2014届一轮复习数学试题选编23椭圆(学生版)

合集下载

江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)(学生版)

江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)(学生版)

江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)填空题1 .(江苏省盐城市2013届高三10月摸底考试数学试题)函数ln ,(0,)y x x x =-∈+∞的单调递减区间为________.2 .(江苏省徐州市2013届高三期中模拟数学试题)若函数52++=x mx y 在[2,)-+∞上是增函数,则m 的取值范围是____________.3 .(江苏省无锡市2013届高三上学期期中考试数学试题)函数))(1()(a x x x f +-=为奇函数,则)(x f 的减区间为______________.4 .(江苏省苏州市五市三区2013届高三期中考试数学试题 )已知函数)(x f 在定义域),0(+∞上是单调函数,若对任意),0(+∞∈x ,都有2]1)([=-x x f f , 则)51(f 的值是____________.5 .(江苏省苏州市五市三区2013届高三期中考试数学试题 )函数xx y +-=11的单调递减区间为__________________. 6 .(江苏省南京市2013届高三9月学情调研试题(数学)WORD 版)已知函数f (x )=⎩⎨⎧e x -k ,x ≤0,(1-k )x +k ,x >0是R 上的增函数,则实数k 的取值范围是_______.7 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))函数2()||f x x x t =+-在区间[-1,2]上最大值为4,则实数t=____________________.8 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))给定函数①1y x -=,②121(1),y og x =+③|1|,y x =-④12,x y +=其中在区间(0,1)上单调递减的函数序号为______________________________.9 .(江苏省南通市、泰州市、扬州市、宿迁市2013届高三第二次调研(3月)测试数学试题)设实数x 1,x 2,x 3,x 4,x 5均不小于1,且x 1·x 2·x 3·x 4·x 5=729,则max{x 1x 2,x 2x 3,x 3x 4,x 4x 5}的最小值是 ▲ .10.(苏北老四所县中2013届高三新学期调研考试)已知定义在R 上的奇函数)(x f 在区间),0(+∞上单调递增,若0)21(=f ,△ABC 的内角A 满足0)(cos <A f ,则A 的取值范围是11.(2010年高考(江苏))设函数f(x)=x(e x +ae -x ),x ∈R,是偶函数,则实数a =________________ 12.(江苏省徐州市2013届高三期中模拟数学试题)1()21x f x a =--是定义在(,1][1,)-∞-+∞上的奇函数, 则()f x 的值域为________._13.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)设f (x )奇函数,当0x ≥时, f (x )=2x -x 2,若函数f (x )(x ∈[a ,b ])的值域为[1b ,1a],则b 的最小值为____. 14.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)下列函数为奇数函数的是_______.①.2x y = ; ②3x y =;③ x y 2=;④ x y 2log =.15.(江苏省南京市四校2013届高三上学期期中联考数学试题)若函数()f x =是偶函数,则实数a 的值为 ________.16.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))已知2234,0(),0x x x f x ax bx x ⎧-≥⎪⎨+<⎪⎩为偶函数,则ab=______________________.17.(江苏省2013届高三高考模拟卷(二)(数学) )定义在R 上的函数f (x )满足f (x )=⎩⎨⎧3x -1,x ≤0,f (x -1)-f (x -2),x >0,则f (2013)=________.18.(江苏省2013届高三高考压轴数学试题)已知函数()13log )12a x f x x a =+++-(0,1a a >≠),如果()3log 5fb =(0,1b b >≠),那么13log f b ⎛⎫ ⎪⎝⎭的值是______.19.(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)已知函数2221 0 () 0ax x x f x x bx c x ⎧--⎪=⎨++<⎪⎩,≥,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交 于四个不同点A ,B ,C ,D .若AB BC =,则实数t 的值为______.20.(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设函数f(x)是定义在R 上的奇函数,且f(a)>f(b), 则f(-a)_________ f(-b)(填“>”或:“<”)21.(南通市2013届高三第一次调研测试数学试卷)定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =,则(2013)f =________.解答题22.(江苏海门市2013届高三上学期期中考试模拟数学试卷)求函数y .江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)参考答案 填空题1. (0,1)2.410≤≤m 3. 11[,]22- 4. 65. ),1(),1,(+∞---∞6. [12,1)7. 2或1548. ①②③9. 910. ),32()2,3(ππππ . 11. —1 12. 3113[,)(,]2222-- 13. 1- 14. ②15. 2 ;16. 1217. -1318. 3- .19. 74- 20. <21.答案:14. 本题考查一般函数的性质——周期性在解题中的应用.解答题22.因为22y =≤22[1][12]33x x +-++=⨯∴y ≤3 ,= “=”号,即当0x =时,max 3y =。

2014届一轮复习数学试题选编24双曲线(学生版)

2014届一轮复习数学试题选编24双曲线(学生版)

江苏省2014届一轮复习数学试题选编24:双曲线填空题1 .(苏州市第一中学2013届高三“三模”数学试卷及解答)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线的斜率为2,且右焦点与抛物线243y x =的焦点重合,则该双曲线的方程为____.2 .(2012年江苏理)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m 的值为____.3 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))已知点P 是椭圆222212222211,,11x y x y F F a a a a +=-=+-与双曲线的交点是椭圆焦点,则12cos F PF ∠=________________.4 .(南京市、淮安市2013届高三第二次模拟考试数学试卷)在平面直角坐标系xOy 中,已知双曲线C:22143x y -=.设过点M(0,1)的直线与双曲线C 交于A 、B 两点,若2AM MB = ,则直线的斜率为_____.5 .(南通市2013届高三第一次调研测试数学试卷)已知双曲线22221y x a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为________.6 .(江苏省徐州市2013届高三期中模拟数学试题)已知对称中心为原点的双曲线2122=-y x 与椭圆有公共的焦点,且它们的离心率互为倒数,则该椭圆的标准方程为___________________. 7 .(苏州市2012-2013学年度第一学期高三期末考试数学试卷)在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y E a b a b-=>>的左顶点为A ,过双曲线E 的右焦点F 作与实轴垂直的直线交双曲线E 于B ,C 两点,若ABC ∆为直角三角形,则双曲线E 的离心率为_________.8 .(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设双曲线22145x y -=的左、右焦点分别为1F ,2F ,点P 为双曲线上位于第一象限内一点,且12PF F 的面积为6,则点P 的坐标为___________9 .(江苏省徐州市2013届高三考前模拟数学试题)已知双曲线与椭圆2212x y +=有相同的焦点,且它们的离心率互为倒数,则该双曲线的方程为________.10.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)方程22115x y k k =-++表示双曲线的充要条件是k ∈____. 11.(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为,F 若以F 为圆心的圆05622=+-+x y x 与此双曲线的渐近线相切,则该双曲线的离心率为_____.12.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)已知双曲线()222210,0x y a b a b -=>>,1,B B 分别是双曲线虚轴的上、下端点,,A F 分别是双曲线左顶点和坐焦点,若双曲线的离心率为2,则AB 与1B F夹角的余弦值为______.13.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)若双曲线221(0)yx a a-=>的一个焦点到一条渐近线的距离等于3,则此双曲线方程为______.14.(常州市2013届高三教学期末调研测试数学试题)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(1,2),则该双曲线的离心率的值为______.15.(南京市四星级高级中学2013届高三联考调研考试(详细解答)2013年3月 )已知双曲线的中心在坐标原点,一个焦点为(10,0)F ,两条渐近线的方程为43y x =±,则该双曲线的标准方程为__________.16.(镇江市2013届高三上学期期末考试数学试题)设双曲线22221x y a b-=的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且124PF PF =,则此双曲线离心率的最大值为______.17.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)已知1F ,2F 是双曲线的两个焦点,以线段12F F 为边作正12MF F ∆,若边1MF 的中点在此双曲线上,则此双曲线的离心率为__________.18.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))已知对称轴为坐标轴且焦点在x 轴上的双曲线,两个顶点间的距离为2,焦点到渐近线的距离为2,则双曲线的方程为________________________. 19.(南京市、盐城市2013届高三第三次模拟考试数学试卷)在平面直角坐标系xOy 中,点F是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过F 作双曲线C 的一条渐近线的垂线,垂足为A ,延长FA 与另一条渐近线交于点B .若FB →=2FA →,则双曲线的离心率为________.20.(2010年高考(江苏))在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M,点M 的横坐标是3,则M 到双曲线右焦点的距离是__________21.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2= 4x 的准线交于A 、B 两点,AB =3,则C 的实轴长为______.22.(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)在平面直角坐标系xOy 中,设椭圆与双曲线2233y x -=共焦点,且经过点()22,,则该椭圆的离心率为____.23.(2013江苏高考数学)双曲线191622=-y x 的两条渐近线的方程为_____________.江苏省2014届一轮复习数学试题选编24:双曲线参考答案填空题1. 1222=-y x2. 由22214x y m m -=+得22==4=4a m b m c m m +++,,.∴24===5c m m e a m++,即244=0m m -+,解得=2m . 3. 0 4. 12±5. 答案:221520y x -=. 本题考查双曲线的标准方程、简单性质与圆的有关知识.对双曲线的讲评不宜过分引申6. 1222=+y x7. 2 8. ⎪⎪⎭⎫⎝⎛2,556 9. 22221x y -= 10. (1,5)-;11.355 12. 71413. 2213y x -= 14. 515.2213664x y -= 16.35; 17. 31+18. 2214y x -=19. 2 20. 4 21. 1; 22. 2223.解析:本题主要考察双曲线12222=-by a x 的两条渐近线的求法,把1改成0得02222=-b y a x ∴双曲线12222=-b y a x 的两条渐近线的方程为x a by ±=∴双曲线191622=-y x 的两条渐近线的方程为x y 43±=。

高考数学一轮专项复习讲义(通用版)-椭圆(一)(含解析)

高考数学一轮专项复习讲义(通用版)-椭圆(一)(含解析)

