Dendritic flux avalanches and nonlocal electrodynamics in thin superconducting films
《凝聚态物理》非线性输运

光孤子的产生
• 波在传播中往往存在色散现象,色散主要由材料 的性质决定。一个线性波动由于在介质中传播时 存在色散,所以该波动是不稳定的。
• 只有当在波动中存在非线性会聚时,如果色散和 会聚两种作用出现某种平衡,才会出现波形稳定 的孤立波。
对体系加入强电场使得电子温度大幅度提高于是向卫星能谷分布wwwthemegallerycom负微分电导现象虽然随着n2的增大j2的数值会进一步增大但是由于n1n2n且卫星能谷的电子漂移速率远小于中心能谷所以总量j随着f的增大而减小当f进一步增大所有电子基本上都已转移到卫星能谷总电流为此后电子迁移速率随着电场增大线性增大
第六章
非线性输运
Company LOGO
目录
1
耿氏效应
Байду номын сангаас
2
超晶格负微分电导
3
隧道二极管负微分电导
4
孤子(光孤子)
耿氏效应
耿氏效应(Gunn effect)是 1963年,由耿 氏(J.B.Gunn) 发现的一种效应。当高于临 界值的恒定直流电压加到一小块N型砷化镓相 对面的接触电极上时,便产生微波振荡。在N 型砷化镓薄片的二端制作良好的欧姆接触电极, 并加上直流电压使产生的电场超过 3kV/cm 时,由于砷化镓的特殊性质就会产生电流振荡, 其频率可达10^9Hz,这就是耿氏二极管。这 种在半导体本体内产生高频电流的现象称为耿 氏效应。
GaAs的两种能谷有效质量
由前面的公式可知道: 砷化镓导带最低能谷1位于布里渊区中心,在布
里渊区边界L处还有一个能谷2,它比能谷1高出 0。29ev。当温度不太高时,电场不太强时,导 带电子大部分位于能谷1。能谷1曲率大,电子有 效质量小。能谷2曲率小,电子有效质量大 。由 于能谷2有效质量大,所以能谷2的电子迁移率比 能谷1的电子迁移率小。
聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。
超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。
目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。
超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。
随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。
2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。
而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。
目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。
生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。
因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。
2024北京海淀区高三(上)期末语文试题及答案

2024北京海淀高三(上)期末语文2024.01 本试卷共8页,150分。
考试时长150分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
一、本大题共5小题,共18分。
阅读下面材料,完成1-5题。
材料一在2023年10月的一场科学活动上,中国科学院院士褚君浩向观众展示了利用特殊材料实现的“隐身术”。
只见工作人员手持一块面板,将其旋转90度后,褚院士的下半身“消失不见了”!褚院士表示:“未来,哈利·波特的隐身斗蓬将成为衣柜里的日常用品。
”想知道隐身斗篷是如何隐身的,就要先了解人是如何看到物体的。
光会在物体的表面发生反射,人眼看到了反射光,从而意识到这里有一个物体。
如果物体的反射光与环境的反射光有很大差别,人们就能通过反射光进一步判断物体的形状和大小。
假如能够减小物体反射光与环境反射光之间的差别,或者使得观察者不能接收到反射光,那么这个物体就可以实现隐身。
过去,研究者用摄像机加上显示屏来创造隐身效果,但它只能做到对某个方向隐身,而且需要耗费许多能量,实用性低。
今天,超构材料的发明改变了这一切。
科学家把介质里微小的人工结构进行有序排列,从而改变了介质的宏观性质。
这些经过人工排序的微结构组成的介质,就叫作超构材料。
那么,超构材料是如何实现隐身的呢?办法是在材料表面制备纳米尺度的金属天线。
当光照射到覆盖在物体上的超构材料时,会发生一种特殊的“折射”,使得所有方向入射的光完全在上述超构材料中无损耗地沿原方向继续传播,从而达到隐身效果。
除隐身外,超构材料还可以将发散的光线会聚起来,无需介质承载就能在空气中成像。
结合空间定位等交互控制技术,可实现人与空气中的影像直接交互。
这样的技术已经应用到了医院无接触式自助挂号机以及地铁自助售票终端上。
患者或乘客看到悬浮在空气中的屏幕显示画面,直接在空气中点击,就能完成挂号或购票,而不需要触摸仪器。
(取材于张兴华等的文章)材料二从《西游记》中的隐身术到《哈利·波特》中的隐身斗篷,实现隐身一直是人类的梦想。
超导量子干涉仪发展和应用现状

第27卷第5期低 温 物 理 学 报Vol.27,No.5
2005年11月CHINESEJOURNALOFLOWTEMPERATUREPHYSICSNov.,2005
超导量子干涉仪发展和应用现状陈 林 李敬东 唐跃进 任 丽华中科技大学超导电力科学研究与发展中心,武汉 430074
作为灵敏度极高的磁传感器,超导量子干涉仪(即SQUID)在生物磁测量,大地测量,无损探伤等方面获得了广泛的应用.本文主要介绍了超导量子干涉仪的基本原理,制作工艺以及发展现状,并总结了目前的应用热点和国内外研究进展,对我国如何开展该方面的研究进行了探索和分析.
