙车可以行驶:60×30÷2×=1800÷2×=900×=1200(千米)答:这辆汽车最远能离出发点1200千米.9.(10分)如图1,某容器由A.B.C三个长方体组成,其中A.B.C的底面积分别为25cm2.10cm2.5cm2,C的容积是容器容积的(容器各面的厚度忽略不计).现在以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止,图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.问题:(1)在注水过程中,注满A所用的时间为10s;(2)求A的高度h A及注水的速度V;(3)求所注满容器所需时间及容器的高度.【分析】(1)看折线图可得答案;(2)从图中可以看出A和B的高度和是12厘米,就设注水的速度v;则注满时甲的高度加上乙的高度就是12厘米,列方程解得;(3)根据C的容积和总容积的关系求出C的容积,再求C的高度及注满C的时间,就可以求出注满容器所需时间及容器的高度.【解答】解:(1)看图象可知,注满A所用时间为10s,(2)从图中可以看出A和B的高度和是12cm,就设注水的速度vcm3;则注满时甲的高度加上乙的高度就是12cm,列方程得:+=12,20V+40V=600,60V=600,V=10,A的高度h A:10×V÷25=10×10÷25=4(cm),答:A的高度h4为4cm,注水的速度v是10cm3;(3)设C的容积为ycm3,则有,4y=10v+8v+y,将v=10代入计算得:4y﹣y=10×10+8×10+y﹣y,3y=180,y=60,那么容器C的高度为:60÷5=12(cm),故这个容器的高度是:12+12=24(cm),注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=24(s).答:注满容器所需时间是24s及容器的高度24cm.故答案为:10.10.如图,纸上画了四个大小一样的圆,圆心分别是A.B.C.D,直线m通过A.B,直线n通过C.D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S﹣1),直线m.n之间被圆盖住的面积是8,阴影部分的面积是S1.S2.S3满足关系式S3=S2=S1,求S.【分析】观察图形可以得到四个圆之间的位置关系,根据重叠部分的面积可以列出一个方程,然后与题目中S1,S2,S3的关系联立方程组,解方程组得到S的值.【解答】解:由题设可得:所以S1=①又因为2S﹣S1﹣S2﹣S3=8,即:2S﹣2S1=8 ②把①代入②消去S1得:2S﹣2×=86S﹣10+2S=248S=34S=.。
河南省郑州市枫杨外国语小升初数学试卷(含解析)

河南省郑州市枫杨外国语小升初数学试卷(1月18日)一.填空(每题4分,共40分)1.(4分)2用循环小数表示,小数点后第2020位上的数字是.2.(4分)有一个数,被3除余2,被4除余1,那么这个数除以12余.3.(4分)从1开始2020个连续自然数的积的末尾有个连续的零.4.(4分)有两筐苹果,甲筐占总数的,如果从甲筐取出7.5千克放入乙筐,这时乙筐占总数的,甲筐原来有千克苹果.5.(4分)一个三角形的三个内角之比为1:2:3,则这个三角形是三角形.6.(4分)蕾蕾读一本252页的书,已读的页数等于还没有读过页数的2倍,蕾蕾读过页.7.(4分)2个篮球的价钱可以买6个排球,6个足球的价钱可以买3个篮球,买排球.足球.网球各1个的价钱可以买1个篮球,那么,买1个篮球的价钱可以买个网球.8.(4分)某班有60人,他们着装白色或黑色上衣,黑色或蓝色裤子,其中有12人穿白色上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有人.二.计算题(每题5分,共20分)9.(20分)计算题:(1)0.125×7.37+×3.63﹣12.5×0.1(2)1×(2﹣)+÷(3)(4):三.应用题(每题8分,共40分)10.(8分)果果和妈妈一起去超市,买洗漱用品花了总钱数的多100元,买小食品花了余下的少20元,又买了一个600元的饮水机,正好花完所带的钱,果果妈妈一共带了多少钱?11.(8分)甲.乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山的速度是各自上山速度的1.5倍.