椭圆(一)复习要点1.了解椭圆的实际背景,感受椭圆在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、标准方程及简单几何性质.3.通过对椭圆的学习,进一步体会数形结合的思想.4.了解椭圆的简单应用.一椭圆的概念1.我们把平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,焦距的一半称为半焦距.2.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数:(1)若a >c ,则集合P 为椭圆;(2)若a =c ,则集合P 为线段;(3)若a <c ,则集合P 为空集.二椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:坐标轴对称中心:原点顶点A 1(-a,0),A 2(a,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b焦距|F 1F 2|=2c焦点F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )离心率e =ca∈(0,1)a ,b ,c 的关系c 2=a 2-b 2常/用/结/论椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.如图所示,设∠F 1PF 2=θ.一般常用定义+余弦定理解决.(1)当P 为短轴端点时,θ最大,S △F 1PF 2最大.(2)S △F 1PF 2=12|PF 1||PF 2|sin θ=b 2tan θ2=c |y 0|.设|PF 1|=m ,|PF 2|=n +n =2a ,①2=m 2+n 2-2mn cos θ,②①2代入②得mn =2b 21+cos θ,则S △F 1PF 2=12mn sin θ=b 2sin θ1+cos θ=b 2·2sin θ2cosθ22cos 2θ2=b 2tan θ2.(3)|PF 1|max =a +c ,|PF 1|min =a -c .(4)|PF 1|·|PF 2=a 2.(5)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ.1.判断下列结论是否正确.(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.()(2)y 2m 2+x 2n 2=1(m ≠n )表示焦点在y 轴上的椭圆.()(3)椭圆的离心率e 越大,椭圆就越圆.()(4)方程mx 2+ny 2=1(m >0,n >0)表示的曲线是椭圆.()2.(2024·重庆诊断)已知椭圆C :16x 2+4y 2=1,则下列结论正确的是()A .长轴长为12B .焦距为34C .短轴长为14D .离心率为32解析:把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32,故选D.答案:D3.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:-k >0,-3>0,-k ≠k -3,解得3<k <5且k ≠4.答案:(3,4)∪(4,5)4.(2024·广东深圳模拟)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为____________.解析:因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以c a =12,所以c 2a 2=a 2-b 2a 2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).答案:x 24+y23=1(答案不唯一)题型椭圆的定义及应用典例1(1)(2024·云南丽江模拟)一动圆P 与圆A :(x +1)2+y 2=1外可得|PA|=r +1.切,而与圆B :(x -1)2+y 2=64内切,那么动圆的圆心P 的轨迹是()数形结合可得|PB|=8-r.A .椭圆B .双曲线C .抛物线D .双曲线的一支(2)(2023·全国甲卷,文)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()可直接利用焦点三角形的面积秒杀:S △F 1PF 2=b 2tan θ2=12|PF 1|·|PF 2|⇒|PF 1|·|PF 2|.A .1B .2C .4D .5(3)(2024·江西九江模拟)已知椭圆C :x 28+y 24=1的左、右焦点分别为F 1,F 2,A ,B 为平面内异于F 1,F 2的两点.若AB 的中点P 在C 上,且AC →=2AF 1→,AD →=2AF 2→,则|BC |+|BD |=()A .4B .42C .8D .82解析:(1)设动圆P 的半径为r ,又圆A :(x +1)2+y 2=1的半径为1,圆B :(x -1)2+y 2=64的半径为8,可知圆A 在圆B 内部,则|PA |=r +1,|PB |=8-r ,可得|PA |+|PB |=9,又9>2=|AB |,则动圆的圆心P 的轨迹是以A ,B 为焦点,长轴长为9的椭圆.故选A.(2)方法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan 45°=1=12×|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.方法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16.又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.(3)如图所示,连接PF 1,PF 2,∵AC →=2AF 1→,AD →=2AF 2→,∴F 1,F 2分别为线段AC ,AD 的中点.又P 为AB 的中点,∴PF 1,PF 2分别是△ABC 和△ABD 的中位线,∴|BC |=2|PF 1|,|BD |=2|PF 2|,【划重点】通过中位线将待求长度转化为椭圆上的点到焦点的距离,便可利用椭圆定义求值了.∵点P 在C 上,∴|PF 1|+|PF 2|=2a =42,∴|BC |+|BD |=82.故选D.1.椭圆定义的应用范围(1)确认平面内与两定点有关的轨迹是不是椭圆.(2)解决与焦点有关的距离问题.2.焦点三角形的应用椭圆上一点P 与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;常见题型:①周长;②面积;③焦半径.利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.对点练1(1)已知P 为椭圆x 225+y 216=1上一点,M ,N 分别是圆(x +3)2+y 2=4和(x -3)2+y 2=1上的点,则|PM |+|PN |的取值范围是()A .[7,13]B .[10,15]C .[10,13]D .[7,15](2)(2023·全国甲卷,理)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则|PO |=()A.25B.302C.35D.352(3)已知A -12,0,B 是圆x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.解析:(1)如图,设F 1,F 2分别为椭圆x 225+y 216=1的左、右焦点,则由椭圆的定义,得|PF 1|+|PF 2|=2a =10,所以7=10-(1+2)≤|PM |+|PN |≤10+(1+2)=13,即|PM |+|PN |的取值范围为[7,13].故选A.(2)由题不妨设F 1,F 2分别为椭圆的左、右焦点,则F 1(-3,0),F 2(3,0),所以|OF 1|=|OF 2|=3,|F 1F 2|=23,|PF 1|+|PF 2|=6.在△POF 1中,由余弦定理得cos ∠POF 1=|OF 1|2+|OP |2-|PF 1|22|OF 1|·|OP |,在△POF 2中,由余弦定理得cos ∠POF 2=|OF 2|2+|OP |2-|PF 2|22|OF 2|·|OP |,又∠POF 1+∠POF 2=π,所以cos ∠POF 1+cos ∠POF 2=|OF 1|2+|OP |2-|PF 1|22|OF 1|·|OP |+|OF 2|2+|OP |2-|PF 2|22|OF 2|·|OP |=0,又|OF 1|=|OF 2|,所以|PF 1|2+|PF 2|2=|OF 1|2+|OF 2|2+2|OP |2=6+2|OP |2.在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=|PF 1|+|PF 2|2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|=36-122|PF 1|·|PF 2|-1=35,解得|PF 1|·|PF 2|=152,又因为|PF 1|+|PF 2|=6,所以|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=36-15=21,所以6+2|OP |2=21,所以|OP |=152=302.故选B.(3)如图,由题意知|PA |=|PB |,|PF |+|BP |=2.所以|PA |+|PF |=2且|PA |+|PF |>|AF |=1,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.答案:(1)A (2)B(3)x 2+43y 2=1题型椭圆的标准方程典例2求满足下列各条件的椭圆的标准方程.(1)经过点P 1(6,1),P 2(-3,-2);宜采用焦点不定的设法:mx 2+ny 2=1(m >0,n >0,且m≠n),这样可避免分类讨论,简化计算过程.(2)与椭圆x24+y23=1有相同的离心率且经过点(2,-3).注意要讨论焦点所在的轴.解:(1)设椭圆的方程为mx2+ny2=1(m>0,n>0,m≠n),∵点P1(6,1),P2(-3,-2)在椭圆上,m+n=1,m+2n=1,=19,=13.故x29+y23=1为所求椭圆的方程.(2)方法一:e=ca=a2-b2a=12.若焦点在x轴上,设所求椭圆方程为x2m2+y2n2=1(m>n>0),思路较自然,找到关于m,n的方程组即可.则由e2=1-b2a2=14,得1=14,从而=34,nm=32.又4m2+3n2=1,∴m2=8,n2=6.∴所求椭圆的方程为x28+y26=1.若焦点在y轴上,设方程为y2m2+x2n2=1(m>n>0),则3m2+4n2=1,且nm=32,解得m2=253,n2=254.故所求椭圆的方程为y2253+x2254=1.方法二:若焦点在x轴上,设所求椭圆方程为x24+y23=t(t>0),将点(2,-3)代入,此法是共离心率椭圆方程的设法,简化运算.得t=224+-323=2.故所求椭圆的方程为x28+y26=1.若焦点在y轴上,设椭圆的方程为y24+x23=λ(λ>0),代入点(2,-3),得λ=2512,∴所求椭圆的方程为y2253+x2254=1.求椭圆标准方程的两种方法(1)定义法:根据椭圆的定义确定2a,2c,然后确定a2,b2的值,再结合焦点位置写出椭圆的标准方程.(2)待定系数法:具体过程是先定位,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组.如果焦点位置不确定,那么要考虑是否有两解.有时为了解题方便,也可把椭圆方程设成mx2+ny2=1(m>0,n>0,m≠n)的形式.解题步骤如下:对点练2(1)已知方程(k-1)x2+(9-k)y2=1,若该方程表示椭圆方程,则实数k的取值范围是()A.(1,9)B.(9,+∞)C.(-∞,1)D.(1,5)∪(5,9)(2)古希腊数学家阿基米德用“逼近法”得到椭圆面积的4倍除以圆周率等于椭圆的长轴长与短轴长的积.已知椭圆C的中心在原点,焦点F1,F2在y轴上,其面积为83π,过点F1的直线l与椭圆C交于点A,B且△F2AB的周长为32,则椭圆C的方程为()A.x2 64+y23=1B.y 264+x 23=1C.x 264+y 248=1D.y 264+x 248=1解析:(1)因为方程(k -1)x 2+(9-k )y 2=1-1>0,-k >0,-1≠9-k ,解得1<k <5或5<k <9,所以实数k 的取值范围是(1,5)∪(5,9).故选D.(2)∵焦点F 1,F 2在y 轴上,∴可设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),面积为S ,由题意可得4Sπ=2a ×2b =4ab ,∴S =ab π=83π,即ab =83,∵△F 2AB 的周长为32,∴4a =32,则a =8,∴b =3,故椭圆方程为y 264+x 23=1.故选B.答案:(1)D(2)B题型椭圆的离心率的多维研讨维度1求离心率的值或与离心率有关的计算典例3(1)(2023·新高考全国Ⅰ卷)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:注意焦点在x 轴呦!x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()分别求出e 1,e 2,代入可求得a.A.233B.2C.3D.6(2)(2024·河北保定调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,P 为椭圆上一点,∠PF 1F 2=π3,过F 2作∠F 1PF 2的外角平分线的垂线交F 1P 的延长线于点N .若sin ∠PNF 2=64,则椭圆的离心率为()A.3-12B.32C.52D.5-12(3)如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),篮球的影子是椭圆,篮球的接触点(切点)就是影子椭圆的焦点,实际问题中蕴含着直线、圆、椭圆的位置关系,因此准确作图是解决本题的关键.点P 到桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e =________.解析:(1)由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.(2)设NF 2与∠F 1PF 2的外角平分线的交点为M ,∠NPM =∠MPF 2=α,由于sin ∠PNF 2=64,PM ⊥NF 2,所以cos α=sin ∠PNF 2=64,cos 2α=2cos 2α-1=-1=-14,所以cos ∠F 1PF 2=cos(π-2α)=14,sin ∠F 1PF 2=154.设|PF 1|=x ,则|PF 2|=2a -x .在△PF 1F 2中,由余弦定理得(2c )2=x 2+(2a -x )2-2x (2a -x )cos ∠F 1PF 2①,焦点三角形问题:定义+余弦定理.由正弦定理得2c154=2a -x32,则x =2a -455c ,将其代入①式化简得c 2-5ac +a 2=0,方法:求椭圆的离心率通常考虑建立关于a ,c 的齐次等式.即e 2-5e +1=0,解得e =5+12或e =5-12,由于0<e <1,故e =5-12.故选D.(3)以A 为坐标原点建立如图所示的平面直角坐标系,由题意可得P (0,4),R (-3,0),则直线PR目的是将几何问题代数化.的斜率k PR =43,直线PR :4x -3y +12=0.设影子椭圆的长半轴长为a ,半焦距为c ,则|QR |=a -c .设M (n,1),则Q (n,0),点M 到直线PR 的距离d =|4n -3+12|42+-32=1,解得n =PR 与⊙M 相切:d =r.-1(舍去),n =-72,则|QR |=|-72--3|=12=a -c .设直线PN :kx -y +4=0,则点M -72,1到直线PN 的距离d 1=|-72k -1+4|k 2+-12=1,得45k 2-84k +32=0,Δ>0,∴k PR ·k PN =3245,则k PN =815,直线PN :815x -y +4=0,令y =0,得x N =-152.∴2a =|-152--3|=92,则a =94,故c =74.∴椭圆的离心率e =c a=79.故答案为79.求椭圆的离心率的方法(1)直接求出a ,c 来求解.通过已知条件列方程组,解出a ,c 的值.(2)构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.如:c 2-5ac +a 2=0,即e 2-5e +1=0.对点练3(1)(2024·江苏南京模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F 为其左焦点,直线y=kx (k >0)与椭圆C 交于点A ,B ,且AF ⊥AB .若∠ABF =30°,则椭圆C 的离心率为()A.73 B.63C.76D.66(2)(2024·广东湛江模拟)已知F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点,过椭圆C 的下顶点且斜率为34的直线与以点F 为圆心、半焦距为半径的圆相切,则椭圆C 的离心率为()A.55B.12C.33D.22解析:(1)设椭圆C 的右焦点为F 2,连接AF 2,BF 2,则四边形AFBF 2为平行四边形.设|AF |=m ,∵∠ABF =30°,AF ⊥AB ,∴|BF |=2m ,|BF 2|=|AF |=m ,|BF |+|BF 2|=2m +m =2a ,则m =23a .在△BFF 2中,(2c )2-2×43a ×23a ×cos 120°,整理得4c 2=289a 2,即c =73a ,故椭圆C 的离心率e =c a =73.(2)过椭圆C 的下顶点(0,-b )且斜率为34的直线方程为y =34-b ,即34x -y -b =0,F (c,0),由点到直线的距离公式,得c =|34c -b |c 2=-32bc +b 2,即(2c -b )·(c +2b )=0,则2c -b =0,b =2c .又a 2=b 2+c 2,即a 2=(2c )2+c 2=5c 2,解得c a =55.故选A.答案:(1)A (2)A维度2求离心率的取值范围典例4已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范先考虑P 位于上(下)顶点时,e =22,假设a 不变,将椭圆压扁满足题意,即b 变小,c 变大,也即e 变大.围是________.解析:方法一:设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b 2=1.PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0),若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 20+bc 2,∴x 20=a 2c 2-b 2c 2.∵0≤x 20≤a 2,∴0≤c 2-b 2c2≤1.利用x 0∈[-a ,a],找到关于a ,c 的不等式.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1.方法二:若存在点P ,则圆x 2+y 2=c 2与椭圆有公共点,即b ≤c <a ,即b 2≤c 2,∴a 2-c 2≤c 2,∴a 2≤2c 2,∴22≤e <1.故答案为22,求椭圆离心率的取值范围的方法方法解读适合题型几何法利用椭圆的几何性质,如|x |≤a ,|y |≤b,0<e <1,建立不等关系,或者根据几何图形的临界情况建立不等关系借助几何图形更直观.题设条件有明显的几何关系直接法根据已知条件得出不等关系,直接转化为含有a ,b ,c 的不等关系式题设条件直接有不等关系对点练4已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c,0),上顶点为A (0,b ),若在直线x=a2c上存在一点P 满足(FP →+FA →)·AP →=0,则椭圆的离心率的取值范围为()A.12,B.22,C.5-12,,22解析:取AP 的中点Q ,则FQ →=12×(FP →+FA →),所以(FP →+FA →)·AP →=2FQ →·AP →=0,所以FQ⊥AP ,所以△AFP 为等腰三角形,即|FA |=|FP |,且|FA |=b 2+c 2=a .因为点P 在直线x =a 2c上,所以|FP |≥a 2c -c ,即a ≥a 2c -c ,所以c 2+ac -a 2≥0,所以e 2+e -1≥0,解得e ≥5-12或e ≤-5-12.又0<e <1,故5-12≤e <1.故选C.答案:C。

山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法(学生版)

山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法(学生版)