关键词:SQUID,约瑟夫森结,梯度计PACC:7450
1 引 言SQUID实质是一种将磁通转化为电压的磁通传感器,其基本原理是基于超导约瑟夫森效应和磁通量子化现象.以SQUID为基础派生出各种传感器和测量仪器,可以用于测量磁场,电压,磁化率等物理量.
被一薄势垒层分开的两块超导体构成一个约瑟夫森隧道结.当含有约瑟夫森隧道结的超导体闭合环路被适当大小的电流偏置后,会呈现一种宏观量子干涉现象,即隧道结两端的电压是该闭合环路环孔中的外磁通量变化的周期性函数,其周期为单个磁通量子Ф0=2.07
×10
-15
Wb,这样的环路就叫做超导量子干涉仪.
根据SQUID的现状和发展,本文重点对目前的应用热点和研究进展进行分析,并指出了要解决的问题和相应对策.
2SQUID磁强计SQUID根据所使用的超导材料,可分为低温超导SQUID和高温超导SQUID.又可根据超导环中插入的约瑟夫森结的个数分为RF2SQUID和DC2SQUID.
2.1低温DC2SQUID目前大部分低温DC2SQUID采用Nb/ALOx/Nb隧道结工艺制作,并包含有一个铌膜制成的平面方形垫圈.在垫圈上沉积多匝的铌输入线圈,与SQUID环孔有效耦合.Nb/
ALOx/Nb隧道结这一工艺由Gurvitch等人首先提出,在Nb/Si/Nb选择Nb阳极氧化工艺(SNAP)的基础上,改用Al氧化层做位垒,用反应离子刻蚀技术形成结区,发展成选择
散粒噪声用于研究超导体性质的实例综述

散粒噪声用于研究超导体性质的实例综述1北京大学物理学院本科毕业论文作者崔治权指导老师危健散粒噪声用于研究超导体性质的实例综述【摘要】 : 散粒噪声是一类重要的噪声信号 , 主要由载流子的离散性造成 ,在载流子通过隧道结时表现得最为明显, 人们可以通过对它的分析获得关于介观系统某些性质的信息, 这些信息往往又是从电导等物理量的平均值测量中不易获得的。
本文将主要介绍近年来在常规以及高温超导体中 , 利用散粒噪声信号研究其性质的典型实例 , 以期对于散粒噪声的特性及其用于研究凝聚态特别是超导体性质的思路和手段进行全面准确的把握 , 从而为实验室下一步研究高温超导体 YBCO 隧道结中散粒噪声信号提供一定的帮助。
【关键词】 :散粒噪声,常规超导体, 高温超导体, 隧道结 ,电输运性质 2北京大学物理学院本科毕业论文作者崔治权指导老师危健目录一、引言 (4)二、散粒噪声的性质及表征..…………………………………………… 51.噪声信号的一般数学描述..................................................................... 52. 热噪声简介 (7)3. 闪烁噪声简介 (7)4. 散粒噪声的产生机制及数学描述 (8)4.1 单电子隧穿一维势垒.................................................................................9 4.2 单电子随机入射一维势垒 (9)4.3 多电子随机入射 (9)三、应用散粒噪声信号研究半导体性质的几个范例........................ 101. 分数量子霍尔效应 (10)2.SNT (shot noise thermometer )标准低温温度计.................................... 133. 量子混沌微腔中的电子散射...............................................................144.小结 (16)四、利用隧道结中散粒噪声研究常规超导体特性的实例............... 171. 超导简介 (17)2. 超导隧道结中电流散粒噪声应用的两个实例....................................17 2.1 无序金属- 超导体隧道结中散粒噪声的特性 (18)2.2 SNS 隧道结中 MARMultiple Andreev Reflection 效应引起的散粒噪声激增 (21)3. 常规超导体中其他未及说明的实例................................................234.小结 (23)五、利用隧道结中散粒噪声研究高温超导体特性的实例……… 241. 高温超导简介…………………………………………………………………… 242. 高温超导隧道结中的散粒噪声………………………………………………… 25 2.1 d- 波超导体 SN 结中散粒噪声与 s- 波超导体中散粒噪声的区别………………………… 25 2.2 YBCO 双晶结中散粒噪声的研究..................................................................283.小结 (29)六、总结与讨论………………………………………………………… 29 3北京大学物理学院本科毕业论文作者崔治权指导老师危健七、参考文献 (30)八、致谢 (31)九、原创性和使用授权说明……………………………………………… 32 4北京大学物理学院本科毕业论文作者崔治权指导老师危健【正文】 :一、引言半导体器件中的噪声信号, 实际上就是指半导体中所通电流或两端测得的电压不会一直保持一个不变的值, 而是会随时间围绕着平均值发生一定的上下波动,这种波动有时甚至会比较剧烈。
凝聚态物理中的超导机制及其应用

凝聚态物理中的超导机制及其应用随着科学技术的发展,人类对于物质的认识也变得越来越深入。
凝聚态物理是物理学中的重要分支,研究的是微观尺度下,物质在各种条件下的状态和性质。
其中,超导现象是凝聚态物理中的经典问题之一。
本文将对凝聚态物理中的超导机制及其应用进行阐述。
1. 超导基本概念超导是指物质在特定条件下,在电流通过时不会出现电阻的现象。
这种现象首先由荷兰物理学家海克·鲁特在1911年发现。
他把金属冷却到近绝对零度的温度下,发现金属电阻陡然下降,当达到某个临界温度以下时,其电阻变为零。
这是他所发现的一种新的电性质,即超导效应。
2. 超导机制及类型超导现象的产生原因和机制被称为超导理论。
目前,已经有几种理论可以解释超导现象,最有名的是BCS理论、Bogoliubov理论和Ginzburg-Landau理论。
BCS理论是由约翰·巴丹(John Bardeen)、林纳斯·科普(Leon Cooper)和约翰·施里弗(Robert Schrieffer)在1957年提出的。
这个理论说明了超导现象是由电子间的相互作用导致的。
在超导态下,电子将形成相互作用的电子对,称为“库珀对”。
这种相互作用来源于电子和晶格的相互作用。
Bogoliubov理论是针对超导体在外部电场作用下的物理性质。
这个理论来源于由S.N. Bogoliubov在1947年提出的关于Bose凝聚的理论。
在超导态下,Bogoliubov理论提供了一个描述相互作用电子和库珀对的框架。
Ginzburg-Landau理论是对超导现象的一个微观描述,也是针对超导态下的电子和库珀对的电动力学行为的描述。
该理论是由列夫·金斯堡(Lev Landau)和维塔利·金斯堡(Evgeny Lifshitz)于1950年代初提出的。
根据不同材料的物理性质,可以将超导体分为两种类型:第一类超导体和第二类超导体。
量子力学教程(很多老师用过)(免费)
量子力学教案主讲周宙安《量子力学》课程主要教材及参考书1、教材:周世勋,《量子力学教程》,高教出版社,19792、主要参考书:[1] 钱伯初,《量子力学》,电子工业出版社,1993[2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000[3] 曾谨言,《量子力学导论》,科学出版社,2003[4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984[5] 咯兴林,《高等量子力学》,高教出版社,1999[6] L. I.希夫,《量子力学》,人民教育出版社[7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999[8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990[9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999[10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979)[11]ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)第一章绪论量子力学的研究对象:量子力学是研究微观粒子运动规律的一种基本理论。
它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。
它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。
