关于cDNA文库

合集下载

cDNA和基因组文库DNA的构建

cDNA和基因组文库DNA的构建

结构 环状
线状 环状
E.coli E.coli E.coli 酵母细胞
环状 环状 环状 线性染色体
哺乳动物细胞 动物细胞
环状 环状
动物细胞和细 菌
环状
插入片段 很小,<8kb
9-24kb <10kb
35-45kb 约300kb 100-800kb
1002000kb >1000kb
举例 pUC18/19 ,某种生物体全部基因的随机片段的重组 DNA克隆群体;cDNA是指含有所有重组cDNA的克隆群体.
基因组:来源于基因组DNA,反映基因组的全部信息,用 于基因组物理图谱的构建,基因组序列分析,基因在染色体上的定位, 基因组中DNA (互补DNA)
第二条DNA链
1:反转录酶催化合成cDNA第一链
• 1 . 1.在置于冰上的无菌微量离心管内混合下列试剂进行cDNA第一链的合成: poly(A) RNA (1μg/μl) 10μl 寡核苷酸引物(1μg/μl) 1μl 1mol/L Tris-HCl (pH8.0, 37℃) 2.5μl 1mol/L KCl 3.5μl 250 mmol/L MgCl2 2μl dNTP溶液(含4种dNTP,每种5mmol/L) 10μl 0.1 mol/L DTT 2μl RNase抑制剂(选用) 25单位 加H2O至 48μl 1 . 2.当所有反应组在0℃混合后,取出2.5μl反应液转移到另一个0.5ml微量离心管内. 在这个小规模反应管中加入0.1μl α-32P dCTP(400 Ci/mmol, 10mCi/ml).
4:接头或衔接子的连接
cDNA末端的削平 4.1.cDNA样品于68℃加热5 min. 4.2.将cDNA溶液冷却至37℃并加入下列试剂: 5×T4噬菌体DNA聚合酶修复缓冲液 10μl dNTP溶液,每种5 mmol/L 5μl 加H2O至 50μl 4.3.加入1~2单位T4噬菌体DNA聚合酶(500单位/ml),37℃温育 15min. 4.4.加入1μl 0.5mol/L ED . 5.在所有四小份样品(来自步骤2和步骤4)加入 100 ng质粒DNA或500 ng的λ噬菌体DNA.这些未甲基化 的DNA在预实验中用作底物以测定甲基化效率. 3 . 6.所有四份小样实验反应和大体积的反应均在37℃ 温育1h. 3 . 7.于68℃加热15min,用酚:氯仿抽提大体积反应液 一次,再用氯仿抽提一次. 3 . 8.在大体积反应液中加入0.1倍体积的3 mol/L乙酸钠 (pH5.2)和2倍体积的乙醇,混匀后贮存于-20℃直至获 得小样反应结果.