而且甲比乙速度快,甲到达山顶时,乙离山顶180米,当乙到达山顶时,甲恰好下到半山腰,那么山脚到山顶多少米?12.(8分)如图,求阴影部分的周长是多少厘米?四.附加题(10分)13.(10分)甲.乙两人同时从A地出发,在直道A.B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A.B两地相距多少米?参考答案与试题解析一.填空(每题4分,共40分)1.(4分)2用循环小数表示,小数点后第2020位上的数字是2.【分析】根据分数化成小数的方法:用分子除以分母,求出3÷7的商,看它的循环节是几位数字,根据周期问题的解法,用2020除以循环节的位数,如果能够整除第2020位上的数字计算循环节的末位上的数字,如果有余数,余数是几就从循环节的首位起数出第几位该位上的数字即是第2020位上的数字.由此解答.【解答】解:因为=0.428571428571…6个数字一组循环;2020÷6=335…2,循环节的第二个数字是2.也就是第2020位上的数字是2;故答案为:2.2.(4分)有一个数,被3除余2,被4除余1,那么这个数除以12余5.【分析】利用带余数的除法运算性质,将这个数看成A+B,A为可以被12整除的部分,B则为除以12的余数,得出A可以被3或4整除,再结合已知这个数除以3余2,除以4余1,得出B也相同,归纳出符合要求的只有5.【解答】解:将这个数看成A+B,A为可以被12整除的部分,B则为除以12的余数.A可以被12整除,则也可以被3或4整除.因为这个数“除以3余2,除以4余1”,所以B也是“除以3余2,除以4余1”,又因为B是大于等于1而小于等于11,在这个区间内,只有5是符合的.故答案是:5.3.(4分)从1开始2020个连续自然数的积的末尾有501个连续的零.【分析】这道题考查数论中的因式分解.关键是考虑0是怎样出现的.因为10=2×5,也就是说只要有一个2和一个5就会出现一个0.显然从1开始2020个连续自然数中含因数2的数远多于含因数5数.因此只需要考虑因数5的个数就可以了.这样我们需要考虑5的倍数,在2020以内,总共有2020÷5=402…2,所以有402个因数5.但是此时我们仍然需要考虑诸如25=5×5.可以提供2个5.而在2020以内,25的倍数有:2020÷25=80…12.所以又带来80个5.同样,我们考虑到125=5×5×5其中有3个5.在2102以内有2020÷125=16…12.又带来16个5.还有625=5×5×5×5.在2020以内,有2020÷625=3…137.又带来3个5.所以5的个数一共有:402+80+16+3=501(个),即从1开始2020个连续自然数的积的末尾有501个零.【解答】解:因为10=2×5,所以从1开始2020个连续自然数的积的末尾有多少个零,是由在2020以内,含有多少个因数5决定的;在2020以内,总共有2020÷5=402…2,所以有402个因数5,25的倍数有:2020÷25=80…12,125的倍数有:2020÷125=16…12,625的倍数有:2020÷625=3…137,所以5的个数一共有:402+80+16+3=501(个).即从1开始2020个连续自然数的积的末尾有501个零.故答案为:501.4.(4分)有两筐苹果,甲筐占总数的,如果从甲筐取出7.5千克放入乙筐,这时乙筐占总数的,甲筐原来有27.5千克苹果.【分析】乙筐原来占总数的(1﹣),从甲筐取出7.5千克放入乙筐,这时乙筐占总数的,7.5千克就是总数的[﹣(1﹣)],据此可列式解答.【解答】解:两筐苹果的总数是;7.5÷[﹣(1﹣)],=7.5,=7.5,=50(千克),甲筐原来的苹果数是:50×=27.5(千克).答:甲筐原来有27.5千克苹果.故答案为:27.5.5.(4分)一个三角形的三个内角之比为1:2:3,则这个三角形是直角三角形.【分析】判断这个三角形是什么三角形,要知道这个三角形最大角的度数情况,由题意知:把这个三角形的内角和180°平均分了6份,最大角占了总和的,根据分数乘法的意义求解.【解答】解:因为1+2+3=6,3÷6=,180×=90(度),所以是直角三角形,故答案为:直角.6.(4分)蕾蕾读一本252页的书,已读的页数等于还没有读过页数的2倍,蕾蕾读过180页.【分析】要求读过的页数,要用全书的页数减去已读的页数,因已读的页数等于还没有读过页数的2倍,所以全书就是还没有读过页数的(1+)倍,可求出还没有读过的书是多少页,据此可解答.