§1.1经典物理学的困难一、经典物理学是“最终理论”吗?十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。
加速器介绍
Introduction to Particle Accelerators國家同步輻射研究中心 周炳榮 Ping J. Chou pjchou@.twPHYS467500— 01Last update: 2007-10-22十年樹木,百年樹人Important Notes to Students: The sole purpose of this lecture notes is meant for classroom use only. Some photographs and graphic illustrations are adapted from various reference literatures, which are NOT to be distributed beyond the classroom use. Acknowledgement: The author is greatly in debt to Dr. Andrew Sessler of Lawrence Berkeley National Laboratory for his generous help and offering of invaluable historic notes on the development of particle accelerators. Dr. Andrew Sessler’s book* on the historic review of the development of particle accelerators is HIGHLY recommended to those who is interested in the physics of particle accelerators and the human stories behind it. One can certainly find some inspiration from his book. * Andrew Sessler and Edmund Wilson, Engines of Discovery –- A Century of Particle Acceerators, (World Scientific, Singapore 2007)The years around 1930 can be marked as the starting point of the accelerator era. Lord Ernest Rutherford can be regarded as the first person to push the development of particle accelerators.Laureates Year Main contribution to the physics of particle accelerators---------------------------------------------------------------------------------------------------------------E.O. Lawrence 1939 the invention of cyclotron and the production of artificial radioactive elements J.D. Cockcroft & 1951 the invention of cascade accelerator and the first E.T.S. Walton disintegration of atomic nuclei by artificially accelerated particles E.M. McMillan 1951 the principle of phase stability (transuranium elements) (in chemistry, shared with G.T. Seaborg ) J. Schwinger ( 1965 the fundamental analysis of properties of synchrotron shared with S. radiation (work on quantum electrodynamics) Tomonaga, R.P. Feynman) L.W. Alvarez 1968 drift tube linear accelerator (development of hydrogen bubble chamber) C. Rubbia & 1984 the invention of stochastic cooling for antiprotons S. Van der Meer (discovery of W/Z particles)Mechanism of Particle Acceleration DC voltage acceleration (developed in 1930s) • Voltage multiplier cascade (Cascade accelerators, Cockcroft and Walton) • Electrostatic generator (Van de Graaff accelerators) Resonance acceleration (Gustaf Ising, Sweden, first proposed it in 1924) • Radio-frequency (RF) Linear accelerators (Rolf Wideröe, Norway, built the first linac using an RF accelerating field) • Radio-frequency quadrupole (RFQ) (first proposed by I.M. Kapchinski and V.A. Teplyakov in 1970) • Cyclic accelerators Cyclotron (first one built in 1931) Microtron (first proposed in 1944 by V. Veksler and J. Schwinger) Synchrocyclotron (first proposed in 1945 by E. McMillan and V. Veksler) synchrotron Magnetic induction acceleration • Betatron (invented & built in 1940 by Donald Kerst, but the concept was formulated by R. Wideröe in 1928) • Induction linac (invented by N.C. Christofilos in 1950s)PHYS467500— 01DC voltage acceleration: (DC electric field)+V-VBattery (DC power supply)Magnetic induction acceleration: (Faraday’s Law of Induction)r r ∂B ∇× E = − ∂t r r r r & ∫ E ⋅ d l = − ∫ B ⋅ dSResonance acceleration: (AC electric field)∆W = e∆V ∆V = V0 sin(ωrf t + φ )E z ( r , t ) = E0 J 0 ( Bθ (r , t ) =e.g. the oscillating electromagnetic fields in a pillbox cavity (Maxwell eqs. + boundary conditions)ωcr ) e j ωtE0 ω J 1 ( r ) e j ωt c cExample of resonance acceleration:A pillbox cavity (NSRRC Booster)Electrostatic Acceleratorusing DC electric field to accelerate charged particles, the gain in the kinetic energy is: K= qV Voltage gain ∆V≦ 10 kV Method 1) 10 kV 10 kV 10 kV 10 kV- +- + - + - + Connecting several accelerating