山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法一、选择题1 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)设函数4()(0)f x x ax a =->的零点都在区间[0,5]上,则函数1()g x x=与函数3()h x x a =- 的图象的交点的横坐标为正整数时实数a 的取值个数为( )A .3B .4C .5D .无穷个2 .(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A .在区间),1(),1,1(e e 内均有零点B .在区间),1(),1,1(e e 内均无零点C .在区间)1,1(e 内有零点,在区间),1(e 内无零点D .在区间)1,1(e内无零点,在区间),1(e 内有零点3 .(山东省莱芜市第一中学2013届高三12月阶段性测试数学(理)试题)已知函数21(0)(),()(1)(0)x x f x f x x a f x x -⎧-≤==+⎨->⎩若方程有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(,0]-∞B .[0,1)C .(,1)-∞D .[0,)+∞4 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数2, 0(), 0x x f x x x x ≤⎧=⎨->⎩,若函数()()g x f x m =-有三个不同的零点,则实数m 的取值范围为( ) A .1[,1]2- B .1[,1)2- C .1(,0)4- D .1(,0]4-5 .(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )= 110x⎛⎫⎪⎝⎭,在x ∈[0,4]上解的个数是( )A .1B .2C .3D .46 .(山东省曲阜市2013届高三11月月考数学(理)试题)如果若干个函数图象经过平移后能够重合,则称这些函数为“同族函数”.给出下列函数:①()sin cos f x x x =; ②()2sin 4f x x π⎛⎫=+ ⎪⎝⎭;③()sin f x x x =; ④()21f x x =+其中“同族函数”的是 ( )A .①②B .①④C .②③D .③④ 7 .(山东省实验中学2013届高三第三次诊断性测试理科数学)函数x x x f ln )1()(+=的零点有 ( )A .0个B .1个C .2个D .3个8 .(2013年山东临沂市高三教学质量检测考试理科数学)函数1f (x )lg x x=-的零点所在的区间是( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)9 .(山东省烟台市2013届高三上学期期末考试数学(理)试题)设()338x f x x =+-,用二分法求方程3380x x +-=在(1,2)x ∈内近似解的过程中得(1)0,(1.5)0,(1.25)0f f f <><,则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定10.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+⎩ 的零点个数为 ( )A .3B .2C .1D .011.(山东省凤城高中2013届高三4月模拟检测数学理试题 )若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,()f x x =,则方程3()log ||f x x =的解个数是( )A .0个B .2个C .4个D .6个 12.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))函数23)(3+-=x x x f 的零点为 ( )A .1,2B .±1,-2C .1,-2D .±1, 2 13.(山东省青岛市2013届高三上学期期中考试数学(理)试题)若函数a ax x f 213)(-+=在区间)1,1(-上存在一个零点,则a 的取值范围是 ( )A .51>a B .51>a 或1-<a C .511<<-a D .1a <-14.(山东省曲阜市2013届高三11月月考数学(理)试题)函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数是( )A .0B .1C .2D .315.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)定义在R 上的奇函数()f x ,当x ≥0时, ))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为( )A .1-2aB .21a-C .12a--D .21a--16.(山东省潍坊市2013届高三上学期期末考试数学理( )A .)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是( )A .2k ≤B .10k -<<C .21k -≤<-D .2k ≤-17.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)已知定义在R 上的函数()f x 的对称轴为3x =-,且当3x ≥-时,()23xf x =-,若函数()f x 在区间(1,)()k k k Z -∈上有零点,则K 的值为 ( )A .2或-7B .2或-8C .1或-7D .1或-818.(山东省日照市2013届高三12月份阶段训练数学(理)试题)设函数()f x 的零点为1x ,函数()422x g x x =+-的零点为2x ,若1214x x ->,则()f x 可以是 ( )A .()122f x x =-B .()214f x x x =-+- C.()110xf x =-D .()()ln 82f x x =-19.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))已知0x 是xx f x1)21()(+=的一个零点,)0,(),,(0201x x x x ∈-∞∈,则 ( )A .0)(,0)(21<<x f x fB .0)(,0)(21>>x f x fC .0)(,0)(21<>x f x fD .0)(,0)(21><x f x f 20.(山东省临沂市2013届高三5月高考模拟理科数学)已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 取值范围是( )A .10,5,5+∞ (]()B .10,[5,5+∞ ())C .11,]5,775(()D .11,[5,775())21.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知()f x 是定义在R 上的奇函数,满足33()()22f x f x -+=+,当3(0,)2x ∈时, 2()ln(1)f x x x =-+,则函数()f x 在区间[0,6]上的零点个数是 ( )A .3B .5C .7D .922.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知函数x x f x 21log 2)(-=,且实数a >b >c >0满足0)()()(<⋅⋅c f b f a f ,若实数0x 是函数y =)(x f 的一个零点,那么下列不等式中不可..能.成立的是 ( )A .a x <0B .a x >0C .b x <0 D .c x <0二、填空题 23.(山东省文登市2013届高三3月二轮模拟考试数学(理))函数12()3sin log f x x x π=-的零点的个数是__________.24.(2011年高考(山东理))已知函数()log a f x x x b =+-(0a >,且1a ≠).当234a b <<<<时,函数()f x 的零点()0,1x n n ∈+,*n N ∈,则n =_________.25.(2013届山东省高考压轴卷理科数学)给定方程:1()sin 102x x +-=,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解;④若0x 是该方程的实数解,则0x >–1.则正确命题是___________.26.(山东省烟台市2013届高三上学期期中考试数学试题(理科))函数2221()431x x f x x x x -≤⎧=⎨-+>⎩, , 的图象和函数()()ln 1g x x =-的图象的交点个数是 ____________.27.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)若函数()33f x x x a =-+有三个不同的零点,则实数a 的取值范围是__________.28.(山东省济南市2013届高三3月高考模拟理科数学)()()()()()()()121116()|21|,(),,,n n f x x f x f x f x f f x f x f f x -=-=== .则函数()4y f x =的零点个数为______________.29.(2009高考(山东理))若函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 . 30.(山东省威海市2013届高三上学期期末考试理科数学)已知|||lg |,0()2,0x x x f x x >⎧=⎨≤⎩,则函数22()3()1y f x f x =-+的零点的个数为_______个.31.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)若函数()(01)xf x a x a a a =--≠ 且有两个零点,则实数a 的取值范围是________.山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法参考答案一、选择题1. 【答案】B43()()0f x x ax x x a =-=-=,解得0x =或x =即函数的零点有两个,要使零点都在区间[0,5]上,则有05<≤,解得0125a <≤.由()()h x g x =得31x a x-=,即41x ax -=有正整数解.设4()m x x ax =-,当1x =时,(1)11m a =-=,解得0a =,不成立.当2x =时,4(2)221621m a a =-=-=,解得151252a =<成立.当3x =时,4(3)338131m a a =-=-=,解得2551254a =<成立.当5x =时,4(5)5562551m a a =-=-=,解得6241255a =<成立.当6x =时,4(6)66129661m a a =-=-=,解得12951256a =>,不成立.所以满足条件的实数a 的取值为2,3,4,5,共有4个.选B.2. D 【解析】111()10(1)=0()10333e f e f f e e =->>=+>,,,根据根的存在定理可知,选D.3. C 【解析】做出函数)(x f 的图象如图,,由图象可知当直线为1+=x y 时,直线与函数)(x f 只要一个交点,要使直线与函数有两个交点,则需要把直线1+=x y 向下平移,此时直线恒和函数)(x f 有两个交点,所以1<a ,选C.4. 【答案】 C 由()()=0g x f x m =-得()f x m =,作出函数()y f x =的图象,,当0x >时,2211()()024f x x x x =-=--≥,所以要使函数()()g x f x m =-有三个不同的零点,则104m <<,即1(,0)4-,选C.5. 【答案】D【解析】由)1()1(+=-x f x f ,知)()2(x f x f =+,周期为2,又函数为偶函数,所以)1()1()1(x f x f x f -=+=-,函数关于1=x 对称,在同一坐标内做出函数x y x f y )101(),(==的图象,由图象知在]4,0[内交点个数为个.选D.6. C7. B 【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+的图象,如图由图象中可知交点个数为1个,即函数的零点个数为1个,选B.8. 【答案】B 因为1(2)lg 202f =-<,1(3)lg 303f =->, 所以函数的零点在区间(2,3)上,选B. 9. 【答案】B【解析】因为(1.5)0,(1.25)0f f ><,所以根据根的存在定理可知方程的根落在区间(1.25,1.5)上,所以选B. 10. B 11. C12. C 【解析】由3()320f x x x =-+=得3(22)0x x x ---=,即2(1)(2)0x x -+=,解得1x =或2x =-,选C. 13. B 14. C15. 【答案】A当01x ≤<时,()0f x ≤.当1x ≥时,函数()1|3|f x x =--,关于3x =对称,当1x ≤-时,函数关于3x =-对称,由()()0F x f x a =-=,得(),y f x y a ==.所以函数()()F x f x a =-有5个零点.当10x -≤<,时,01x <-≤,所以122()log (1)log (1)f x x x -=-+=--,即2()log (1)f x x =-,10x -≤<.由2()log (1)f x x a =-=,解得12a x =-,因为函数()f x 为奇函数,所以函数()()F x f x a =-(0<a <1)的所有零点之和为12a x =-,选A. 16. 【答案】D【解析】由()0y f x k =+=,得()f x k =-,所以0k ≤.做出函数()y f x =的图象如图,要使函数()y f x k =+有三个零点,则由2k -≥,即2k ≤-,选D. 17. A18. C 【解析】113()2220422g =+-=-<,1()212102g =+-=>,则11()()024g g ⋅<,所以 21142x <<.若为 A.()122f x x =-,则()122f x x =-的零点为114x =,所以211044x <-<,所以121||4x x -<,不满足题意.如为 B.()214f x x x =-+-的零点为112x =,211024x <-<,所以121||4x x -<,不满足题意.若为 C.()110x f x =-的零点为10x =,所以211042x <-<,所以满足121||4x x ->.若为D.()()ln 82f x x =-的零点为138x =,23133182884x -<-<-,即2131888x -<-<,所以121||8x x -<,不满足题意,所以选C.19. C 【解析】在同一坐标系下做出函数11()(),()2x f x f x x==-的图象由图象可知当0(,)x x ∈-∞时,11()2x x >-,0(,0)x x ∈时,11()2x x<-,所以当)0,(),,(0201x x x x ∈-∞∈,有0)(,0)(21<>x f x f ,选C20. 【答案】A 由(1)()f x f x +=-得,(2)()f x f x +=,所以函数的周期是2. 由()()log =0a g x f x x =-.得()=log a f x x ,分别作出函数(),()=log a y f x y m x x ==的图象,因为(5)=log 5(5)a m m =-.所以若1a >,由图象可知要使函数()()log a g x f x x =-至少6个零点,则满足(5)=log 51a m <.此时5a >.若01a <<,由图象可知要使函数()()log a g x f x x =-至少6个零点,则满足(5)=log 51a m -≥-,此时105a <≤.所以a 取值范围是10,5,5+∞ (](),选A.21. D22. D二、填空题 23. 924.解析:根据(2)log 22log 230a a f b a =+-<+-=,(3)log 32log 340a a f b a =+->+-=,而函数()f x 在(0,)+∞上连续,单调递增,故函数()f x 的零点在区间(2,3)内,故2n =.答案应填:2.25. ②③④【解析】由1()sin 102x x +-=得1sin 1()2x x =-,令()f x =sin x ,()g x =11()2x-,在同一坐标系中画出两函数的图像如右,由图像知:①错,③、④对,而由于()g x =11()2x-递增,小于1,且以直线1=y 为渐近线,()f x =sin x 在-1到1之间振荡,故在区间(0,+∞)上,两者图像有无穷多个交点,所以②对,故选填②③④.26. 2 【解析】画出图象知交点个数为2.27. (2,2)- 【解析】函数的导数为()22'333(1)f x x x =-=-,所以1x =和1x =-是函数的两个极值,由题意知,极大值为(1)2f a -=+,极小值为(1)2f a =-+,所以要使函数()f x 有三个不同的零点,则有20a +>且20a -+<,解得22a -<<,即实数a 的取值范围是(2,2)-. 28. 【答案】8由43()(())0f x f f x ==,即32()10f x -=,解得31()2f x =.又3221()(())2()12f x f f x f x ==-=,解得23()4f x =或21()4f x =.当23()4f x =时,2113()(())2()14f x f f x f x ==-=,解得17()8f x =或11()8f x =,当21()4f x =时,2111()(())2()14f x f f x f x ==-=,解得15()8f x =或13()8f x =,由17()()218f x f x x ==-=,所以1511616x =或.由13()()218f x f x x ==-=,所以1151616x =或.由15()()218f x f x x ==-=,所以1331616x =或.由13()()218f x f x x ==-=,所以1151616x =或.所以共有8个零点.29. 【解析】: 设函数(0,x y a a =>且1}a ≠和函数y x a =+,则函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,就是函数(0,xy a a =>且1}a ≠与函数y x a =+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)xy a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是1>a 答案: 1>a30. 【答案】5 由22()3()10y f x f x =-+=解得()1f x =或1()2f x =.若()1f x =,当0x >时,由lg 1x =,得lg 1x =±,解得10x =或110x =.当0x ≤时,由21x =得0x =.若1()2f x =,当0x >时,由1lg 2x =,得1lg 2x =±,解得x =或x =.当0x ≤时,由122x=得1x =-,此时无解.综上共有5个零点.31. {|1}a a。

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

北京市2014届高三理科数学一轮复习试题选编21椭圆(教师版)

北京市2014届高三理科数学一轮复习试题选编21椭圆(教师版)

北京市2014届高三理科数学一轮复习试题选编21:椭圆一、选择题1 .(北京市海淀区2013届高三上学期期末考试数学理试题 )椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是 ( )A .12(,)33B .1(,1)2C .2(,1)3D .111(,)(,1)322 【答案】D解:当点P 位于椭圆的两个短轴端点时,12F F P ∆为等腰三角形,此时有2个。

,若点不在短轴的端点时,要使12F F P ∆为等腰三角形,则有1122PF F F c ==或2122PF F F c ==。

此时222PF a c =-。

所以有1122PF F F PF +>,即2222c c a c +>-,所以3c a >,即13c a >,又当点P 不在短轴上,所以11PF BF ≠,即2c a ≠,所以12c a ≠。