【解答】解:252﹣252÷(1+2),=252﹣252,=252﹣72,=180(页);答:蕾蕾读过180页.故答案为:180.7.(4分)2个篮球的价钱可以买6个排球,6个足球的价钱可以买3个篮球,买排球.足球.网球各1个的价钱可以买1个篮球,那么,买1个篮球的价钱可以买6个网球.【分析】因为2个篮球=6个排球,3个篮球=6个足球,1个篮球=1个排球+1个足球+1个网球,所以6个篮球=6个排球+6个足球+6个网球即:6个篮球=2个篮球+3个篮球+6个网球所以:1个篮球=6个网球,据此解答即可.【解答】解:因为2个篮球=6个排球,3个篮球=6个足球,1个篮球=1个排球+1个足球+1个网球,所以,6个篮球=6个排球+6个足球+6个网球即:6个篮球=2个篮球+3个篮球+6个网球,所以:1个篮球=6个网球;故答案为:6.8.(4分)某班有60人,他们着装白色或黑色上衣,黑色或蓝色裤子,其中有12人穿白色上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有15人.【分析】此题属于利用容斥原理解答的计数问题,要求学生要认真审题,弄清各种情况的关系进行推理解答.【解答】解:有34人穿黑裤子,那么穿蓝裤子的有60﹣34=26(人),有12人穿白上衣蓝裤子,说明穿黑上衣蓝裤子的还有:26﹣12=14(人),有29人穿黑上衣,那么穿黑上衣黑裤子的有:29﹣14=15(人).答:穿黑上衣黑裤子的有15人.故答案为:15.二.计算题(每题5分,共20分)9.(20分)计算题:(1)0.125×7.37+×3.63﹣12.5×0.1(2)1×(2﹣)+÷(3)(4):【分析】(1).(2).(3)运用乘法分配律解答,(4)化345345345345=345×1001001001,123123123123=123×1001001001解答.【解答】解:(1)0.125×7.37+×3.63﹣12.5×0.1,=0.125×(7.37+3.63﹣10),=0.125×1,=0.125;(2)1×(2﹣)+÷,=×+×,=×(),=×,=3.5;(3)),=(﹣+26×)×,=(6﹣1+32)×,=37×,=0.5;(4),=246×,=246×,=690.三.应用题(每题8分,共40分)10.(8分)果果和妈妈一起去超市,买洗漱用品花了总钱数的多100元,买小食品花了余下的少20元,又买了一个600元的饮水机,正好花完所带的钱,果果妈妈一共带了多少钱?【分析】买小食品花了余下的少20元,又买了一个600元的饮水机,正好花完所带的钱,则600﹣20=580元正好是余下钱数的1﹣=,则买完洗漱用品余下钱数为580=870元;买洗漱用品花了总钱数的多100元,则870+100=970元正好是总钱数的1﹣=,则总钱数为970=1212.5元.【解答】解:买完洗漱用品余下钱数为:(600﹣20)=580÷,=870(元);总钱数为:(870+100)=970÷,=1212.5(元);答:果果妈妈一共带了1212.5元.11.(8分)甲.乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山的速度是各自上山速度的1.5倍.而且甲比乙速度快,甲到达山顶时,乙离山顶180米,当乙到达山顶时,甲恰好下到半山腰,那么山脚到山顶多少米?【分析】在乙到达山顶走180米这段时间内,甲恰好下到半山腰,因为甲下山的速度是上山速度的1.5倍,所以当甲下山走了一半()就相当于又向上走了山高的(÷1.5)=,所以乙走完上山路的时间里,甲可以走上山路的1+=倍,说明上山速度甲是乙的倍,即上山速度乙是甲的,在相同的时间内,路程比等于速度比,故当甲走到山顶的时候,乙走了全程的,即全程的(1﹣)是180米,根据已知一个数的几分之几是多少,求这个数,用除法解答即可.【解答】解:180÷[1﹣1÷(1+÷1.5)],=180÷,=720(米);答:山脚到山顶一共720米.12.(8分)如图,求阴影部分的周长是多少厘米?【分析】由图意可知:阴影部分的周长=两个圆弧的长度+1条直径,大圆弧的周长为圆的周长的一半,小圆弧的长为圆心角为30度的圆弧长,代入等量关系即可求解.【解答】解:阴影部分的周长为两个圆弧加上一条直径,π×30÷2++30,=15π+5π+30,=20π+30,=20×3.14+30,=62.8+30,=92.8(厘米);答:阴影部分的周长是92.8厘米.