cdna文库的构建步骤

cdna文库的构建步骤

cdna文库的构建步骤CDNA文库是基因组学和转录组学研究中非常常见的技术,它可以用来快速鉴定不同组织或不同生长条件下基因表达的变化情况。

下面将介绍CDNA文库的构建步骤。

一、RNA提取RNA提取是构建CDNA文库的第一步,它是从不同组织或生长条件下采集的样品中提取出RNA。

RNA提取需要注意以下几点:1. 样品必须在冰上保存,并尽可能快地进行处理。

2. RNA提取要使用无菌工具和试剂,并严格遵守操作规程。

3. RNA提取要避免DNA污染,可使用DNase对RNA进行处理。

4. RNA质量要进行检测,以保证后续实验的可靠性。

二、反转录反转录是将RNA转化为cDNA的过程。

反转录需要注意以下几点:1. 反转录试剂必须新鲜,并且使用前应该预先热处理。

2. 反转录反应时间和温度要根据实验需求进行调整。

3. 可以选择使用随机引物或寡聚dT引物作为反转录引物。

三、二代测序前的PCR扩增PCR扩增是将cDNA扩增为足够的量以进行二代测序的过程。

PCR扩增需要注意以下几点:1. PCR反应体系要严格控制,避免引物和模板过量。

2. PCR反应时间和温度要根据实验需求进行调整。

3. 可以选择使用高保真PCR酶,以保证扩增产物的准确性。

四、文库构建文库构建是将PCR扩增产物连接到载体上,形成完整的CDNA文库的过程。

文库构建需要注意以下几点:1. 选择合适的载体,如pBluescript II SK+、pUC19等。

2. 连接PCR扩增产物时要控制连接比例,避免连接过多或过少。

3. 连接后可以进行转化、筛选和纯化等步骤,得到CDNA文库。

五、二代测序二代测序是对CDNA文库进行高通量测序的过程。

二代测序需要注意以下几点:1. 选择合适的平台和测序模式,如Illumina HiSeq、NovaSeq等平台。

2. 测序深度要根据实验需求进行调整,以保证数据质量和覆盖度。

3. 测序后得到原始数据后,需要进行质控、去除低质量数据、拼接等步骤,得到高质量的测序数据。

cDNA 文库的构建

cDNA 文库的构建

第二节cDNA 文库的构建cDNA 文库中的外源 DNA 片段是互补 DNA (complementary DNA , cDNA)。

cDNA 是由生物的某一特定器官或特定发育时期细胞内的 mRNA 经体外反转录后形成的双链 cDNA 。

cDNA 文库代表生物的某一特定器官或特定发育时期细胞内转录水平上的基因的群体,并不能包括该生物的全部基因,且这些基因在表达丰度上存在很大差异。

cDNA 文库的构建cDNA 文库的构建共分四步(图 8-2):第一,细胞总 RNA 的提取和 mRNA 分离;第二,第一链 cDNA 合成;第三,第二链 cDNA 合成;第四,双链 cDNA 克隆进质粒或噬菌体载体并导入宿主中繁殖。

图 8-2 : cDNA 文库构建流程图一、RNA 的分离cDNA 文库构建是以 mRNA 为起始材料的, mRNA 在总RNA 中所占比例很小,因此从总RNA 中富集mRNA 是构建cDNA 文库和其它应用所必需进行的步骤。

通过降低rRNA和tRNA 含量,可大大提高筛选到目标基因的可能性。

目前纯化mRNA 的方法都是在固体支持物表面共价结合固定一段由脱氧胸腺嘧啶核苷组成的寡聚核苷酸[ oligo(dT)]链,由它与mRNA 的Poly(A)尾巴杂交,从而吸附固定住mRNA ,进而将mRNA从其它组分中分离出来的。

1.mRNA 的完整性指导合成高分子量蛋白质的能力,指导合成目的多肽的能力,mRNA 的大小,总mRNA 制剂指导合成cDNA 第一链长分子的能力。

2.mRNA 的丰度高丰度mRNA :珠蛋白,免疫球蛋白,卵清蛋白,在特定细胞中占50-90% 。

低丰度mRNA :含量 0.5% 被称为低丰度或稀有mRNA 。

3.mRNA 的富集3.1按大小对 mRNA 进行分级分离3.2 cDNA 的分离级分离近年来多采用此方法,特别是大mRNA ,可避免降解mRNA , agarose 分离大小易辨。

cdna文库 名词解释

cdna文库 名词解释

cdna 文库名词解释cDNA 文库是一种生物学研究中常用的技术手段,它通过反转录酶将 mRNA 转录成 cDNA,再进行克隆和扩增,最终得到一个包含所有基因编码的 cDNA 分子的克隆群。