所以椭圆的离心率满足113e <<且12e ≠,即111(,)(,1)322,所以选 D .二、填空题2 .(北京市西城区2013届高三上学期期末考试数学理科试题)已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F的面积是______.解:由椭圆的方程可知2,a c ==,且12||||24PF PF a +==,所以解得12||3,||1PF PF ==,又12||2F F c ==所以有2221212||||PF PF F F =+,即三角形21PF F 为直角三角形,所以△12PF F 的面积12211122S F F PF ∆==⨯= 3 .(北京东城区普通校2013届高三12月联考理科数学)椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,12F PF ∠的小大为_____________.【答案】120【解析】椭圆22192x y +=的29,3a a ==,22222,7b c a b==-=,所以c =因为14PF =,所以1226PF PF a +==,所以2642PF =-=.所以22222211121212421cos 22422PF PF F F F PF PF PF +-+-===-⨯⨯,所以12120F PF ∠=三、解答题4 .(北京东城区普通校2013届高三12月联考理科数学)(本小题满分14分)已知椭圆:C 22221(0)x y a b a b+=>>椭圆短轴的一个端点与两个焦点构成的三角形的面积为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值;②若点7(,0)3M -,求证:MA MB ⋅为定值.【答案】(本题满分14分)解:(Ⅰ)因为22221(0)x y a b a b+=>>满足222a b c =+, c a =,122b c ⨯⨯=解得2255,3a b ==,则椭圆方程为221553x y += (Ⅱ)(1)将(1)y k x =+代入221553x y +=中得 2222(13)6350k x k x k +++-=4222364(31)(35)48200k k k k ∆=-+-=+>2122631k x x k +=-+因为AB 中点的横坐标为12-,所以2261312k k -=-+,解得3k =±(2)由(1)知2122631k x x k +=-+,21223531k x x k -=+ 所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++2222222357649(1)()()313319k k k k k k k -=+++-++++5 .(北京市朝阳区2013届高三上学期期末考试数学理试题 )已知点A 是椭圆()22:109x y C t t+=>的左顶点,直线:1()l x my m =+∈R 与椭圆C 相交于,E F 两点,与x 轴相交于点B .且当0m =时,△AEF 的面积为163. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线AE ,AF 与直线3x =分别交于M ,N 两点,试判断以MN 为直径的圆是否经过点B ?并请说明理由.【答案】解:(Ⅰ)当0m =时,直线l 的方程为1x =,设点E 在x 轴上方,由221,91x y tx ⎧+=⎪⎨⎪=⎩解得(1,E F ,所以EF =. 因为△AEF的面积为1164233⨯⨯=,解得2t =. 所以椭圆C 的方程为22192x y +=. …………………………………………………4分 (Ⅱ)由221,921x y x my ⎧+=⎪⎨⎪=+⎩得22(29)4160m y my ++-=,显然m ∈R .…………………5分 设1122(,),(,)E x y F x y , 则121222416,2929m y y y y m m --+==++,………………………………………………6分 111x my =+,221x my =+.又直线AE 的方程为11(3)3y y x x =++,由11(3),33y y x x x ⎧=+⎪+⎨⎪=⎩解得116(3,)3y M x +, 同理得226(3,)3y N x +.所以121266(2,),(2,)33y y BM BN x x ==++,……………………9分 又因为121266(2,)(2,)33y y BM BN x x ⋅=⋅++ 12121212363644(3)(3)(4)(4)y y y y x x my my =+=+++++1212212124(4)(4)364()16my my y y m y y m y y +++=+++ 2222216(436)164164(29)3216(29)m m m m m -+-⨯+⨯+=-++22264576641285769m m m ---++=0=.…………………………13分所以BM BN ⊥,所以以MN 为直径的圆过点B . …………………………………14分6 .(2013北京海淀二模数学理科试题及答案)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点. (I)求椭圆M 的方程;(II)直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB ∆(O 为原点)面积的最大值.【答案】解:(I)因为椭圆:M 22221(0)x y a b a b +=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点,所以1a b ==,椭圆M 的方程为2213x y +=(II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆===2211(3)322x x +-≤=,所以AOB S ∆≤,当且仅当1||x =时,AOB S ∆取得最大值为 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t xy =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x kt t +++-= 当224(933)0k t ∆=+->, 即2231k t +>① 方程有两个不同的解又122631kt x x k -+=+,1223231x x ktk +-=+ 所以122231y y t k +=+,又1212112202y y x x k ++=-+-,化简得到2314k t += ②代入①,得到04t <<又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆因为04t <<,所以当2t =时,即k =时,AOB S ∆取得最大值综上,AOB ∆面积的最大值为7 .(2013北京房山二模数学理科试题及答案)已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点A .直线y x m =+交椭圆C 于B ,D (不与点A 重合)两点. (Ⅰ)求椭圆C 的方程;(Ⅱ)△ABD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. 【答案】(Ⅰ) a c e ==22, 22211a b +=,222c b a +=∴2=a ,2=b ,2=c ∴22142x y += (Ⅱ)设11(,)B x y ,22(,)D x y ,由22+142y x m x y ⎧⎪⎪⎨⎪+=⎪⎩2220x m ⇒+-= ∴282m 0∆=-> 22m ⇒-<<, 12,x x += ① 2122x x m =- ②121BD x =-=设d 为点A 到直线BD:=+2y x m 的距离,∴d =∴12ABD S BD d ∆==当且仅当m =(2,2)∈-时等号成立∴当m =,ABD ∆的面积最大, 8 .(2013北京昌平二模数学理科试题及答案)本小题满分13分)如图,已知椭圆22221(0)x y a b a b+=>>的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率2e =F 为椭圆的左焦点,且1AF BF =g .(I)求此椭圆的方程;(II)设P 是此椭圆上异于,A B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =. 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【答案】解:(Ⅰ)由题意可知,(,0)A a -, (,0)B a ,(,0)F c -, ()()1AF BF a c a c =+-=g2221a cb ∴-== 又e =, 22222222134c a b a e a a a --==== ,解得24a = 所求椭圆方程为2214x y += (Ⅱ)设00(,)P x y ,则00(,2)Q x y 00(2,2)x x ≠≠- 由(2,0),A -得0022AQ y k x =+所以直线AQ 方程002(2)2y y x x =++由(2,0),B -得直线l 2,x =的方程为 008(2,)2y M x ∴+ 004(2,)2y N x ∴+由 0000200422224NQ y y x x yk x x -+==--又点P 的坐标满足椭圆方程得到:2200+44x y = ,所以 220044x y -=-000002200022442NQ x y x y x k x y y ===--- ∴直线NQ 的方程:00002()2x y y x x y -=-- 化简整理得到:220000244x x yy x y +=+= 即0024x x yy+=所以点O 到直线NQ 的距离2d O ===圆的半径∴直线NQ 与AB 为直径的圆相切9 .(北京市丰台区2013届高三上学期期末考试 数学理试题 )曲线12,C C 都是以原点O 为对称中心、离心率相等的椭圆.点M 的坐标是(0,1),线段MN 是1C 的短轴,是2C 的长轴.直线:(01)l y m m =<<与1C 交于A,D 两点(A 在D 的左侧),与2C 交于B,C两点(B 在C 的左侧). (Ⅰ)当m=54AC =时,求椭圆12,C C 的方程; (Ⅱ)若OB ∥AN ,求离心率e 的取值范围.【答案】解:(Ⅰ)设C 1的方程为2221x y a+=,C 2的方程为2221x y b +=,其中1,01a b ><<...2分C 1 ,C 2的离心率相同,所以22211a b a-=-,所以1ab =,……………………….…3分∴C 2的方程为2221a x y +=.当A (2a -,C 1(2a . .………………………………………….5分 又 54AC =,所以,15224a a +=,解得a=2或a=12(舍), ………….…………..6分 ∴C 1 ,C 2的方程分别为2214x y +=,2241x y +=.………………………………….7分(Ⅱ)A(-,m),. …………………………………………9分 OB ∥AN,∴OB AN k k =,∴1m =∴211m a =- . …………………………………….11分 2221a e a -=,∴2211a e =-,∴221e m e -=. ………………………………………12分01m <<,∴22101e e-<<,∴12e <<.........................................................13分 10.(2013北京西城高三二模数学理科)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称. (Ⅰ)若点P的坐标为9(,55,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.【答案】(Ⅰ)解:依题意,是线段AP 的中点,因为(1,0)A -,9(5P ,所以 点M的坐标为2(5 由点M 在椭圆C 上,所以41212525m+=, 解得 47m =(Ⅱ)解:设00(,)M x y ,则 2201y x m+=,且011x -<<. ①因为 M 是线段AP 的中点, 所以 00(21,2)P x y + 因为 OP OM ⊥,所以 2000(21)20x x y ++=. ②由 ①,② 消去0y ,整理得 20020222x x m x +=- 所以00111622(2)82m x x =+≤-++-+, 当且仅当02x =-时,上式等号成立. 所以 m的取值范围是1(0,24- 11.(2013北京丰台二模数学理科试题及答案)已知椭圆C:2214x y +=的短轴的端点分别为A,B,直线AM,BM 分别与椭圆C 交于E,F 两点,其中点M (m,12) 满足0m ≠,且m ≠(Ⅰ)求椭圆C 的离心率e; (Ⅱ)用m 表示点E,F 的坐标;(Ⅲ)若∆BME 面积是∆AMF 面积的5倍,求m 的值.【答案】解:(Ⅰ)依题意知2a =,3=c ,23=∴e ;(Ⅱ) )1,0(),1,0(-B A ,M (m,12),且0m ≠, ∴直线AM 的斜率为k 1=m 21-,直线BM 斜率为k 2=m23, ∴直线AM 的方程为y=121+-x m,直线BM 的方程为y=123-x m ,由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m x mx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()012922=-+mx x m ,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭;(Ⅲ) 1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME ∆=∠,AMF BME ∠=∠, 5AMFBME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =,∴225,41219m mm mm m m m=--++0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0m m --=, 又m ≠∴230m -≠, 12=∴m ,1m ∴=±为所求12.(2013北京顺义二模数学理科试题及答案)已知椭圆()01:2222>>=+b a by a x C 的两个焦点分别为21,F F ,且221=F F ,点P 在椭圆上,且21F PF ∆的周长为6.(I)求椭圆C 的方程;(II)若点P 的坐标为()1,2,不过原点O 的直线l 与椭圆C 相交于B A ,两点,设线段AB 的中点为M ,点P 到直线l 的距离为d ,且P O M ,,三点共线.求2216131312d AB +的最大值. 【答案】解:(I)由已知得22=c 且622=+c a ,解得1,2==c a ,又3222=-=c a b ,所以椭圆C 的方程为13422=+y x (II)设()()2211,,,y x B y x A .当直线l 与x 轴垂直时,由椭圆的对称性可知,点M 在x 轴上,且与O 点不重合, 显然P O M ,,三点不共线,不符合题设条件. 故可设直线l 的方程为()0≠+=m m kx y . 由⎩⎨⎧=++=1243,22y x m kx y 消去y 整理得()0124843222=-+++m kmx x k .① 则()()0124434642222>-+-=∆m k m k ,⎪⎪⎩⎪⎪⎨⎧+-=+-=+222122143124,438k m x x k km x x 所以点M 的坐标为⎪⎭⎫ ⎝⎛++-22433,434k m k km . 因为P O M ,,三点共线,所以22432433,kkm k m k k OP OM +-=+=,因为0≠m ,所以23-=k , 此时方程①为033322=-+-m mx x ,则()01232>-=∆m ,⎪⎩⎪⎨⎧-==+33,22121m x x m x x所以()()2122122y y x x AB -+-=()()[]21221241x x x x k -++=()2121213m -=, 又1342232822-=+-=m m d ,所以()()352344344121613131222222+⎪⎭⎫ ⎝⎛+-=-+-=+m m m d AB , 故当()0,3234-∈-=m 时,2216131312d AB +的最大值为35213.(2013北京东城高三二模数学理科)已知椭圆C :22221x y a b+=(0)a b >>的离心率2e =,原点到过点(,0)A a ,(0,)B b -的直线的距离是5. (Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆C 上一动点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,求2211x y +的取值范围.(Ⅲ)如果直线1(0)y kx k =+≠交椭圆C 于不同的两点E ,F ,且E ,F 都在以B 为圆心的圆上,求k 的值.【答案】(共13分)解:(Ⅰ)因为2c a =,222a b c -=,所以 2a b =. 因为原点到直线AB :1x y a b -=的距离d ==,解得4a =,2b =. 故所求椭圆C 的方程为221164x y +=. (Ⅱ)因为点()00,P x y 关于直线x y 2=的对称点为()111,y x P ,所以 0101010121,2.22y y x x y y x x -⎧⨯=-⎪-⎪⎨++⎪=⨯⎪⎩ 解得 001435y x x -=,001345y x y +=. 所以22221100x y x y +=+.因为点()00,P x y 在椭圆C :221164x y +=上,所以2222201100344x x y x y +=+=+.因为044x -≤≤, 所以2211416x y ≤+≤.所以2211x y +的取值范围为[]4,16.(Ⅲ)由题意221,1164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得22(14)8120k x kx ++-=.可知0∆>.设22(,)E x y ,33(,)F x y ,EF 的中点是(,)M M M x y ,则2324214M x x k x k +-==+,21114M M y kx k =+=+. 所以21MBM M y k x k+==-. 所以20M M x ky k ++=. 即 224201414k k k k k -++=++. 又因为0k ≠,所以218k =.所以4k =±14.(北京市石景山区2013届高三一模数学理试题)设椭圆C:2222x y a b+=1(a>b>0)的左、右焦点分别为F 1、F 2,上顶点为A,在x 轴负半轴上有一点B,满足112BF F F =,且AB ⊥AF 2.(I)求椭圆C 的离心率;(II)若过A 、B 、F 2三点的圆与直线l:x 3-=0相切,求椭圆C 的方程;(Ⅲ)在(II)的条件下,过右焦点F 2作斜率为k 的直线l 与椭圆C 交于M 、N 两点,线段MN 的中垂线与x 轴相交于点P(m,O),求实数m 的取值范围.【答案】15.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))已知椭圆()11:222>=+a y ax C 的上顶点为A ,左焦点为F ,直线AF 与圆0726:22=+-++y x y x M 相切.过点⎪⎭⎫⎝⎛-21,0的直线与椭圆C交于Q P ,两点. (I)求椭圆C 的方程;(II)当APQ ∆的面积达到最大时,求直线的方程.【答案】解:(I)将圆M 的一般方程072622=+-++y x y x化为标准方程()()31322=-++y x ,则圆M 的圆心()1,3-M ,半径3=r .由()()()10,,1,02-=-a c c F A 得直线AF 的方程为0=+-c cy x .由直线AF 与圆M 相切,得3132=++--cc c ,所以2=c 或2-=c (舍去).当2=c 时,3122=+=c a ,故椭圆C 的方程为1322=+y x(II)由题意可知,直线的斜率存在,设直线的斜率为k , 则直线的方程为21-=kx y . 因为点⎪⎭⎫⎝⎛-21,0在椭圆内, 所以对任意R ∈k ,直线都与椭圆C 交于不同的两点.由⎪⎪⎩⎪⎪⎨⎧=+-=13,2122y x kx y 得()04933122=--+kx x k .设点Q P ,的坐标分别为()()2211,,,y x y x ,则()22122122113149,313,21,21kx x k k x x kx y kx y +-=+=+-=-=, 所以()()212212y y x x PQ -+-=()()[]21221241x x x x k -++=()()222314113k k k +++=.