四.附加题(10分)13.(10分)甲.乙两人同时从A地出发,在直道A.B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A.B两地相距多少米?【分析】从题中可知,因为甲和乙的速度之比为72:48=3:2,所以相同的时间内甲的路程和乙的路程比试3:2.如果总路程有5格,第一次迎面相遇时,两人加在一起走了2个全程,总共走10格,那么甲就走了6格,乙走了4格.第二次迎面相遇两人加在一起一共走了4个全程,一共20格.这时甲走了12格,乙走了8格,相遇地点如图所示.而当甲第一次追上乙时,要比乙多走10格,所以第一次追上乙时,甲需要走30格才能追上乙,第二次追上乙还需要再走30格,第二次追上乙的地点如图所示,因此甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距为两格,由此可以求出1格的距离为:80÷2=40米,因为把全程分成了5格,所以可以求出全程的距离.【解答】解:80÷2=40(米),40×5=200(米);答:A.B两地相距200米.。
枫杨外国语小升初数学试题及答案

枫杨入学测试填空题每题五分共20题满分100分不写过程1.把一根绳子对折,再对折,然后把对折后绳子剪成三段,这根线绳总共被剪成了________小段。
2.浩浩拿了216元钱去买一种奥运纪念册,正好将钱用完,回家后他算了算,如果每本纪念册能便宜1元,那么他就可以多买3本,钱也正好用完。
那么,那所买的纪念册的单价是________元。
3.有八个编号分别为①-⑧的小球,其中有六个一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④轻,第二次⑤+⑥比⑦+⑧重,第三次①+③+⑤和②+④+⑧一样重,那么这两个轻球的编号是________。
4.吹泡机一次能吹出80个肥皂泡,每分钟吹一次,肥皂泡被吹出后,经过1分钟有一半破掉,经过20分钟还有120没破,经过25分钟后就全破了。
吹泡机连续吹100次后,没有破的肥皂泡还有________个。
5.一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合休憩18天完成,那么丙一个人做,完成这项工作需要________天。
6.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和等于2113,则被除数是________7.某鞋店有旅游鞋和皮鞋400双,在售出旅游鞋的14后,又采购70双皮鞋,此时皮鞋恰好是旅游鞋的2位,问原两种鞋各有________双?8.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去。
小李骑自行车的速度是10.8千米/小时,从乙地到甲地去。
他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇。
问:小李骑车从乙地到甲地需要________分?9.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要________秒钟?10.柳阴街小学的校园里,原柳树的棵数是全校树木总棵数的25,今年又栽种了50棵柳树,这样,柳树的棵数就占全校树木总棵数的511,问柳阴街小学原一共有________棵树木?11.1000千克青菜早晨测得它的含水率为97%,这些菜到了下午测得含水率为95%,那么这些菜的重量减少了________千克?12.早上水缸放满了水,白天用去了其中的20%,傍晚又用去了27升,晚上用去剩下的10%,最后剩下的水是半水缸多1升,问早上放入________升水?13.粗蜡烛和细蜡烛长短一样。
枫杨外国语小升初数学试题及答案
枫杨入学测试填空题每题五分共20题满分100分不写过程1.把一根绳子对折,再对折,然后把对折后绳子剪成三段,这根线绳总共被剪成了________小段。
2.浩浩拿了216元钱去买一种奥运纪念册,正好将钱用完,回家后他算了算,如果每本纪念册能便宜1元,那么他就可以多买3本,钱也正好用完。
那么,那所买的纪念册的单价是________元。