structures in succession each is charged by high voltage power supply (10 kV max.) Method 2)+ _Charging up several high voltage capacitors, each to the maximum voltage available, then we discharge those capacitors all in series Cockcroft-Walton accelerator, it can reach few MeVMethod 3)Van de Graaff accelerator, it can reach ~ 10 MeV, invented in 1930’s deposit charge on a moving belt (insulating material) driven by a motor. The belt carries the charge to a large sphere continuously. A very huge charge (high voltage) is built up on the sphere. The physical size and expense are the limitationCockcroft-Walton Voltage Multiplier (cascade accelerator)The 750 keV Cockcroft-Walton accelerator at Fermi National Accelerator Laboratory (Fermilab), Batavia, USAThe original Cockcroft-Walton generator developed by J. Cockcroft and E. Walton at Cavendish Laboratory in Cambridge, U.K.Ernest T.S. WaltonErnest RutherfordJohn D. Cockcroft(founding father of nuclear physics)•The Cockcroft-Walton generator can convert AC or raise a low DC voltage to a much higher DC voltage level. It is used to provide higher DC electric fields for particle acceleration. •It is based on the principles of voltage multiplying circuit. A voltage multiplier can step up a relatively low voltage to an extremely high value. This technique is different from the transformer. It does not require the heavy core and use only capacitors and rectifiers (diodes). •The voltage potential achieved by the first Cockcroft-Walton voltage multiplier is 700 kV with a voltage variation within few percent. Positive ions of hydrogen with a beam current of the order of 10 µA being obtained (protons of 710 keV). •This is the first accelerator to demonstrate disintegration of atomic nuclei by artificially accelerated particles! They induced the nucear reaction: Li+ p 2HeFirst cycle K1General principle of voltage multiplying circuitX1 K2 E supply E K3 0 2E K2 E In the 1st cycle when X1 and X2 are connected to K2 and K3, capacitor X2 will be charged to voltage E supply E K3 Efloating connectionE X2Second cycle K1 X1 2E X2The voltage multiplier circuit was known and used at lower potentials around 1920.ÆM. Schenkel, Elektrotechnische, 40: 333 (1919)ÆH. Greinacher, Z. Phys.,4: 195 (1921)Cockcroft and Walton adapted the circuit and applied it to a much higher voltage potentials than in the previous applications. Their results are reported in aseries of papers:Proc. Roy. Soc. (London), A129: 477 (1930)Proc. Roy. Soc. (London), A136: 619 (1932)Proc. Roy. Soc. (London), A137: 229 (1932)Proc. Roy. Soc. (London), A144: 704 (1934)J.D. Cockcroft and E.T.S. Walton were awarded the Nobel Prize in Physics for 1951.The steady DC voltage potentials available with the voltage multiplier cascade and its reliability have made it very useful in low-energy nuclear physics, in theenergy range up to 1 MeV. For enclosed systems filled with high pressureinsulating gases, the voltage has been achieved up to 6 MV. It is alsofrequently chosen as the pre-accelerator (injector) for higher energy machines when high-intensity ion beam is desired.Diameter of the sphere: 15 ft. Diameter of the supporting column: 6 ft.The machine was used as a research accelerator at MIT operating at potentials up to 2.75 MV. It was moved to Boston Museum of Science eventually. The effect of pigeons’droppings on the sphere is very dramatic as shown by those sparks.The diagram from E.O. Lawrence’s 1934 patent, found from WikipediaErnest O. Lawrence in 1930The first cyclotron with a diameter of 5 inchesE.O. Lawrence’s idea of using voltages oscillating at radio frequency (RF) toaccelerate charged particles in a circular machine was triggered by Rolf Wideroe’spaper that he came across in the Berkeley University library in 1929.