本文将为您详细介绍 cdna 文库的概念、制作方法、优缺点以及在生物学研究中的应用。

一、cdna 文库的概念cdna 文库是指某生物某一发育时期所转录的 mRNA 全部经反转录形成的 cDNA 片段与某种载体连接而形成的克隆的集合,具有组织或细胞特异性。

cDNA 文库的制作方法通常包括 mRNA 的提取、反转录、克隆和扩增等步骤。

二、cdna 文库的制作方法1.mRNA 的提取:从生物组织或细胞中提取 mRNA,可以使用酚/氯仿法、异硫氰酸胍法等方法进行提取。

2.反转录:将提取到的 mRNA 用反转录酶反转录成 cDNA,反转录酶通常使用 MMLV 或 HIV 反转录酶。

3.克隆:将反转录产生的 cDNA 片段与载体连接,通常使用质粒载体,如 pCDNA3.1 等。

4.扩增:通过 PCR 技术对克隆的 cDNA 片段进行扩增,获得足够的 cDNA 文库。

三、cdna 文库的优缺点cdna 文库的优点是可以从组织或细胞中快速、高效地获取目的基因,并且可以进行高通量测序,获取大量的转录组信息。

此外,由于 cDNA 文库只包含 mRNA 转录的 cDNA 片段,因此可以减少基因组DNA 污染和 rRNA 等非编码 RNA 的干扰。

cdna 文库的缺点是需要进行反转录过程,可能会引起基因突变;同时,由于反转录酶的作用,cDNA 文库中可能会含有一些误差,如插入误差、缺失误差等。

四、cdna 文库在生物学研究中的应用cdna 文库在生物学研究中应用广泛,例如:1.基因表达分析:通过比较不同组织或细胞中的 cDNA 文库,可以了解基因在不同组织或细胞中的表达情况,从而探究基因的功能和调控机制。

2.基因克隆和表达:通过 cDNA 文库可以快速克隆目的基因,并进行表达和功能研究。

cdna基因文库名词解释 概述及应用场景

cdna基因文库名词解释 概述及应用场景

cdna基因文库名词解释概述及应用场景1. 引言1.1 概述CDNA基因文库是指利用互补式DNA(complementary DNA)技术构建而成的一类基因文库,其中包含了特定细胞或组织内所表达的mRNA分子的DNA 复制品。

通过将mRNA转录为cDNA,并将其插入到合适的质粒载体中,科学家们可以获取到特定时期或特定条件下细胞中所表达的全部转录本信息。

CDNA基因文库构建技术是基于反转录酶作用原理而来,通过选取合适的引物和核苷酸,在体外将mRNA逆转录合成相应的cDNA。

这些cDNA分子可进一步克隆到质粒载体中,并在宿主细胞内扩增。

最终形成一个包含大量不同cDNA 片段的基因文库,可供后续研究使用。

1.2 文章结构本文首先会对CDNA基因文库进行详细的名词解释,包括其定义、合成过程及特点以及构建方法与步骤。

接着,将进一步讨论CDNA基因文库在不同领域中的应用场景,尤其是在基因表达研究、蛋白质研究以及新药研发方面的应用。

最后,我们将总结已有的研究成果,并展望CDNA基因文库在未来的发展前景和应用潜力。

1.3 目的本文的目的是为读者提供关于CDNA基因文库的详细解释和应用场景的介绍。

通过阅读本文,读者将更全面地了解CDNA基因文库的概念、构建过程以及其在科学研究中的重要性和广泛应用。

同时,本文也旨在展示CDNA基因文库在基因表达、蛋白质研究以及新药研发等领域所起到的关键作用,为读者理解该技术在科学研究中所扮演的角色提供深入了解。

最后,通过总结已有研究成果并展望未来发展前景,让读者对CDNA基因文库技术有一个更加清晰的认识,并认识到其仍然具有巨大的发展潜力。

2. CDNA基因文库名词解释2.1 CDNA基因文库的定义CDNA基因文库,即亦称为互补脱氧核糖核酸(complementary DNA,cDNA)文库,是一种由转录反应合成的DNA序列集合,其中包含了从细胞中提取的mRNA分子逆转录合成的互补DNA。