3.有八个编号分别为①-⑧的小球,其中有六个一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④轻,第二次⑤+⑥比⑦+⑧重,第三次①+③+⑤和②+④+⑧一样重,那么这两个轻球的编号是________。
4.吹泡机一次能吹出80个肥皂泡,每分钟吹一次,肥皂泡被吹出后,经过1分钟有一半破掉,经过20分钟还有120没破,经过25分钟后就全破了。
吹泡机连续吹100次后,没有破的肥皂泡还有________个。
5.一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合休憩18天完成,那么丙一个人做,完成这项工作需要________天。
6.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和等于2113,则被除数是________7.某鞋店有旅游鞋和皮鞋400双,在售出旅游鞋的14后,又采购70双皮鞋,此时皮鞋恰好是旅游鞋的2位,问原两种鞋各有________双?8.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去。
小李骑自行车的速度是10.8千米/小时,从乙地到甲地去。
他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇。
问:小李骑车从乙地到甲地需要________分?9.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要________秒钟?10.柳阴街小学的校园里,原柳树的棵数是全校树木总棵数的25,今年又栽种了50棵柳树,这样,柳树的棵数就占全校树木总棵数的511,问柳阴街小学原一共有________棵树木?11.1000千克青菜早晨测得它的含水率为97%,这些菜到了下午测得含水率为95%,那么这些菜的重量减少了________千克?12.早上水缸放满了水,白天用去了其中的20%,傍晚又用去了27升,晚上用去剩下的10%,最后剩下的水是半水缸多1升,问早上放入________升水?13.粗蜡烛和细蜡烛长短一样。
枫杨外国语数学考题及答案-小升初
1.把一根绳子对折,再对折,然后把对折后绳子剪成三段,这根线绳总共被剪成了________小段。
解:首先分析对折后从中间剪断情况:如果绳首尾相连(一个圆),对折n 次后,段数是2^n,现在首尾断开,相当于多了一段,即段数为:2^n+1 再分析:把绳子剪成M截,相当于把两边的段数去掉后,中间增加的段数(由于中间的绳子没有相连,其段数=2^n。
即段数=2^n+1+2^n*(m-2)=2^2+1+2^2*(3-2)=4+1+4*1=92.浩浩拿了216元钱去买一种奥运纪念册,正好将钱用完,回家后他算了算,如果每本纪念册能便宜1元,那么他就可以多买3本,钱也正好用完。
那么,那所买的纪念册的单价是________元。
解:设原来买了X册纪念册,X/3=(216/X)-1 X=24,单价=216/24=93.有八个编号分别为①-⑧的小球,其中有六个一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④轻,第二次⑤+⑥比⑦+⑧重,第三次①+③+⑤和②+④+⑧一样重,那么这两个轻球的编号是________。
解:第一次可以初定轻球在1、2中第二次可以初定轻球在7、8中第三次可以确定轻球为1、84.吹泡机一次能吹出80个肥皂泡,每分钟吹一次,肥皂泡被吹出后,经过1分钟有一半破掉,经过2分钟还有没破,经过2.5分钟后就全破了。
吹泡机连续吹100次后,没有破的肥皂泡还有________个。
解:根据题意:97分钟及之前的泡泡到100分钟时全破了,只需计算98、99、100分钟的吹出来的泡泡数在100分钟时未破的数量,98分钟吹的泡未破数=80*1/20=4个99分钟泡未破数=80/2=40个,100分钟全未破,答案:4+40+80=124个。
5.一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合作18天完成,那么丙一个人来做,完成这项工作需要___48_____天。
枫杨外国语小升初数学试题及答案
枫杨入学测试填空题每题五分共20题满分100分不写过程1.把一根绳子对折,再对折,然后把对折后绳子剪成三段,这根线绳总共被剪成了________小段。