[Ref.]: Photography gallery of Lawrence Berkeley National Laboratory,/photo/gallery/If the frequency of electric oscillator is adjusted to be the same as the cyclotron frequency, i.e. particles always cross the voltage gap at the right timing (resonance condition: continuous accelerationÄenergy gain)The 11-inch cyclotron built by Lawrence and his graduate students, David Sloan and M. Stanley Livingston at the Univ. of California, Berkeley during 1931. They obtained a proton beam of energy 1.22 MeV and a current of 1 nA with a maximum accelerating voltage of only 4 kV.•Phys. Rev., 40: 19 (1932), E.O. Lawrence and M.S. Livingston•Rev. Mod. Phys.,18, 293 (1946), M.S. Livingston; “Ion Sources for Cyclotrons”The principle of vertical focusing in a cyclotron (focusing action of electric field)+V-VA H+BBecause of the existence of the curvature of the field lines, most effective for particles at low energy, near the center of gap.PHYS467500— 01At higher beam energy, the increase of speed is getting smaller. Particles can not cross the voltage gap at the right timing. Eventually they are decelerated (not synchronized with the accelerating voltage), i.e. the resonance condition is lost. The maximum energy gain can be obtained from a cyclotron: heavy particles: E ~ 20 MeV (protons) electrons : E ~ few hundred eV, < 1 keV ! The energy limit of cyclotron is set by the effects of relativity Synchronism is lost when v c (why?) What is the limitation to build a cyclotron at higher energy for heavy ions? Is cyclotron a good option for accelerating electrons to higher energy? Why?Homework 1) The correct expression to be used when the relativistic effect is taken into account should be R=P/(qB), instead of Eq.(1.2), where P is the momentum. Derive this result. PHYS467500— 01Homework 2) Using the expression given in Homework 1, derive the circulating frequency of particles when the relativistic effect is taken into account.qB f = 1− v2 c2 2πm0(1.5)Homework 3) Using the relativistic expression of circulating frequency given in Eq.(1.5) of Homework 2, calculate the circulating frequency for electrons with kinetic energy 10 keV and 1 MeV respectively. Assuming a magnetic field B= 500 Gauss. Then, you repeat the calculation using the nonrelativistic expressions given by Eqs.(1.2) and (1.3), compare the circulating frequencies obtained with the nonrelativistic expressions and relativistic expressions. Homework 4) Repeat the calculation you have done in Homework 3, calculate the circulating frequency for protons with kinetic energy 1 MeV and 30 MeV respectively. Assuming a magnetic field B= 500 Gauss. Then, you repeat the calculation with nonrelativistic expressions given by Eqs.(1.2) and (1.3), compare the circulating frequency for both cases.The 184 inch cyclotron built at Univ. of California, Berkeley[Ref.]: Photography Gallery of Lawrence Berkeley National Laboratory, /photo/gallery/Electron Linac (disk loaded structure)[Ref.] High power microwave amplifier[Ref.] Beam Line, Vol.28 (1998), published by SLACStanford Linear Accelerator Center (SLAC)50 ¥ 50 GeV e-e+September 25, 2007 - Wolfgang Panofsky, Renowned Stanford Physicist and Arms Control Advocate, Dead at 88 •born in Berlin April 24, 1919 •graduated from Princenton University in 1938 •received his PhD. From California Institute of Technology in 1942 and served as consultant to the Manhattan Project, helping build the first atomic bomb during World War II. •The founding director of SLAC •member of the President’s Science Advisory Committee in the Eisenhower, Kennedy and Johnson administrations. •a fellow of the American Physical Society and served as its president in 1974. For more details, please refer to /pressreleases/2007/20070925.htmMagnetic induction accelerationBetatronBgBav• • •Donald Kerst and Robert Serber reinvented R. Wideröe’s beam transformer idea and renamed it as betatron. The success is due to their