cDNA文库构建的具体步骤及详细说明

cDNA文库构建的具体步骤及详细说明

cDNA文库构建的具体步骤及详细说明cDNA 文库是指某生物某发育时期所转录的全部mRNA 经反转录形成的cDNA 片段与某种载体连接而形成的克隆的集合。

经典cDNA 文库构建的基本原理是用Oligo(dT) 作逆转录引物,或者用随机引物,给所合成的cDNA 加上适当的连接接头,连接到适当的载体中获得文库。

其基本步骤包括:(1)mRNA的提纯获取高质量的mRNA是构建高质量的cDNA 文库的关键步骤之一。

(2)cDNA第一条链的合成。

(3)cDNA第二条链的合成。

(4)双链cDNA的修饰。

(5)双链cDNA的分子克隆。

(6)cDNA文库的扩增。

(7)cDNA文库鉴定评价。

一、Superscipt II—RT合成第一链1. 在一RNase-free的0.2 ml PCR管中加入x ul mRNA(大约500 ng) 、1 ul Xho I Primer(1.4 ug/ul)(5’GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAGTTTTTTTTTTTTTTTTTT…3’)、11-x ul RNase-free water(大于500 ng mRNA 分n管(500 ng/tube)合成第一链,第一链合成完毕后将n管合成一管进行第二链合成。

)。

2. 混匀后,70℃反应10分钟。

3. 反应完成后,立刻将反应体系置于冰上5 min。

4. 稍微离心一下,顺序加入以下试剂:(1)4 ul 5×first strand buffer(2)2 ul 0.1 M DTT(3)1 ul 10 mM dNTP(自己配制)5. 混匀,稍微离心反应物之后,42℃放置2分钟。

6. 反应完成,趁热加入1 ul Superscipt II—RT,混匀。

7. 42℃反应50分钟,然后70℃,15分钟灭活反转录酶。

二、cDNA第二链的合成1. 第一链反应完成后,取2ul一链产物-20℃冰箱中保存,待电泳检测。

噬菌体cDNA文库

噬菌体cDNA文库cDNA文库(complementary DNA library)以组织中的mRNA 为模板,反转录合成双链cDNA,各cDNA分子分别插入载体形成重组子,再导入宿主细胞克隆扩增。

这些在重组体内的cDNA的集合即cDNA文库。

代表特定细胞或组织中mRNA的文库。

cDNA文库是在基因组水平上研究某一生物特定器官、特定组织、特定的发育时期基因表达的前提和基础。

传统的筛库方法是将克隆高密度影印到尼龙膜上进行菌落原位杂交筛选。

此方法工作量大,而且必须使用放射性同位素。

现如今,作为大容量文库(≥108克隆)中选择特异的结合肽或蛋白的强大工具,噬菌体展示技术的到来位cDNA克隆基因表达提供了发展的机会。

一.cDNA文库的优点1. 使遗传物质为RNA病毒可建立文库;2. 因克隆数比基因组文库少得多,易于筛选;3. 从分化特异的细胞的cDNA文库中可分离到特异表达的基因。

4. 建库时已排除了其他的RNA,使假阳性率降低。

5. cDNA文库可在细菌中表达,可用多种策略进行筛选。

二.cDNA文库和基因组文库的区别时效性代表某一时期特定细胞或组织中mRNA的转录水平,仅反映某一时期特定组织表达的功能基因,不是全部基因。

包含该生物所有基因序列组成不同无间隔序列和调控区等非编码区可显示基因组的全部结构信息,由于制备DNA片段的切点是随机的,所以每一个克隆内所含的DNA片段既可能是一个或几个基因,也可能是一个基因的一部分或除完整基因外还包含着两侧的临近DNA序列。