2.浩浩拿了216元钱去买一种奥运纪念册,正好将钱用完,回家后他算了算,如果每本纪念册能便宜1元,那么他就可以多买3本,钱也正好用完。
那么,那所买的纪念册的单价是________元。
3.有八个编号分别为①-⑧的小球,其中有六个一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④轻,第二次⑤+⑥比⑦+⑧重,第三次①+③+⑤和②+④+⑧一样重,那么这两个轻球的编号是________。
4.吹泡机一次能吹出80个肥皂泡,每分钟吹一次,肥皂泡被吹出后,经过1分钟有一半破掉,经过20分钟还有120没破,经过25分钟后就全破了。
吹泡机连续吹100次后,没有破的肥皂泡还有________个。
5.一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合休憩18天完成,那么丙一个人做,完成这项工作需要________天。
6.有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和等于2113,则被除数是________7.某鞋店有旅游鞋和皮鞋400双,在售出旅游鞋的14后,又采购70双皮鞋,此时皮鞋恰好是旅游鞋的2位,问原两种鞋各有________双?8.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去。
小李骑自行车的速度是10.8千米/小时,从乙地到甲地去。
他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇。
问:小李骑车从乙地到甲地需要________分?9.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要________秒钟?10.柳阴街小学的校园里,原柳树的棵数是全校树木总棵数的25,今年又栽种了50棵柳树,这样,柳树的棵数就占全校树木总棵数的511,问柳阴街小学原一共有________棵树木?11.1000千克青菜早晨测得它的含水率为97%,这些菜到了下午测得含水率为95%,那么这些菜的重量减少了________千克?12.早上水缸放满了水,白天用去了其中的20%,傍晚又用去了27升,晚上用去剩下的10%,最后剩下的水是半水缸多1升,问早上放入________升水?13.粗蜡烛和细蜡烛长短一样。
枫杨外国语数学考题及答案解析-小升初
枫阳考题一、 计算题。
(3道题每题5分)二、 填空。
(每题5分)1、4点20分,再过--------分时针和分针成30度角。
解析:先求4点20分时针分针的夹角(10度)再让时针不动,分针动40度就和时针成30度角。
40÷(6-0.5)=1137 2、一个工程队18天修了三分之一,如果做了3天后,效率提高五分之一,一共要----------天完成一半。
解析:简单,先求工程队原有的工效,五十四分之一。
23天3、一个圆柱侧面展开长18、宽12的长方形,圆柱的体积是-----------(拍取3)解析:注意两个答案 用圆柱的体积等于侧面积一半乘半径324 2164、现有甲2m 千克纯酒精,乙3m 千克纯水,从甲取A 倒入乙,从乙取A 到甲,这时甲的纯净水比乙的酒精多( )千克。
解析:最终甲和乙各自的数量没变,所以交换的相等,结果是0.5、N + ( N +1)+ (N +2)没有进位,我们叫他可连数,如32+33+34没有进位,32就是可连数,问200以内有-----个可连数。
解析:方法一:个位需要满足:n+(n+1)+(n+2)<10,即N<2.3,所以个位可取0,1,2,三个数.十位需要满足:n+n+n<10,即n<3.3所以十位可取0,1,2,3,四个数百位上取0和1 (假设0n 就是n )故连绵数共有4×3×2=24 个方法二:列举三、解答题。
1.一个小孩拿40块糖说分给了9个人,每个人的糖都不一样。
每人至少有一个,问成不成立。
7分解析:不成立。
(1+9)×9÷2=45(颗)。