detailed orbit stability analysis and careful magnet design by D. Kerst. In the betatron, a time varying magnetic field produces an electric field that accelerates electrons. Although the betatron has a circular geometry similar to the cyclotron, it’s a pulsed machine and the particle orbit does not spiral out. It’s the first circular accelerator to operate at a constant orbit radiusPhys. Rev., 58: 841 (1940), D.W. Kerst Phys. Rev., 60: 47 (1941), D.W. Kerst Phys. Rev., 60: 53 (1941), D.W. Kerst and R. SerberPrimary coilSecondary coilAC Induced alternating currentChanging magnetic flux The principle of betatron is similar to the action taking place in an electric transformer. The coil of magnet in the betatron acts as the primary winding, the circulating electron beam acts as the secondary winding. the changing magnetic flux acceleration the increasing magnetic field particle guiding In contrast, cyclotrons can be operated continuously ! Betatron operation must be recycled Pulsed operation[Ref.] /history/Timeline/1940s.html[Ref.] /engineering/ind_module_summary.htmlThe Flash X-Ray Facility (FXR),a linear-induction electron beamaccelerator built in 1982, atLawrence Livermore NationalLaboratory, California, USA. Itis used to study the detonationprocess (implosion) of nuclearweapons.[Ref.] /str/April02/April50th.htmlNichola C. Christofilos, theinventor of the inductionlinac (1950s) and theprinciple of strong focusing.[Ref.] http://www.mlahanas.de/Greeks/new/Christofilos.htm國家同步輻射研究中心增能環(新竹科學園區)Synchrotron (higher energy electron)when e-travels at 0.98c Äthe beam energy is only at 2 MeV e-travels at a constant speed above few MeV The operation principles of e-synchrotron combine:•cyclotron method of acceleration•Strength of magnetic guiding field increases as the e-energy increasesThe alternating voltages at the gaps can be kept at constant frequency (f RF = const.)Synchrotron must also be pulsed.•Phys. Rev., 70: 249 (1946), D. Bohm and L. Foldy同步輻射加速器基本構造示意圖The synchrotron radiation emitted by electrons orbiting in the magnetic field was first observed in a 70 MeV electron synchrotron at General Electric Company Research Laboratory in 1947.•J. Appl. Phys.,18: 810 (1947), F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, and H.C. PollockThe 300 MeV electron synchrotron built at General Electric Co. in 1940s.The photograph shows the synchrotron radiation emitted from theaccelerator.PHYS467500—01•Fixed-target machine:¨test particle m B is at rest in the lab frame, E AB E c m E 2*2≅•Colliding-beam machine:SLAC Beam Line , Spring 1997Livingston Plot★Terminated in 1993 SSC: 20 TeVLivingston Plot for Colliders in the Constituent Frame 7 TeV (p-p collider)Replaced by International Linear Collider (ILC)The energy of hardon colliders here has been derated by factors of 6-10. Why?PHYS467500— 01[Ref.]: SLAC Beam Line, Spring 1997Fermi National Accelerator Laboratory (Fermilab), Chicago, U.S.A.Tevatron (1 TeV)Main Injector[Ref.] Visual Media Services, Fermilab /pub/presspass/vismedia/RecyclerMain RingTevatronMain InjectorMain Control RoomLarge Hadron Collider (LHC) at CERN, Geneva, Switzerland (will start up in May 2008)[Ref.] http://www.cern.ch Operating temperature 1.9 KSuperconducting coils cooled down to 1.9 °K, dipole field B= 8 TStanford Linear Accelerator Center (SLAC), Menlo Park, California, U.S.A.[Ref.] Klystron galleryLinac tunnel[Ref.] /exp/e158/pictures/ASSET/tunnel_.jpgSLAC Linear Collider[Ref.] /sldwww/slc/SLAC_AERIAL.GIFForth Generation Light Source ( X-ray FEL ) FEL: free electron laser/lcls/Electron bunch length: 0.023 mm, 15 GeV electron beam X-ray wavelength: 0.15 – 1.5 nm X-ray pulse duration: 100 femtosecond – 100 attosecond。
_一类非线性奇性薛定谔方程的精确解
2.1 动力系统.................................................................................................................. 4
一 ?