又因为点()1,0A 到直线21-=kx y 的距离1232+=k d ,所以APQ ∆的面积为()2231441921kk d PQ S ++=⋅= 设2311k t +=,则10≤<t 且31312-=t k ,()34231493344931344922+--=-=-⋅=t t t t t S .因为10≤<t ,所以当1=t 时,APQ ∆的面积S 达到最大,此时13112=+k,即0=k .故当APQ ∆的面积达到最大时,直线的方程为21-=y 16.(2013北京高考数学(理))已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点. (I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.【答案】解:(I)椭圆W :2214x y +=的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A(1,m ),代入椭圆方程得2114m +=,即2m =±. 所以菱形OABC 的面积是11||||22||22OB AC m ⋅=⨯⨯=. (II)假设四边形OABC 为菱形. 因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为(0,0)y kx m k m =+≠≠.由2244x y y kx m⎧+=⎨=+⎩消去y 并整理得222(14)8440k x kmx m +++-=. 设A 1,1()x y ,C 2,2()x y ,则1224214x x km k +=-+,121222214y y x x mk m k ++=⋅+=+. 所以AC 的中点为M(2414km k -+,214mk +).因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为1()14k k⋅-≠-,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.17.(2011年高考(北京理))已知椭圆G:2214x y +=.过点(,0)m 作圆221x y +=的切线l 交椭圆G 于A,B 两点.(Ⅰ)求椭圆G 的焦点坐标和离心率;(Ⅱ)将|AB|表示为m 的函数,并求|AB|的最大值. 【答案】【命题立意】本题考查椭圆的标准方程和性质以及直线被椭圆截得的弦长的求法,运用基本不等式求解函数的最值问题.考查学生的运算能力和综合解答问题的能力.【解析】(Ⅰ)由已知得2,1a b ==,c ==所以椭圆G的焦点坐标为(,,离心率为c e a ==(Ⅱ)由题意知,||1m ≥.当1m =时,切线l 的方程为1x =,点A,B的坐标分别为,(1,,此时||AB =当1m =-时,同理可得||AB 当||1m >时,设切线l 的方程为()y k x m =-,由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,得22222(14)8440k x k mx k m +-+-= 设A 、B 两点的坐标分别为11(,)x y ,22(,)x y ,则2221212228441414k m k m x x x x k k -+=⋅=++ 又由l 与圆221x y +=相切,1=,即2221k m k =+所以||AB ==由于当1m =±时,||AB =所以||(,1][1,)AB m =∈-∞-+∞因为||2||||AB m m ==≤+,当且仅当m =,||2AB =所以||AB 的最大值是218.(2013北京朝阳二模数学理科试题)已知椭圆2222:1x y C a b+=(0)a b >>的右焦点为F (1,0),短轴的端点分别为12,B B ,且12FB FB a ⋅=-. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 且斜率为k (0)k ≠的直线l 交椭圆于,M N 两点,弦MN 的垂直平分线与x 轴相交于点D .设弦MN 的中点为P ,试求DPMN的取值范围. 【答案】解:(Ⅰ)依题意不妨设1(0,)B b -,2(0,)B b ,则1(1,)FB b =--,2(1,)FB b =-.由12FB FB a ⋅=-,得21b a -=-.又因为221a b -=,解得2,a b ==.所以椭圆C 的方程为22143x y += (Ⅱ)依题直线l 的方程为(1)y k x =-. 由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k x k x k +-+-=.设11(,)M x y ,22(,)N x y ,则2122834k x x k +=+,212241234k x x k -=+所以弦MN 的中点为22243(,)3434k kP k k -++所以MN ===2212(1)43k k +=+直线PD 的方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+,则22(,0)43k D k +,所以DP =所以224312(1)43DP k k MN k +==++= 又因为211k +>,所以21011k <<+.所以104<<.所以DP MN的取值范围是1(0,)419.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知椭圆C :)0(12222>>=+b a by a x ,左焦点)0,3(-F ,且离心率23=e (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆C 交于不同的两点N M ,(N M ,不是左、右顶点),且以MN 为直径的圆经过椭圆C 的右顶点A. 求证:直线l 过定点,并求出定点的坐标.【答案】解:(Ⅰ)由题意可知:⎪⎪⎩⎪⎪⎨⎧+====222233c b a a c e c ……1分解得 1,2==b a ………2分所以椭圆的方程为:1422=+y x ……3分 (II )证明:由方程组⎪⎩⎪⎨⎧+==+m kx y y x 14220448)k 41222=-+++m kmx x 得(…4分 0)44)(41(4)8(222>-+-=∆m k km整理得01422>+-m k ………..5分 设),(),,(2221y x N x x M则22212214144,418km x x k km x x +-=+-=+ …….6分 由已知,AN AM ⊥且椭圆的右顶点为)0,2(A ………7分0)2)(2(2121=+--∴y y x x ……… 8分2212122121)())((m x x km x x k m kx m kx y y +++=++=即04))(2()1(221212=+++-++m x x km x x k也即04418)2(4144))1(22222=+++-∙-++-∙+m kkm km k m k …… 10分 整理得:01216522=++k mk m ……11分解得562k m k m -=-=或均满足01422>+-m k ……12分 当k m 2-=时,直线的l 方程为k kx y 2-=,过定点(2,0)与题意矛盾舍去……13分当56k m -=时,直线的l 方程为)56(-=x k y ,过定点)0,56(故直线l 过定点,且定点的坐标为)0,6( …….14分得到21.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知椭圆)0(12222>>=+b a by a x 的离心率为.36(I )若原点到直线0=-+b y x 的距离为,2求椭圆的方程;(II )设过椭圆的右焦点且倾斜角为︒45的直线和椭圆交于A ,B 两点. (i )当3||=AB ,求b 的值;(ii )对于椭圆上任一点M ,若OB OA OM μλ+=,求实数μλ,满足的关系式.【答案】解:(I )222=∴==b b d323622=∴==ac a c e22222324a a c b a =-∴=- 解得.4,1222==b a 椭圆的方程为.141222=+y x …………………………4分(II )(i )∵e .232,3,36222222b a c b a c ===∴= 椭圆的方程可化为:22233b y x =+ ①易知右焦点)0,2(b F ,据题意有AB :b x y 2-= ② 由①,②有:0326422=+-b bx x ③ 设),(),,(2211y x B y x A ,33424244872)11()()(||222222212212==⋅=-+=-+-=b b b b y y x x AB1=∴b ………………………8分(2)(ii )显然与可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量,有且只有一对实数λ,μ,使得等OM μλ+=成立.设M (x ,y ),,,),,(),(),(21212211y y y x x x y x y x y x μλμλμλ+=+=∴+=又点M 在椭圆上,22212213)(3)(b y y x x =+++∴μλμλ ④由③有:43,22322121b x x b x x ==+ 则22121212121216)(234)2)(2(33b x x b x x b x b x x x y y x x ++-=--+=+ 0693222=+-b b b ⑤又A ,B 在椭圆上,故有222222212133,33b y x b y x =+=+ ⑥将⑥,⑤代入④可得:.122=+μλ ……………………14分22.(北京市海淀区2013届高三5月查缺补漏数学(理))已知椭圆22:143x y C +=的左右两个顶点分别为A B ,,点M 是直线:4l x =上任意一点,直线MA ,MB 分别与椭圆交于不同于A B ,两点的点P ,点Q . (Ⅰ)求椭圆的离心率和右焦点F 的坐标; (Ⅱ)(i)证明,,P F Q 三点共线; (Ⅱ)求PQB ∆面积的最大值.【答案】解:(Ⅰ)24a =,23b =,所以,2221c a b =-=.所以,椭圆的离心率12c e a ==. 右焦点()1,0F .(Ⅱ)(i)()2,0A -,()2,0B .设()4,M m ,显然0m ≠.则():26m MA y x =+,():22mMB y x =-. 由()222,6143m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩解得222542,2718.27P P m x m m y m ⎧-=⎪⎪+⎨⎪=⎪+⎩由()222,2143m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩解得22226,36.3Q Q m x m m y m ⎧-=⎪⎪+⎨-⎪=⎪+⎩ 当29m =时,1P Q x x ==,,,P Q F 三点共线.当29m ≠时,22018612739P FP P y m mk x m m-===---, 22066199Q FQ Q y m m k x m m --===---, 所以,FP PQ k k =,所以,,,P Q F 三点共线. 综上,,,P Q F 三点共线.(Ⅱ)因为,,P Q F 三点共线,所以,△PQB 的面积()()()22212912327P Q m m S FB y y m m +=⨯⨯-=++2912912m m m m ⎛⎫+ ⎪⎝⎭=⎛⎫++ ⎪⎝⎭ 设9u m m =+,则21212uS u =+因为()()22246'12u S u -=+,且96u m m =+≥,所以,'0S ≤,且仅当6u =时,'0S =, 所以,21212uS u =+在[6,)+∞上单调递减.所以,212636122S ⨯≤=+,等号当且仅当6u =,即3m =±时取得.所以,△PQB 的面积的最大值为32.23.(北京市海淀区2013届高三5月查缺补漏数学(理))已知椭圆:C 22221(0)x y a b a b +=>>的离心率为12,且经过点3(1,)2A . (Ⅰ)求椭圆C 的方程;(Ⅱ)设,M N 为椭圆C 上的两个动点,线段MN 的垂直平分线交y 轴于点0(0,)P y ,求0y 的取值范围.【答案】解: (Ⅰ)椭圆C 的方程为:221.43x y +=(Ⅱ)设1122(,),(,)M x y N x y ,则 2211143x y +=,2222143x y +=.依题意有 ||||PMPN =,=整理得 22221212012()()2()0x x y y y y y -+---=.将2211443y x =-,2222443y x =-代入上式,消去2212,x x ,得 2212012()6()0y y y y y -+-=. 依题意有 120y y -≠,所以1206y y y +=-. 注意到1||y ≤2||y ≤且,M N 两点不重合,从而12y y -+<.所以0(y ∈. 24.(北京市石景山区2013届高三上学期期末考试数学理试题 )已知椭圆的中心在原点,焦点在x 轴上,离(4,1)M ,直线:=+l y x m 交椭圆于不同的两点A B 、. (Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线l 不过点M ,求证:直线MA MB 、的斜率互为相反数.【答案】(Ⅰ)设椭圆的方程为22221x y a b+=,因为2e =,所以224a b =,又因为(4,1)M ,所以221611a b+=,解得225,20b a ==, 故椭圆方程为221205x y +=. …………………4分 (Ⅱ)将y x m =+代入221205x y +=并整理得22584200x mx m ++-=, 22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分(Ⅲ)设直线,MA MB 的斜率分别为1k 和2k ,只要证明120k k +=. 设11(,)A x y ,22(,)B x y ,则212128420,55m m x x x x -+=-=. …………………9分 12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线MA MB 、的斜率互为相反数. …………………14分25.(2013届北京市高考压轴卷理科数学)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为4(I)求椭圆C 的标准方程;(II)直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB 的斜率为12. ①求四边形APBQ 面积的最大值;②设直线PA 的斜率为1k ,直线PB 的斜率为2k ,判断1k +2k 的值是否为常数,并说明理由.【答案】解:(Ⅰ)设椭圆C 的方程为)0(12222>>=+b a by a x 由已知b=32 离心率222,21c b a a c e +=== ,得4=a 所以,椭圆C 的方程为1121622=+y x (Ⅱ)①由(Ⅰ)可求得点P 、Q 的坐标为)3,2(P ,)3,2(-Q ,则6||=PQ ,设A (),,11y x B(22,y x ),直线AB 的方程为t x y +=21,代人1121622=+y x 得:01222=-++t tx x .由△>0,解得44<<-t ,由根与系数的关系得⎩⎨⎧-=-=+1222121t x x t x x 四边形APBQ 的面积2212212134834)(3621t x x x x x x s -=-+⨯=-⨯⨯= 故当312,0max ==S t ②由题意知,直线PA 的斜率23111--=x y k ,直线PB 的斜率23222--=x y k 则2321232123232211221121--++--+=--+--=+x t x x t x x y x y k k =2222122)2(2122)2(21212211--+--+=--+-+--+-x t x t x t x x t x =4)(2)4)(2(1212121++--+-+x x x x x x t ,由①知⎩⎨⎧-=-=+1222121t x x t x x 可得011828214212)4)(2(122221=-=-++--+=++----+=+t t t t tt t t k k 所以21k k +的值为常数026.(北京市朝阳区2013届高三第一次综合练习理科数学)已知中心在原点,焦点在x 轴上的椭圆C 过点)2,离心率为2,点A 为其右顶点.过点(10)B ,作直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 与直线3x =分别交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)求EM FN ⋅的取值范围.【答案】解:(Ⅰ)设椭圆的方程为()222210x y a b a b +=>>,依题意得22222,1314a b c c a a b ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =.所以椭圆C 的方程为2214x y +=(Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得(1,E F,(3,(3,22M N -,所以1EM FN ⋅=(2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意. 由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=.设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---,令3x =,则1212(3,),(3,)22y y M N x x --. 所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=-- 所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅--121212(3)(3)(1)(2)(2)y y x x x x =--+--2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅--2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++22221653()(1)414k k k k +-=⋅++22216511164164k k k +==+++因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈.综上所述,EM FN ⋅的取值范围是5[1,)427.(北京市通州区2013届高三上学期期末考试理科数学试题 )已知椭圆的中心在原点O ,短半轴的端点到其右焦点()2,0FF 作直线,交椭圆于,A B 两点.(Ⅰ)求这个椭圆的标准方程;(Ⅱ)若椭圆上有一点C ,使四边形AOBC 恰好为平行四边形,求直线的斜率.【答案】解: (Ⅰ)由已知,可设椭圆方程为()222210x y a b a b+=>>,…………………… 1分 则a =,2c =. …………………………………………2分所以b === …………………………………3分 所以 椭圆方程为221106x y +=. …………………………………………4分 (Ⅱ)若直线l x ⊥轴,则平行四边形AOBC 中,点C 与点O 关于直线对称,此时点C 坐标为()2,0c .因为2c a > ,所以点C 在椭圆外,所以直线与x 轴不垂直. …………………………………………6分于是,设直线的方程为()2y k x =-,点()11,A x y ,()22,B x y , …7分 则()221,1062,x y y k x ⎧+=⎪⎨⎪=-⎩整理得,()2222352020300k x k x k +-+-= … 8分21222035k x x k +=+, ………………………………………… 9分 所以 1221235k y y k+=-+. ……………………………………… 10分 因为 四边形AOBC 为平行四边形,所以 OA OB OC +=, ……………………………………… 11分所以 点C 的坐标为2222012,3535k k kk ⎛⎫- ⎪++⎝⎭, ……………………………12分 所以 22222201235351106k k k k ⎛⎫⎛⎫- ⎪ ⎪++⎝⎭⎝⎭+=, ……………………………13分 解得21k =,所以1k =±. ………………………………14分。