2.进一批货 4万元,卖的很快,进价涨4元,又进8.8万元的货,这批量是上批的2倍,都定价58元,还有150件打8折,求共赢利多少元?9分解析:如果第二次进和第一次同样的货要8.8÷2=4.4万元第一次进货件数 4.4-4=0.4万元=4000元 4000÷4=1000件第二次进货件数 1000×2=2000件共进货2000+1000=3000件(3000-150)×58+150×58×0.8-128000=44260(元)3. 两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带30桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?10分解析:首先清楚油能不能存在某个地方,以题意只能换油,给能存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
枫杨外国语考试题详解
一、填空(每题4分,共40分)
1、27
3用循环小数表示,小数点后第2012位上的数字是 。
解析:杂题(周期问题) 因为
73=0.428571428571………… 6个一组循环 2012÷6=335……2 第二个数字是2. 答案:2
2、有一个数,被3除余2,被4除余1,那么这个数除以12余 。
解析:数论问题
A ÷3=m ……2 等价于A ÷3=(m-1)+5
A ÷4=n ……1 等价于 A ÷4=(n-1)+5
所以A 的最小值:A=3×4+5=17 17÷12=1 (5)
答案:5
3、一个真分数的分子和分母相差102,若这个分数的分子和分母都加上23,所得的新分数约分后得4
1,这个真分数是 。
解析:数论问题
由于分子分母都加上23,所以它们的差不变,仍然是102.此时分母是分子的4倍。
所以此时分子为102÷(4-1)=34 原分子为:34-23=11 原分母为:11+102=113
答案:113
4、4时10分,时针和分针的夹角是 度。
解析:行程问题(时钟问题)
这道题考查的是时钟问题。
关键在找到时针和分针的速度。
分针速度:360÷60=6(度/分钟) 时针速度:360÷12÷60=0.5(度/分钟) 从四点整开始考虑,分钟和时针都走了10分钟。
四点整的时候分针时针相差: 4×30=120(度) 120-(6-0.5) ×10=65(度)
答案:65(度)
5、从1开始2012个连续自然数的积的末尾有 个连续的零。
解析:数论问题
这道题考查数论中的因式分解。
关键是考虑0是怎样出现的。
因为10=2×5, 也就是说只要有一个2和一个5就会出现一个0.显然从1开始2012个连续自然数中含因数2的数远多于含因数5数。
因此只需要考虑因数5的个数就可以了。
这样我们需要考虑5的倍数,在2012以内,总共有20125=402…2,所以有402个因数5。
但是此时我们仍然需要考虑诸如25=5*5.可以提供2个5.而在2012以内,25的倍数有:201225=80…12。
所以又带80个5.同样,我们考虑到125=5*5*5其中有3个5.在2102以内有2012125=16…12.又带16个5.还有625=5*5*5*5.在2012以内,有2012625=3…137。
又带3个5. 所以5的个数一共有:402+80+16+3=501(个)
答案:501
6、有两筐苹果,甲筐占总数的2011,如果从甲筐取出7.5千克放入乙筐,这时乙筐占总数的53,甲筐
原有 千克苹果。
解析:分数应用题 关键在于找不变量。
乙筐原占总数:1-
2011=209 7.5÷(53-209)=50(千克) 50×2011=27.5(千克) 答案:27.5
7、一个三角形的三个内角之比为1:2:3,则这个三角形是 三角形。
解析:比和比例
180÷(1+2+3)×3=90(度)
答案:直角
8、蕾蕾读一本252页的书,已读的页数等于还没有读过页数的2
21倍,蕾蕾读过 页。
解析:分数应用题,和倍问题
没有读过的:252÷(1+2
2
1)=72(页) 读过的:252-72=180(页) 答案:180
9、2个篮球的价钱可以买6个排球,6个足球的价钱可以买3个篮球,买排球、足球、网球各1个的价钱可以买1个篮球,那么,买1个篮球的价钱可以买 个网球。
解析:应用题
2个篮球=6个排球 3个篮球=6个足球 1个篮球=1个排球+1个足球+1个网球
6个篮球=6个排球+6个足球+6个网球 即:6个篮球=2个篮球+3个篮球+6个网球
所以:1个篮球=6个网球
答案:6
10、某班有60人,他们着装白色或黑色上衣,黑色或蓝色裤子,其中有12人穿白色上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有 人?