.
.
'
心. -. 、
.
— .
.
,
如 V ’
’
. 、
. .
J
'
从皆驴 妃 皆 C
. .
^
:
;
、
、
|
,
,
,
去
I
,
;
,
:
:
,
.
,
汽 心 冬 …
,
:
::; 、
'
V 峨攤雜 .
诗 和 、 寺 治 骑 於 乂 等 : .
设
塔 琪 少产 ^
^
:^
: .
v ,,—
界苗装 茲 誦 議^咖 闺。 . ^
爲 ’
,'
,
'
.
成 个 '、
.
‘
眠’ ' 凡以
娘 1
'
'
^
。
、 .
活、巧
:
;
..
: ^
' ;
。、
.
^
, ;
勞 心 .
’
幕
和 ;
除
学
、
(
部
、 所
;
)
适于强源测量的便携式反康普顿γ探测系统设计
2 系统设计
需要尽可能减薄主探测器和反符合探测器的封装材
便携式反康普顿 γ 探测系统设计主要包括探测
器的选取、结构设计及屏蔽体设计 3 个部分。
料,且应使用低 原 子 序 数 元 素 组 成 的 材 料。 本 文 采
用金属铍作为主探测器的外壳和反符合探测器的内
2.
1 探测器的选取
选取 主 探 测 器 需 要 兼 顾 分 辨 率、效 率 及 实 验 保
sabou
t70 kg The Comp
t
onsupp
r
e
s
s
i
onf
a
c
t
o
r
so
ft
he de
t
e
c
t
i
ons
t
em wi
t
h 4π
ys
s
t
ruc
t
u
r
ef
o
r662keVand1525keV γ
r
aysa
r
e63and29 r
e
spe
c
t
i
ve
l
i
l
et
heComp
t
on
y wh
suppr
e
s
的区间为高能区。
顿 γ 谱仪普遍采用 高 纯 锗 探 测 器 作 为 主 探 测 器、环
测器上发生能量 沉 积,逃 逸 的 散 射 γ 射线 又 在 主 探
体后,设备庞大厚重,无法实现移动式应用。曾国强
符合剔除掉;如果逃逸 的 散 射 γ 射 线 未 在 主 探 测 器
பைடு நூலகம்
效果的影响,获得了最 优 位 置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:cond-mat/0407490v1 [cond-mat.supr-con] 19 Jul 2004.Dendriticfluxavalanchesandnonlocalelectrodynamicsinthinsuperconductingfilms
IgorS.Aranson1,AlexGurevich2,MarcoS.Welling3,RinkeJ.Wijngaarden3,VitaliiK.Vlasko-Vlasov1,ValeriiM.Vinokur1,andUlrichWelp11MaterialsScienceDivision,ArgonneNationalLaboratory,Argonne,Illinois60439
2AppliedSuperconductivityCenter,UniversityofWisconsin,Madison,Wisconsin53706
3DivisionofPhysicsandAstronomy,FacultyofSciences,VrijeUniversiteit,
DeBoelelaan1081,1081HVAmsterdam,TheNetherlands(Dated:February2,2008)
WepresentnumericalandanalyticalstudiesofcouplednonlinearMaxwellandthermaldiffusionequationswhichdescribenonisothermaldendriticfluxpenetrationinsuperconductingfilms.WeshowthatspontaneousbranchingofpropagatingfluxfilamentsoccursduetononlocalmagneticfluxdiffusionandpositivefeedbackbetweenfluxmotionandJouleheatgeneration.Thebranchingistriggeredbyathermomagneticedgeinstabilitywhichcausesstratificationofthecriticalstate.Theresultingdistributionofmagneticmicroavalanchesdependsonaspatialdistributionofdefects.OurresultsareingoodagreementwithexperimentsperformedonNbfilms.