一轮复习理科数学第八篇 平面解析几何(必修2、选修1-1) 第4节 椭 圆


F 为其右焦点,若 AF⊥BF,且∠ABF= π ,则该椭圆的离心率为( ) 12
(A)1
(B) 6 3
(C) 3 2
(D) 2 2
解析:(1)设椭圆的左焦点为 F′,根据椭圆的对称性可知:四边形 AF′BF 为矩形,所以 AB=FF′=2c,
在 Rt△ABF 中,易得 AF=2csin π ,BF=2ccos π =AF′,
考查角度1:椭圆的简单几何性质
【例3】 (2018·银川三模)椭圆mx2+y2=1的焦点在y轴上,短轴长与焦距相等,则 实数m的值为( )
(A)2
(B) 1 2
(C)4 (D) 2
解析:根据题意,椭圆 mx2+y2=1 的焦点在 y 轴上,则标准方程为 y 2 + x2 =1,
11
m
其中 a=1,b= 1 ,则 c= 1 1 ,
2.(2018·全国Ⅰ卷)已知椭圆 C: x2 + y 2 =1 的一个焦点为(2,0),则 C 的离心率为 a2 4
(C)
(A) 1 3
(B) 1 2
(C) 2 2
(D) 2 2 3
解析:因为 a2=4+22=8,所以 a=2 2 , 所以 e= c = 2 = 2 .故选 C.
a 22 2
3.(2018·延安模拟)方程x2+ y 2 =1表示焦点在x轴上的椭圆,则实数m的取值范围
图形
y 2 + x2 =1 a2 b2 (a>b>0)
范围 对称性

顶点


焦距
离心率
a,b,c的关系
-a ≤x≤ a , -b ≤y≤ b 1
-b ≤x≤ b , -a ≤y≤ a 1

山东省2014届理科数学一轮复习试题选编5:指数函数、对数函数、幂函数(学生版)

山东省2014届理科数学一轮复习试题选编5:指数函数、对数函数、幂函数一、选择题1 .(山东省烟台市2013届高三3月诊断性测试数学理试题)已知幂函数y=f(x)的图象过点(1,22),则log 2f(2)的值为 ( )A .12 B .-12C .2D .-22 .(山东省德州市2013届高三上学期期末校际联考数学(理))已知a>0,b>0,且1ab =,则函数()x f x a =与函数()1b g x og x =的图象可能是3 .(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)下列函数图象中,正确的是4 .(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知1()x f x a =,2()a f x x =,3()log a f x x =,(0a >且1a ≠),在同一坐标系中画出其中两个函数在( )A .BC .D5 .(2012年高考(四川文))函数(0,1)xy a a a a =->≠的图象可能是6 .(山东省曲阜市2013届高三11月月考数学(理)试题)函数log (||1)(1)a y x a =+>的大致图象是 ( )A .B .C .D .7 .(山东省潍坊市2013届高三第二次模拟考试理科数学)已知函数9()4(1)1f x x x x =-+>-+,当x=a 时,()f x 取得最小值,则在直角坐标系 中,函数11()()x g x a+=的大致图象为8 .(2013陕西高考数学(文))设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 ( )A .·log log log a c c b a b =B .·log lo log g a a a b a b =C .()log g o lo g a a a b c bc =D .()log g og o l l a a a b b c c +=+9 .(2013辽宁高考数学(文))已知函数()()2ln1931,f x x x =+-+则()1lg 2lg 2f f ⎛⎫+= ⎪⎝⎭( )A .1-B .0C .1D .210.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))若点(a,9)在函数3xy =的图象上,则tan 3πa 的值为 ( )A .0B .33- C .1 D .3-11.(2012年高考(四川理))函数1(0,1)xy a a a a=->≠的图象可能是12.(2009高考(山东理))函数x xx xe ey e e--+=-的图像大致为13.(2011年高考(山东理))若点(,9)a 在函数3xy =的图象上,则tan 6a π的值为 ( )A .0B 3C .1D 314.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)设11333124log ,log ,log ,233a b c ===则a,b,c 的大小关系是( )A .a b cB .c b aC .b a cD .b c a1 xy 1OxyO 1 1 B xy O 1 1 C x y 1 1 O15.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))若函数⎪⎩⎪⎨⎧<->=0),(log 0,log )(212xx x x x f ,若0)(>-a af ,则实数a 的取值范围是( ) A .)()(1,00,1⋃- B .),(),(∞+⋃-∞-11 C .),()(∞+⋃-10,1 D .)(),(1,01⋃-∞- 16.已知曲线221:9436C x y +=,曲线12:3x C y +=,则1C 与2C 的交点个数为( )A .0B .1C .2D .317.(山东省日照市2013届高三12月份阶段训练数学(理)试题)已知函数()2log ,0,2,0.x x x f x x >⎧=⎨≤⎩若()12f a =,则a 等于 ( ) A .1-或2 B .2 C .1- D .1或2-18.(2013福建高考数学(文))函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .19.(2013上海春季数学(理))函数12()f x x-=的大致图像是20.(山东省潍坊市2013届高三第二次模拟考试理科数学)已知1122log (4)log (32)x y x y ++<+-,若x y λ-<恒成立, 则λ的取值范围是( )A .(],10-∞B .(),10-∞C .[)10,+∞D .()10,+∞21.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)幂函数()y f x =的图象经过点(4,12),则f(14)的值为( )A .1B .2C .3D .422.(山东省烟台市2013届高三上学期期中考试数学试题(理科))已知()()()2,log 0,1x a f x a g x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是x y 0xy BA0 x y C0 x yD23.(山东省烟台市2013届高三上学期期中考试数学试题(理科))设5.205.2)21(,5.2,2===c b a,则c b a ,,的大小关系是 ( )A .b c a >>B .b a c >>C .c a b >>D .c b a >>二、填空题24.(2013安徽高考数学(文))函数1ln(1)y x=++_____________. 25.(2013北京高考数学(文))函数f(x)=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________. 26.若12()1f x x--=+,且(1)(102)f a f a +<-,则a 的取值范围为______.27.(2012年高考(上海文))方程03241=--+x x 的解是_________.28.(2012年高考(山东文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.29.(山东省实验中学2013届高三第三次诊断性测试理科数学)若直线a y 2=与函数|1|-=x a y ()10≠>a a 且的图像有两个公共点,则a 的取值范围是____________.30.函数122(2)y xx --=-的定义域为_______________31.(山东省济宁邹城市2013届高三上学期期中考试数学(理)试题)当1{1,,1,3},2∈-时幂函数a y x =的图象不奇能经过第_____象限.山东省2014届理科数学一轮复习试题选编5:指数函数、对数函数、幂函数参考答案一、选择题1. 【答案】A 设幂函数为()f x x α=,则11()()222f α==,解得12α=,所以()f x =所以(2)f =即221log (2)log 2f ==,选A.2. 【答案】D【解析】因为对数函数()1b g x og x =的定义域为(0,)+∞,所以排除A,C.因为1ab =,所以1b a=,即函数()xf x a =与()1bg x og x =的单调性相反.所以选D.3. 【答案】C【解析】A 中幂函数中0a <而直线中截距1a >,不对应.B 中幂函数中12a =而直线中截距1a >,不对应.D 中对数函数中1a >,而直线中截距01a <<,不对应,选C. 4. 【答案】B【解析】A 中1()x f x a =单调递增,所以1a >,而幂函数2()a f x x =递减,0a <,所以不正确.B 中3()log a f x x =单调递增,所以1a >,而幂函数2()a f x x =递增,,所以正确.C 中1()x f x a =单调递增,所以1a >,而3()log a f x x =递减,01a <<,所以不正确.D 中1()x f x a =单调递减,所以01a <<,而幂函数2()a f x x =递增,0a >,所以不正确.所以正确的是B.5. [答案]C[解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合. 6. B7. 【答案】B 9941+511y x x x x =-+=+-++,因为1x >-,所以910,01x x +>>+,所以由均值不等式得91+5511y x x =+-≥-=+,当且仅当911x x +=+,即2(1)9x +=,所以13,2x x +==时取等号,所以2a =,所以1111()()()2x x g x a ++==,又1111(),11()()222,1x x x x g x x +++⎧≥-⎪==⎨⎪<-⎩,所以选B.8. B 解:a, b,c≠1. 考察对数2个公式: abb y x xyc c a a a a log log log ,log log log =+=对选项A: b ab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假.对选项B: abb b a bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式一致,所以为真.对选项C: c b bc a a alog loglog ⋅=)(,显然与第一个公式不符,所以为假. 对选项D: c b c b a a alog log )log +=+(,同样与第一个公式不符,所以为假. 所以选B9. [答案]D()3)1f x x -=+所以()()2f x f x +-=,因为lg 2,1lg 2为相反数,所以所求值为2.10. D 【解析】因为点(,9)a 在函数3xy =的图象上,所以39a =,解得2a =,所以2tan tan 33a ππ==选D11. [答案]C[解析]采用排除法. 函数(0,1)xy a a a a =->≠恒过(1,0),选项只有C 符合,故选C.12. 【解析】:函数有意义,需使0xxe e--≠,其定义域为{}0|≠x x ,排除C,D,又因为22212111x x x x x x xe e e y e e e e --++===+---,所以当0x >时函数为减函数,故选A.答案:A.13.解析:2393a==,2a =,tantan 63a ππ==答案应选D. 14. B15. A 【解析】若0a >,则由0)(>-a af 得, 12log 0a a >,解得01a <<,若0a <,则由0)(>-a af 得,2log ()0a a ->,即2log ()0a -<解得01a <-<,所以10a -<<,综上01a <<或10a -<<,选A.16. C17. A 【解析】若0a >,则由()12f a =得,21log 2a =,解得a =若0a ≤,则由()12f a =得122a =,解得1a =-,所以a =1a =-,选A.18. A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C;由函数过)0,0(点,排除B,D.19. A20. 【答案】C 要使不等式成立,则有40320432x y x y x y x y ++>⎧⎪+->⎨⎪++>+-⎩,即403203x y x y x ++>⎧⎪+->⎨⎪<⎩,设z x y =-,则y x z =-.作出不等式组对应的平面区域如图,平移直线y x z =-,由图象可知当直线y x z =-经过点B 时,直线的截距最小,此时z 最大,由403x y x ++=⎧⎨=⎩,解得73y x =-⎧⎨=⎩,代入z x y =-得3710z x y =-=+=,所以要使x y λ-<恒成立,则λ的取值范围是10λ≥,即[)10,+∞,选C.21. B22. B 【解析】由()()440f g ⋅-<知04log ,04log 2<∴<⋅a a a )(.10x f a ∴<<∴为减函数,因此可排除A 、C,而)(x g 在0>x 时也为减函数,故选B.23. D 【解析】,10,1,1<<=>c b a 所以c b a >>.故选D二、填空题24. (]0,1 解:2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1 25. (-∞,2) [解析] 函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log 12x 的值域为(-∞,0];函数y =2x 在上是增函数,当x <1时,函数y =2x的值域为(0,2),所以原函数的值域为(-∞,2).26.由12()1f x x-=+为定义在(0,)+∞上的减函数,可知101(1)(102)102053511023a a f a f a a a a a a a +>>-⎧⎧⎪⎪⎪⎪+<-⇔->⇔<⇔<<⎨⎨⎪⎪+>->⎪⎪⎩⎩27. [解析] 0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x,3log 2=x .28. 答案:14 解析:当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x x =-为减函数,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.另解:由函数()(14)g x m x =-在[0,)+∞上是增函数可知41,041<>-m m ; 当1>a 时()x f x a =在[-1,2]上的最大值为=2a 4,解得2=a ,最小值为211==-a m 不符合题意,舍去;当10<<a 时,()x f x a =在[-1,2]上的最大值为41=-a,解得41=a ,此时最小值为411612<==a m ,符合题意, 故a =41.29. 1(0,)2【解析】因为1x y a =-的图象是由x y a =向下平移一个单位得到,当1a >时,作出函数1x y a =-的图象如图,此时22y a =>,如图象只有一个交点,不成立.当01a <<时,022a <<,要使两个函数的图象有两个公共点,则有021a <<,即102a <<,所以a的取值范围是1(0,)2.30. (2,)(,0)+∞⋃-∞.由1222(2)2y x x x x-=-=-,故由2202x x x ->⇒>或0x <.31.二、四。