如何选择在分离植物RNA、病毒基因、研究植物功能蛋白序列、分离植物特定发育阶段或特异表达的基因时应用cDNA文库研究mRNA不存在的序列及基因组做图时必须构建基因组文库三.用于噬菌体cDNA文库展示的载体1. 丝状噬菌体因为全长cDNA包含在3’末端的翻译终止子,原核表达时缺乏合适的核糖体结合位点(若该cDNA来源于真核细胞),确保cDNA在噬菌体表达的最实际的方法是将5’末端与载体基因融合。

cDNA文库构建原理以及技术路线

CDNA文库1. CDNA文库中重组DNA片断得原始供体来源与细胞中表达出得mRNA,将某一特定类型细胞表达得mrna经反转录酶催化形成与之互补得CDNA,重组克隆后得到得CDNA文库有各自不同得适合范围。

CDNA文库在研究具体某类特定细胞中基因组得表达状态以及表达基因得功能鉴定方面具有特殊得优势,从而使它在个体发育,细胞分化,细胞周期调控2. CDNA文库得质量(1)文库的代表性CDNA文库的代表性是指文库中包含得重组CDNA分子是否能完整地反映出来原细胞中表达地全部信息(即mrna种类),它是体现文库质量地最重要标本。

文库地库容量,它是指构建建出地原始CDNA文库中包含地独立地重组子克隆数。

具备完全好代表性地CDNA文库需要满足地库容量取决与来源细胞中表达出地基因序列地总复杂程度。

具体来就是来源细胞中表达出地mrna种类和每种MRNA序列地拷贝数N=ln(1-p)/ln(1-n/t),P为文库中包含细胞中任何一种mrna序列信息地概率,通常设为99%,N为文库中P概率出现细胞中任何一种mrna序列理论上应具有地最少重组克隆数,n为细胞中最稀少地mrna序列地拷贝数,t为细胞中表达出地所有mrna地总拷贝数,以人类细胞为列,人类基因组携带地遗传基因总数约为100000种,具体到某一特定类型地细胞中,表达出地基因种类仅为基因组全部基因地15%。

因此对于巨大部分地人类细胞,每个细胞内具体表达地mrna种类约为15000种,全体mrna序列地总拷贝约为500000个,而细胞中稀少地mrna种类地拷贝数平均为8个。

因此,用人类细胞来构建CDNA文库时候,要以99%概率保证文库中包含有细胞表达地任何一种mrna地序列信息,构建出地原始CDNA文库理论上应具有地最少独立克隆数为N=ln(1_99%)/ln(1-8/500000)=2.9*10(5)一个具有完好代表性地CDNA文库至少具有10(6)以上的库容量3.MRNA是由5‘端非编码区,中间地编码序列和3’端非翻译区。

cDNA文库的构建


3. mRNA 的纯化
对高丰度的 mRNA 来讲,其所对应的 cDNA 克隆很NA 之前不需要进一步纯化和富集。分离低丰度 mRNA 通常有如下两种方法:①按照大小对总 mRNA 进行分级,主要用琼脂糖凝胶电泳和蔗糖密度梯度离心法进行分级;②多聚核糖体的免疫学纯化法,这是利用抗体来纯化合成目的多肽的方法。
4. mRNA 完整性的确定
确定 mRNA 完整性的方法有三种:
① 直接检测 mRNA 分子的大小;
② 测定 mRNA 的转译能力;
③ 检测总 mRNA 指导合成 cDNA 第一链长分子的能力。
二、 cDNA 的合成和克隆
1. cDNA 第一链的合成
用亲和层析法得到 mRNA 后,根据 mRNA 分子的 3' 端有 poly (A) 尾结构的原理,用 12~20 个核苷酸长的 oligo ( dT )与纯化的 mRNA 混合, oligo ( dT )会与 poly (A) 结合作为反转录酶的引物,反转录反应的产物是一条 RNA-DNA 的杂交链。 oligo ( dT )结合在 mRNA 的 3' 端,因此合成全长的 cDNA 需要反转录酶从 mRNA 分子的一端移动到另一端,有时这种全合成难以达到,尤其是 mRNA 链很长时,为此建立了一种随机引物法合成 cDNA 。随机引物是一种长度为 6~10 个核苷酸,由 4 种碱基随机组成的 DNA 片段。与 oligo ( dT )仅与 mRNA 3' 端结合不同,它们可以在 mRNA 的不同位点结合。随机引物法合成的产物也是 RNA-DNA 的杂交体。把 cDNA 克隆到载体中之前,必须把这种杂交体中的 RNA 转变成 DNA 链,即形成双链 DNA 分子。
3. 将 cDNA 重组到载体上