PACSnumbers:74.20.De,74.25.Qt,74.25.Fy
Penetrationofmagneticfluxinatype-IIsuperconduc-torcanresultinnonequilibriumpatternformation,suchasmagneticmacroturbulence[1],kineticfrontrough-ening[2],magneticmicroavalanches[3],anddendriticstructures[4].Dendriticfluxpenetrationhasbeenre-vealedbymagneto-opticalimaging(MOI)onmultiplescales∼1−100µmmuchgreaterthanintervortexspac-ingsinYBa2Cu3O7[5],Nb[6,7],Nb3Sn[8],andMgB2[9].Similarityofthesedynamicfluxpatternsindifferentma-terialsindicatesagenericcollectivebehaviorofvortices.RecentlyithasbeenshownbothexperimentallyandtheoreticallythatdendriticfluxpenetrationisduetoapositivefeedbackbetweenmovingfluxandtheJouleheatingcoupledbyahighlynonlinearvoltage-currentcharacteristic[4,9,10].Theresultingthermalbistabilityofcurrent-carryingsuperconductorsgivesrisetoswitch-ingwavesbetweenacoldsuperconductingphaseandahotresistivephaseself-sustainedbytheJouleheating[11].Dendriticfluxpenetrationinsuperconductorshasanalogsinthetheoryofpatternformationoutofequilib-rium[12]andinstabilityofsolidificationfronts[13].Dendriticfluxdynamicsinsuperconductorswasob-servedinnumericalanalysisofnonisothermalmagneticdiffusioninaslabinaparallelfield,whenfluxpenetra-tionwastriggeredbyalocalheatpulse[10].However,ex-perimentshavebeenmostlydoneonfilmsinaperpendic-ularrampingmagneticfieldinwhichcasemagneticfluxdiffusionbecomesstronglynonlocalduetolong-rangein-teractionofvortices[14].InthisLetterwecalculateden-driticfluxpenetrationcontrolledbynonlocalmagneticfluxdiffusioncoupledtothermaldiffusioninthinfilms.Wereportanovelnonlocalmechanismoffluxbranching,whichcapturessalientfeaturesofdendriticfluxpenetra-tioninsuperconductingfilms.Weconsiderathinfilmstripofthewidthwalongthey-axisandthicknessd≪winthexyplaneperpendicular
tothemagneticfieldH0.Distributionsofthemagneticinduction,B(r,t),andtemperatureT(r,t)aredescribedbytheMaxwellequationcoupledtotheheatdiffusion:
C∂tT=∇κ∇T−(T−T0)h/d+JE(J,T),(1)∂tB=−∇×E(J,T),∇×H=Jδ(z).(2)
HereC(T)istheheatcapacity,κ(T)isthethermalcon-ductivity,h(T,T0)istheheattransfercoefficienttothecoolantorsubstrateheldatthetemperatureT0,andE=JE(J,T)/Jistheelectricfield,whichstronglyde-pendsonT(r,t)andthesheetcurrentdensityJ(r,t).TheE(J,T,B)characteristicaccountsforaresistivefluxflowstatewithE=(J−Jc)ρFforJ>Jcandalow-resistivefluxcreepstatewithE=Ecexp(J−Jc)/J1
forJ
Weusethefollowinginterpolationformulaexpressedintermsofobservableparameters[10]:
E=ρFJ1ln[1+exp(J−Jc)/J1],(3)whereJ1(T)islogarithmicfluxcreeprate(J1≪JcbelowtheirreversibilityfieldBc2
isthefluxflowresistivity.
WeconsiderweakJouleheating,forwhichthemostes-sentialtemperaturedependencecomesfromE(T),whileotherparametersmaybetakenatT=T0.Therela-tionbetweencurrentandthez-componentBzinafilmisgivenbythenon-localBiot-Savartlaw.ExpressingJx=∂ygandJy=−∂xginEq.(2)intermsofthecur-rentstreamfunctiong(x,y,t),weobtaintheequationsforgandthedimensionlesstemperatureθ:
τ˙g=ˆK∂x[r(j,θ)∂xg+∂y[r(j,θ)∂yg]−τ˙H0(t),(4)˙θ=∇2θ−θ+αj2r(j,θ).(5)
HerewedefinetheoperatorˆKintheFourierspace,ˆK=ksin(kxx)sin(kyy)gk/k,wherekx=πn/Land