解析:计数问题(容斥原理)
解法一:有34人穿黑裤子,那么穿蓝裤子的有60-34=26人,有12人穿白上衣蓝裤子,说明还有26-12=14人是穿黑上衣蓝裤子,有29人穿黑上衣,那么,有29-14=15人穿黑上衣黑裤子。
解法二:34人穿黑裤子中,则穿白色或黑色上衣。
29人穿黑上衣,则穿黑色或蓝色裤子。
再加上12人穿白色上衣蓝裤子,则比总人数多加了穿黑上衣黑裤子的人数。
所以穿黑上衣黑裤子的人数为:(12+34+29)-60=15(人)
答案:15
二、计算题(每题5分,共20分) 1、0.125×7.37+
81×3.63-12.5×0.1 2、1174×(232-43)+1211÷21
17 ()0.1257.37 3.63100.125
=⨯+-= 2
76171721)12
114338(1721=⨯=+-⨯= 3、7131314268161674⎛⎫-+÷⨯ ⎪⎝⎭ 4、345345345345246123123123123⨯
()391316126816137416132740.5
⎛⎫=-+⨯⨯ ⎪⎝⎭=-+⨯= 345246123690=⨯=
三、应用题(每题8分,共40分)
1、果果和妈妈一起去超市,买洗漱用品花了总钱数的51多100元,买小食品花了余下的31少20元,又买了一个600元的饮水机,正好花完所带的钱,果果妈妈一共带了多少钱?
解析:分数应用题
(600-20))311(-÷=870(元) (870+100))511(-÷=1212.5(元)
答案:果果妈妈一共带了1212.5元。
2、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山的速度是各自上山速度的1.5倍。
而且甲比乙速度快,甲到达山顶时,乙离山顶180米,当乙到达山顶时,甲恰好下到半山腰,那么山脚到山顶多少米?
解析行程问题
在乙到达山顶走180米这段时间内,甲恰好下到半山腰,因为甲下山的速度是上山速度的1.5倍,所以当甲下山走了一半就相当于又向上走了山高的13
(在相同的时间内,路程比等于速度比),故当甲走到山顶的时候,乙走了1803=540⨯米,此时还距离山顶180米,所以从山脚到山顶是540+180=720米.
答案:山脚到山顶一共720米。
3、一项工作,甲、乙两人合作8天完成,乙、丙两人合作9天完成。
丙、甲两人合作18天完成,那么丙一个人做,完成这项工作需要多少天?
解析:工程问题
设工程总量为'1", 甲功效+乙功效=
18
, 乙功效+丙功效=19
, 丙功效+甲功效=118, 三个式子相加为 甲功效+乙功效+丙功效=
748, 故丙的功效为148
,所以丙一个人做,完成这项工作需要48天. 答案:丙单独完成这项工程需要48天。
4、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就占25%,那么,这堆果糖中有奶糖多少块?
解析:分数应用题
原奶糖:水果糖=4555=911,
现在为奶糖:水果糖=2575=13,
奶糖没有变化,故把份数化为一样,
原奶糖:水果糖=911,
现在为奶糖:水果糖=927,
水果糖增加16份,水果糖又是增加16块, 所以1份是一块,
所以奶糖的9块。
答案:这堆果糖中奶糖有9块。
5、如图,求阴影部分的周长是多少厘米?
30厘米
30 度
解析:几何求曲线周长
阴影部分的周长为两个圆弧加上直一条直径,
2152+23030360+30ππ⨯⨯÷⨯⨯⨯÷
=20π+30 =92.8(厘米)
答案:阴影部分的周长是92.8厘米.
附加题(10分) 甲、乙两人同时从A 地出发,在直道A 、B 两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A 、B 两地相距多少米? 解析:行程问题(多次相遇和追及问题)
第二次甲追上乙的地点第一次相遇地点
第二次相遇地点B
A
甲和乙的速度之比为7248=32故相同的时间内甲的路程和乙的路程比试32. 如果总路程有5格,第一次迎面相遇,两人加在一起走了2个全程,总共走10格,甲走6格,乙走4格。
第二次迎面相遇两人加在一起一共走了4个全程,一共20格。
甲走12格,乙走8格,相遇地点如图所示。
而当甲第一次追上乙,要比乙多走10格,故第一追上乙,甲需要走30格才能追上乙,第二次追上乙还需要再走30格,第二次追上乙的地点如图所示,故甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距为两格,所以1格距离为:80 2=40米,故A、B两地相距40*5=200米.
答案:200(米)。