核按钮(新课标)高考数学一轮复习 第九章 平面解析几何 9.6 椭圆习题 理

§9.6 椭圆1.椭圆的定义(1)定义:平面内与两个定点F1,F2的距离的和等于常数2a(2a______|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.※(2)另一种定义方式(见人教A版教材选修2-1 P47例6、P50):平面内动点M到定点F的距离和它到定直线l的距离之比等于常数e(0<e<1)的轨迹叫做椭圆.定点F叫做椭圆的一个焦点,定直线l叫做椭圆的一条准线,常数e叫做椭圆的__________.自查自纠1.(1)>焦点焦距(2)离心率2.(2)x 2a 2+y 2b2=1(a >b >0)(5)A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0) (7)F 1(-c ,0),F 2(c ,0) (9)e =c a(0<e <1)(2015·广东)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解:由25-m 2=4,得m 2=9,又m >0,∴m =3.故选B .“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:要使方程x 25-m +y2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B .(2013·全国课标Ⅱ)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解:设||F 1F 2=2c ,则||PF 2=233c ,∴||PF 1=433c .∴2a =||PF 1+||PF 2=23c ,故e =ca =33.故选D .已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是____________.解:由椭圆C 的右焦点为F (1,0)知c =1,且焦点在x 轴上,又e =c a =12,∴a =2,a2=4,b 2=a 2-c 2=3,椭圆C 的方程为x 24+y 23=1.故填x 24+y 23=1.已知椭圆x 2m +y 24=1的焦距是2,则该椭圆的长轴长为____________.解:当焦点在x 轴上时,有m -4=1,得m =5,此时长轴长为25;当焦点在y 轴上时,长轴长为4.故填25或4.类型一 椭圆的定义及其标准方程求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P 到两焦点的距离之和等于10;(2)过点P (-3,2),且与椭圆x 29+y 24=1有相同的焦点;(3)已知点P 在以坐标轴为对称轴的椭圆上,且点P 到两焦点的距离分别为5,3,过点P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,2c =6,即a =5,c =3, ∴b 2=a 2-c 2=52-32=16.∴所求椭圆的标准方程为x 225+y 216=1.(2)∵所求的椭圆与椭圆x 29+y 24=1的焦点相同,∴其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∵所求椭圆过点P (-3,2),∴有9a 2+4b2=1.又a 2-b 2=c 2=5,∴联立上述两式,解得⎩⎪⎨⎪⎧a 2=15,b 2=10.∴所求椭圆的标准方程为x 215+y 210=1. (3)由于焦点的位置不确定,可设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,∴b 2=12.故椭圆方程为x 216+y 212=1或y 216+x 212=1. 【点拨】(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过两点P 1(2,2),P 2(-3,-1)作一个椭圆,使它的中心在原点,焦点在x 轴上,求椭圆的方程,椭圆的长半轴、短半轴的长度以及离心率.解:根据题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),将两已知点坐标代入得⎩⎪⎨⎪⎧4a 2+4b 2=1,9a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=323,b 2=325.故椭圆方程为332x 2+532y 2=1,长半轴长a =323=436,短半轴长b =325=4105. ∵c 2=a 2-b 2=323-325=6415,∴离心率e =ca=c 2a 2=105.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为____________.解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4. 由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.解法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同, ∴其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0),∵c 2=16,且c 2=a 2-b 2,∴a 2-b 2=16.① 又点(3,-5)在所求椭圆上,∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得⎩⎪⎨⎪⎧a 2=20,b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.故填y 220+x 24=1.类型二 椭圆的离心率设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎥⎤0,22B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1解法一:由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. ∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c-c ,整理得13≤e 2<1,33≤e <1. ∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D . 【点拨】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.(2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是____________.解:设左焦点为F 1,由F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,得|OQ |=|OF |,又|OF 1|=|OF |,∴F 1Q ⊥QF .不妨设|QF 1|=ck ,则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a=ck +bk ,∴c a =a b +c ,即a 2=c 2+bc ,得b =c ,a =2c ,∴e =c a =22.故填22.类型三 椭圆的焦点三角形已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆离心率的范围;(2)求证△F 1PF 2的面积只与椭圆的短轴长有关.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),P 点坐标为(x 0,y 0).(1)||PF 1=a +ex 0,||PF 2=a -ex 0. 在△F 1PF 2中,cos ∠F 1PF 2=||PF 12+||PF 22-||F 1F 222||PF 1·||PF 2=(a +ex 0)2+(a -ex 0)2-4c 22(a +ex 0)(a -ex 0)=cos60°=12,解得x 20=4c 2-a 23e2. ∵x 0∈(-a ,a ),∴x 20∈[0,a 2),0≤4c 2-a 23c 2a 2<a 2, 有0≤4c 2-a 2<3c 2,解得12≤e <1.∴椭圆离心率e ∈⎣⎢⎡⎭⎪⎫12,1. (2)证明:将x 20=4c 2-a 23e 2代入b 2x 20+a 2y 20=a 2b 2,求得y 20=b 43c 2,∴||y 0=b 23c . ∴S △F 1PF 2=12||y 0||F 1F 2=12·b 23c ·2c =33b 2.得证.【点拨】椭圆的焦点三角形是描述椭圆的焦距、焦半径之间的相互制约关系的一个载体.由于其位置、边的特殊性决定了它易于同椭圆的定义、长轴长、离心率等几何量发生联系,内容丰富多彩.(2014·安徽)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1,∵△ABF 2的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8, 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k ,由椭圆定义可得 |AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得 |AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k .于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,因此|BF 2|2=|AF 2|2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,∴椭圆E 的离心率e =c a =22. 类型四 椭圆的弦长(2015·陕西)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解:(1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bc a =c2, 得a =2b =2a 2-c 2,解得离心率e =c a =32.(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其直线方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b21+4k2. 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.【点拨】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略对判别式的判断.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,则椭圆C 的方程为____________.解:由题意知离心率e =c a =23,c =23a ,由b 2=a 2-c 2,得b =53a ,∴椭圆C 的方程为x 2a2+9y25a2=1 .① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝ ⎛⎭⎪⎫x -23a ,与①联立得32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8.由|AB |=1+3|x 1-x 2|=2⎪⎪⎪⎪⎪⎪a 4-78a =54a =154,解得a =3,∴b =53a = 5.∴椭圆C 的方程为x 29+y 25=1.故填x 29+y 25=1. 类型五 椭圆中的最值问题(1)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解:由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6 ,∴|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.∴|PA |+|PF |的最大值为6+2,最小值为6- 2.(2)求A (0,2)到椭圆x 24+y 2=1上的动点的距离的最大值和最小值.解:设椭圆上的动点B (x ,y ),则|AB |=x 2+(y -2)2=-3y 2-4y +8=-3⎝ ⎛⎭⎪⎫y +232+283,∵点B 是椭圆上的点,∴-1≤y ≤1.∴|AB |的最大值为2213,最小值为1.(3)在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解:设所求点坐标为A (32cos θ,22sin θ),θ∈R ,由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+(-3)2=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2).【点拨】椭圆中距离的最值问题一般有3种解法:①利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );②根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上,如(2)中的点A );③用椭圆的参数方程设动点的坐标,转化为三角问题求解.(1)(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B.46+ 2 C .7+ 2D .6 2解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到椭圆的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ),则|MQ |=10cos 2θ+(sin θ-6)2=-9sin 2θ-12sin θ+46=-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,∴|PQ |max =52+2=6 2.故选D .(2)(2015·安徽合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为____________.解:设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.∴椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),∴PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.即当x 0=-2时,PF →·PA →取得最大值4.故填4.1.在运用椭圆的定义时,要注意“|F 1F 2|<2a ”这个条件,若|F 1F 2|=2a ,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F 1F 2|>2a ,则轨迹不存在.2.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n=1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.3.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出关于a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.4.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.5.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.6.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.7.椭圆中几个常用的结论:(1)焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段叫做椭圆的焦半径,分别记作r 1=||PF 1,r 2=||PF 2.①x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; ②y 2a 2+x 2b2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0; ③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;②S =b 2tan θ2=c ||y 0,当||y 0=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b2a.(4)AB 为椭圆x 2a 2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则①弦长l =1+k 2||x 1-x 2=1+1k2|y 1-y 2|;②直线AB 的斜率k AB =-b 2x 0a 2y 0.以上常用结论在教材的例题与习题中都有体现.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.故选A .2.方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)D .(0,1)解:将方程x 2+ky 2=2变形为x 22+y 22k=1,根据椭圆的定义,要使焦点在y 轴,只须2k>2,解得0<k <1.故选D .3.(2014·全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1 解:由椭圆的定义知△AF 1B 的周长为4a =43,a = 3.由e =c a=c3=33,得c =1,∴b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选A .4.(2015·豫西五校联考)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为5,则b 的值是( )A .1B. 2C.32D. 3解:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,∴|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知,过椭圆焦点的弦中,通径最短,则2b2a=3,∴b 2=3,即b = 3.故选D .5.(2013·四川)从椭圆x 2a 2+y 2b2=1()a >b >0上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解:由题意知A ()a ,0,B ()0,b ,AB →=()-a ,b ,P ⎝ ⎛⎭⎪⎫-c ,b 2a ,OP →=⎝ ⎛⎭⎪⎫-c ,b 2a ,∵AB∥OP ,∴AB →∥OP →,因此有()-a ·b 2a =b ·()-c ,解得b =c .∴a 2-b 2=a 2-c 2=c 2,得e =22.故选C .6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||AB =10,||BF =8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解:由余弦定理||AF 2=||BF 2+||AB 2-2||BF ·||AB cos ∠ABF =82+102-2×8×10×45=36,||AF =6,∵||AF 2+||BF 2=||AB 2,∴△AFB 为直角三角形.设椭圆的右焦点为F ′,连接AF ′,BF ′,由对称性知四边形AFBF ′为平行四边形. 又∵∠AFB =90°,∴四边形AFBF ′为矩形. ∴⎩⎨⎧2c =||FF ′=||AB =10,2a =||AF +||AF ′=||AF +||BF =14, 得⎩⎪⎨⎪⎧c =5,a =7.∴e =c a =57.故选B .7.(2015·乌鲁木齐调研)已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是__________.解:设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.故填⎣⎢⎡⎦⎥⎤33,22.8.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=____________.解:设MN 的中点为P ,椭圆C 的左、右焦点分别为F 1,F 2,连接PF 1,PF 2,则PF 1,PF 2分别为△ANM 与△BNM 的中位线,有|PF 1|=12|AN |,|PF 2|=12|BN |,又∵点P 在椭圆上,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2·2a =12.故填12.9.已知椭圆中心在原点,长轴在坐标轴上,离心率为53,短轴长为4,求椭圆的方程. 解:由题意得c a =53,2b =4, 又a 2=b 2+c 2,则有a 2=9,b 2=4, 于是椭圆方程为x 29+y 24=1或x 24+y 29=1.10.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.11.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解:(1)由题意知|BF 2|2=b 2+c 2=a 2=2,∵点C ⎝ ⎛⎭⎪⎫43,13在椭圆上, ∴⎝ ⎛⎭⎪⎫432a2+⎝ ⎛⎭⎪⎫132b2=1,解得b 2=1.∴椭圆的方程为x 22+y 2=1.(2)易知BF 2→=(c ,-b ).∵点B (0,b ),F 2(c ,0)在直线AB 上, ∴直线AB 的方程为x c +y b=1. 设A (x 1,y 1),联立⎩⎪⎨⎪⎧x c +yb =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,∴点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c2-a 2)a 2+c 2. 又AC ⊥x 轴,∴由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a2-c 2)a 2+c 2. ∴F 1C →=⎝ ⎛⎭⎪⎫3a 2c +c3a 2+c 2,b 3a 2+c 2.又∵F 1C ⊥AB , ∴F 1C →·BF 2→=c 2(3a 2+c 2)a 2+c 2-b 4a 2+c 2=0,即c 2(3a 2+c 2)-(a 2-c 2)2=0,化简得5c 2=a 2,e 2=15,e =55.(2015·全国Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k,∴k OM ·k =-9,即直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.∵直线l 过点⎝ ⎛⎭⎪⎫m3,m ,∴l 不过原点且与椭圆C 有两个交点的充要条件是k >0,k ≠3. 由(1)得直线OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入(1)中l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M ,于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.∵k >0,k ≠3,∴当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.。

课标A版--高考数学一轮复习---§9.4 椭圆及其性质--(附答案)

§9.4椭圆及其性质考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.五年高考考点一椭圆的定义及其标准方程1.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.答案x2+y2=12.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以,椭圆的方程为+=1. (2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=.由(1)知,F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-,或k≥.所以,直线l的斜率的取值范围为∪.3.(2015陕西,20,12分)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解析(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d==,由d=c,得a=2b=2,解得离心率=.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.①依题意得,圆心M(-2,1)是线段AB的中点,且|AB|=.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.由x1+x2=-4,得-=-4,解得k=.从而x1x2=8-2b2.于是|AB|=|x1-x2|==.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.②依题意得,点A,B关于圆心M(-2,1)对称,且|AB|=.设A(x1,y1),B(x2,y2),则+4=4b2,+4=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1≠x2,所以AB的斜率k AB==.因此直线AB的方程为y=(x+2)+1,代入②得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=|x1-x2|==.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.教师用书专用(4)4.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案12考点二椭圆的几何性质1.(2017浙江,2,5分)椭圆+=1的离心率是()A. B. C. D.答案B2.(2017课标全国Ⅲ,10,5分)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A. B. C. D.答案A3.(2016课标全国Ⅲ,11,5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B. C. D.答案A4.(2016浙江,19,15分)如图,设椭圆+y2=1(a>1).(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解析(1)设直线y=kx+1被椭圆截得的线段为AP,由得(1+a2k2)x2+2a2kx=0,故x1=0,x2=-.因此|AP|=|x1-x2|=·.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.由(1)知,|AP|=,|AQ|=,故=,所以(-)[1+++a2(2-a2)]=0.由于k1≠k2,k1,k2>0得1+++a2(2-a2)=0,因此=1+a2(a2-2),①因为①式关于k1,k2的方程有解的充要条件是1+a2(a2-2)>1,所以a>.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤,由e==得,所求离心率的取值范围为0<e≤.教师用书专用(5—9)5.(2013浙江,9,5分)如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是()A. B. C. D.答案D6.(2016江苏,10,5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.答案7.(2013福建,14,4分)椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.答案-18.(2015安徽,20,13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB 上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解析(1)由题设条件知,点M的坐标为,又k OM=,从而=.进而得a=b,c==2b.故e==.(2)由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为.又点T在直线AB上,且k NS·k AB=-1,从而有解得b=3.所以a=3,故椭圆E的方程为+=1.9.(2014天津,18,13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切.求直线l的斜率.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=·|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2.故椭圆方程为+=1.设P(x0,y0).由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c).由已知,有·=0,即(x0+c)c+y0c=0.又c≠0,故有x0+y0+c=0.①又因为点P在椭圆上,故+=1.②由①和②可得3+4cx0=0.而点P不是椭圆的顶点,故x0=-c,代入①得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1==-c,y1==c,进而圆的半径r==c.设直线l的斜率为k,依题意,直线l的方程为y=kx.由l与圆相切,可得=r,即=c,整理得k2-8k+1=0,解得k=4±.所以直线l的斜率为4+或4-.考点三直线与椭圆的位置关系1.(2016课标全国Ⅰ,20,12分)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.解析(1)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.(2分)由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为+=1(y≠0).(4分)(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).由得(4k2+3)x2-8k2x+4k2-12=0.则x1+x2=,x1x2=.所以|MN|=|x1-x2|=.(6分)过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2=4.故四边形MPNQ的面积S=|MN||PQ|=12.(10分)可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8).(12分)2.(2017天津,19,14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.解析(1)设F的坐标为(-c,0).依题意,=,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P,故Q.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=.由点B异于点A,可得点B.由Q,可得直线BQ的方程为(x+1)-=0,令y=0,解得x=,故D.所以|AD|=1-=.又因为△APD的面积为,故××=,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-y-3=0.教师用书专用(3—5)3.(2015江苏,18,16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.解析(1)由题意,得=且c+=3,解得a=,c=1,则b=1,所以椭圆的标准方程为+y2=1.(2)当AB⊥x轴时,AB=,又CP=3,不合题意.当AB与x轴不垂直时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),将AB的方程代入椭圆方程,得(1+2k2)x2-4k2x+2(k2-1)=0,则x1,2=,C的坐标为,且AB===.若k=0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而k≠0,故直线PC的方程为y+=-,则P点的坐标为,从而PC=.因为PC=2AB,所以=,解得k=±1.此时直线AB方程为y=x-1或y=-x+1.4.(2015山东,20,13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)由题意知2a=4,则a=2.又=,a2-c2=b2,可得b=1,所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m),所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ面积为3S,所以△ABQ面积的最大值为6.5.(2013北京,19,14分)已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.解析(1)椭圆W:+y2=1的右顶点B的坐标为(2,0).因为四边形OABC为菱形,所以AC与OB相互垂直平分.所以可设A(1,m),代入椭圆方程得+m2=1,即m=±.所以菱形OABC的面积是|OB|·|AC|=×2×2|m|=.(2)假设四边形OABC为菱形.因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为y=kx+m(k≠0,m≠0).由消y并整理得(1+4k2)x2+8kmx+4m2-4=0.设A(x1,y1),C(x2,y2),则=-,=k·+m=.所以AC的中点为M.因为M为AC和OB的交点,所以直线OB的斜率为-.因为k·≠-1,所以AC与OB不垂直.所以OABC不是菱形,与假设矛盾.所以当点B不是W的顶点时,四边形OABC不可能是菱形.三年模拟A组2016—2018年模拟·基础题组考点一椭圆的定义及其标准方程1.(2018河南豫南豫北二联,8)若F(c,0)是椭圆+=1的右焦点,F与椭圆上点的距离的最大值为M,最小值为m,则椭圆上与F点的距离等于的点的坐标是()A. B.C.(0,±b)D.不存在答案C2.(2018广东清远一模,8)曲线C1:+(m>n>0),曲线C2:-=1(a>b>0).若C1与C2有相同的焦点F1、F2,且P同在C1、C2上,则|PF1|·|PF2|=()A.m+aB.m-aC.m2+a2D.m2-a2答案B3.(人教A选2-1,二,2-2-1,1,变式)平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是()A.[1,4]B.[2,6]C.[3,5]D.[3,6]答案C4.(2017江西九江模拟,8)F1,F2是椭圆+=1的左、右焦点,A为椭圆上一点,且∠AF1F2=45°,则△AF1F2的面积为()A.7B.C.D.答案C5.(2017湖南东部六校4月联考,15)设P,Q分别是圆x2+(y-1)2=3和椭圆+y2=1上的点,则P、Q两点间的最大距离是.答案考点二椭圆的几何性质6.(2018四川凉山州模拟,4)以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.答案D7.(2018四川达州模拟,7)以圆x2+y2=4与x轴的交点为焦点,以抛物线y2=10x的焦点为一个顶点且中心在原点的椭圆的离心率是()A. B. C. D.答案C8.(2017河南4月质检,11)已知椭圆C:+=1(a>b>0)的右焦点为F2,O为坐标原点,M为y轴上一点,点A是直线MF2与椭圆C的一个交点,且|OA|=|OF2|=2|OM|,则椭圆C的离心率为()A. B. C. D.答案D考点三直线与椭圆的位置关系9.(2018安徽合肥模拟,8)已知椭圆C:+y2=1,若一组斜率为的平行直线被椭圆C所截线段的中点均在直线l上,则l的斜率为()A.-2B.2C.-D.答案A10.(2018广东广州模拟,10)已知点M(-1,0)和N(1,0),若某直线上存在点P,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:①x-2y+6=0;②x-y=0;③2x-y+1=0;④x+y-3=0.其中是“椭型直线”的是()A.①③B.①②C.②③D.③④答案C11.(2017湖南百校联盟4月联考,10)已知椭圆+=1(a>b>0)的右顶点和上顶点分别为A、B,左焦点为F.以原点O为圆心的圆与直线BF相切,且该圆与y轴的正半轴交于点C,过点C的直线交椭圆于M、N两点.若四边形FAMN是平行四边形,则该椭圆的离心率为()A. B. C. D.答案A12.(2017湖南益阳调研,20)已知椭圆+=1(a>b>0)的离心率e=,点P(0,)在椭圆上,A、B分别为椭圆的左、右顶点,过点B作BD⊥x 轴交AP的延长线于点D,F为椭圆的右焦点.(1)求椭圆的方程及直线PF被椭圆截得的弦长|PM|;(2)求证:以BD为直径的圆与直线PF相切.解析(1)∵椭圆过点P(0,),∴b=,∵e=,∴=,结合a2=b2+c2,得a=2,c=1,∴椭圆的方程为+=1.则F(1,0),结合P(0,),可得直线PF的方程为y=-(x-1),与椭圆方程联立,得消去y,得5x2-8x=0,解得x1=0,x2=.由弦长公式得|PM|=|x1-x2|=.(2)证明:易得A(-2,0),B(2,0),∴直线AP的方程为y=(x+2),直线BD的方程为x=2,两方程联立,求得D(2,2),所以以BD为直径的圆的圆心为(2,),半径R=,圆心到直线PF的距离d==,所以以BD为直径的圆与直线PF相切.B组2016—2018年模拟·提升题组(满分:50分时间:50分钟)一、选择题(每小题5分,共15分)1.(2018四川德阳模拟,9)设点P为椭圆C:+=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|∶|PF2|=3∶4,那么△GPF1的面积为()A.24B.12C.8D.6答案C2.(2018广东清远模拟,11)已知m、n、s、t∈R*,m+n=3,+=1,其中m、n是常数且m<n,若s+t的最小值是3+2,满足条件的点(m,n)是椭圆+=1的一条弦的中点,则此弦所在直线的方程为()A.x-2y+3=0B.4x-2y-3=0C.x+y-3=0D.2x+y-4=0答案D3.(2017河南八市2月联考,9)已知F1,F2分别是椭圆+=(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,O为坐标原点,直线OA的斜率为,·=||2,则椭圆的离心率为()A. B. C. D.答案A二、填空题(共5分)4.(2017安徽安庆二模,15)已知椭圆+=1(a>b>0)短轴的端点为P(0,b)、Q(0,-b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA、PB的斜率之积等于-,则P到直线QM的距离为.答案三、解答题(共30分)5.(2018广东茂名模拟,20)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF 的中点为M,线段BF的中点为N,且·=.(1)求弦AB的长;(2)当直线l的斜率k=,且直线l'∥l时,l'交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.解析(1)由题意可知2c=2,c=,设F(,0),A(x0,y0),B(-x0,-y0),则M,N,由·==,则+=5,则|AB|=2=2.(2)证明:直线l的斜率k=,l:y=x,设l':y=x+m(m≠0),y0=x0,由+=5,得A(2,1),由c=,代入椭圆方程解得a=2,b=,∴椭圆的方程为+=1,联立整理得x2+2mx+2m2-4=0,Δ=4m2-4(2m2-4)>0,即m∈(-2,0)∪(0,2).设直线AP,AQ的斜率分别为k1,k2,设P(x1,y1),Q(x2,y2),则k1=,k2=.由x2+2mx+2m2-4=0,可得x1+x2=-2m,x1x2=2m2-4,k1+k2=+=====0,即k1+k2=0.∴直线AP,AQ与x轴围成一个等腰三角形.6.(2017江西红色七校一联,21)已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.解析(1)设椭圆方程为+=1(a>b>0),根据题意得b=c=1,所以a2=b2+c2=2,所以椭圆的方程为+y2=1.(2)根据题意得直线l的方程为y=x-1,联立得P,Q的坐标为(0,-1),,∴|PQ|=,易得点O到直线PQ的距离为,所以S△OPQ=.(3)存在.假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形,因为直线l与x轴不垂直,所以直线l的斜率存在,可设直线l的方程为y=k(x-1)(k≠0),P,Q的坐标分别为(x1,y1),(x2,y2),则=(x1-m,y1),=(x2-m,y2),由得(1+2k2)x2-4k2x+2k2-2=0,∴x1+x2=,x1·x2=,由于以MP,MQ为邻边的平行四边形是菱形,∴||=||,设PQ的中点为N,则N,又k·k MN=-1,∴m==,∴0<m<.C组2016—2018年模拟·方法题组方法1求椭圆的标准方程的方法1.(2017河南部分重点中学联考,11)如图,已知椭圆C的中心为原点O,F(-2,0)为C的左焦点,P为C上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C的方程为()A.+=1B.+=1C.+=1D.+=1答案C2.(2018四川南充模拟,20)已知椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率e=.(1)求椭圆的标准方程;(2)若P是椭圆上的任意一点,求·的取值范围.解析(1)∵|F1F2|=2,椭圆的离心率e=,∴c=1,a=2,∴b=,∴椭圆的标准方程为+=1.(2)设P(x,y),∵A(-2,0),F1(-1,0),∴·=(-1-x)(-2-x)+y2=x2+3x+5,由椭圆方程得-2≤x≤2,二次函数图象开口向上,对称轴为x=-6<-2,当x=-2时,取到最小值0,当x=2时,取到最大值12.∴·的取值范围是[0,12].方法2椭圆的几何性质的应用策略3.(2018河北衡水金卷二模,7)我国自主研制的第一个月球探测器——“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是,(如图所示),则“嫦娥一号”卫星轨道的离心率为()A. B. C. D.答案A4.(2017福建四地六校模拟,15)已知椭圆C:+=1(a>b>0)和圆O:x2+y2=b2,若C上存在点P,使得过点P引圆O的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率的取值范围为.答案5.(2017河南开封一模,20)已知平面直角坐标系xOy中,椭圆的中心为坐标原点,焦点在x轴上,其左、右焦点分别为F1,F2,过椭圆右焦点F2且斜率为1的直线交椭圆于A,B两点,且+与a=(3,-1)共线.(1)求椭圆的离心率;(2)若椭圆短轴的一个端点到右焦点的距离为,直线l与椭圆C交于P,Q两点,坐标原点O到直线l的距离为,求△POQ面积的最大值.解析(1)设椭圆的方程为+=1(a>b>0),右焦点F2(c,0)(c>0),则直线AB的方程为y=x-c.设A(x1,y1),B(x2,y2).由得(b2+a2)x2-2a2cx+a2c2-a2b2=0,∴x1+x2=,x1x2=,∴y1+y2=x1-c+x2-c=-,由+与a=(3,-1)共线,得3(y1+y2)+(x1+x2)=0,∴3×+=0,即a2=3b2,a=b,∴c=b,∴e=.(2)由椭圆短轴的一个端点到右焦点的距离为及(1),得a=,b=1,故椭圆的方程为+y2=1.①当PQ⊥x轴时,|PQ|=;②当PQ与x轴不垂直且不与x轴平行时,设直线l的方程为y=kx+m(k≠0),由=得m2=(k2+1),把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0,设P(x3,y3),Q(x4,y4),则x3+x4=,x3x4=,∴|PQ|2=(1+k2)(x4-x3)2=(1+k2)[(x4+x3)2-4x3x4]=(1+k2)·==3+=3+≤3+=4,当且仅当9k2=,即k=±时等号成立.③当PQ与x轴平行,即k=0时,|PQ|=,综上,|PQ|max=2.∴当|PQ|最大时,△POQ的面积取得最大值,为×2×=.方法3解决直线与椭圆位置关系问题的方法6.(2017湖南六校4月联考,16)过椭圆+=1(a>b>0)上的动点M作圆x2+y2=的两条切线,切点分别为P和Q,直线PQ与x轴和y轴的交点分别为E和F,则△EOF面积的最小值是.答案7.(2018四川凉山州模拟,20)若A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方的两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.解析(1)设AB的中点为M,则M,由得+(y1-y2)(y1+y2)=0,∴(x1-x2)+(y1-y2)=0⇒=-,即k AB=-,∴线段AB的垂直平分线的斜率为.∴线段AB的垂直平分线的方程为y-=(x-1),即9x-2y-8=0.(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2-9=0,∴x1+x2=-=2⇒9k2+9km+1=0.①∵A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方的两点,∴k<0,m>0,②Δ=(18km)2-4(1+9k2)(9m2-9)>0⇒9k2-m2+1>0.③结合①②得m=(-k)+≥,当且仅当k=-时取到等号.此时,k=-,m=满足③.∴直线AB在y轴上截距的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档