名词解释 cdna文库

名词解释:cdna文库
cdna文库是指通过反转录将转录本(mRNA)转化为相应的DNA序列,并将其进行克隆、放大保存起来的一种DNA库。

cdna文库包含了特定生物体(如人、动物、植物等)在特定条件下的大部分mRNA序列,可以用于研究基因表达、寻找新基因以及研究基因功能。

在构建cdna文库时,首先需从目标生物组织中提取总RNA。

然后,利用酶逆转录将mRNA转录成相应的cDNA,并添加适配器序列。

接下来,通过PCR反应进行扩增,得到了包含全部mRNA序列的cDNA文库。

这些cDNA可以被克隆入载体中,形成cdna文库。

cdna文库的构建对于研究基因表达具有重要意义。

通过cdna文库,研究人员可以分离出感兴趣的基因,并进一步探索其在不同组织、不同发育阶段或不同环境条件下的表达情况。

此外,cdna文库还可以用于筛选新的基因、研究基因功能以及进行基因工程等领域的研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于cDNA文库1 cDNA 文库的构建1.1 cDNA 文库构建的基本原理与方法cDNA 文库是指某生物某发育时期所转录的全部mRNA 经反转录形成的cDNA 片段与某种载体连接而形成的克隆的集合。

经典cDNA 文库构建的基本原理是用Oligo(dT) 作逆转录引物,或者用随机引物,给所合成的cDNA 加上适当的连接接头,连接到适当的载体中获得文库。

其基本步骤包括:RNA 的提取(例如异硫氰酸胍法,盐酸胍—有机溶剂法,热酚法等等,提取方法的选择主要根据不同的样品而定),要构建一个高质量的cDNA 文库,获得高质量的mRNA 是至关重要的,所以处理mRNA 样品时必须仔细小心。

由于RNA 酶存在所有的生物中,并且能抵抗诸如煮沸这样的物理环境,因此建立一个无RNA 酶的环境对于制备优质RNA 很重要。

在获得高质量的mRNA 后,用反转录酶Oligo(dT) 引导下合成cDNA 第1链,cDNA 第2链的合成(用RNA 酶H 和大肠杆菌DNA 聚合酶I,同时包括使用T4 噬菌体多核苷酸酶和大肠杆菌DNA 连接酶进行的修复反应),合成接头的加入、将双链DNA 克隆到载体中去、分析cDNA 插入片断,扩增cDNA 文库、对建立的cDNA 文库进行鉴定。

这里强调的是对载体的选择,常规用的是λ 噬菌体,这是因为λ DNA 两端具有由12个核苷酸的粘性末端,可用来构建柯斯质粒,这种质粒能容纳大片段的外源DNA。

1.2 cDNA 全长文库经典cDNA 文库的构建虽然高效、简便,但文库克隆的片段一般较小,单个克隆上的DNA 片段太短,所能提供的基因信息很少,大多需要几个克隆才能覆盖一个完整的全基因的cDNA。

为了克隆到真正的cDNA 全长,建立富含全长的cDNA 文库具有重要意义。

为此,必须克服仅用mRNA 的PolyA 尾合成以及由普通逆转录酶作用特点所导致的局限性。

全长cDNA 文库,是指从生物体内一套完整的mRNA 分子经反转录而得到的DNA 分子群体,是mRNA 分子群的一个完整的拷贝。

全长cDNA 文库不仅能提供完整的mRNA 信息,而且可以通过基因序列比对得到mRNA 剪接信息,此外,还可以对蛋白质序列进行预测及进行体外表达和通过反向遗传学研究基因的功能等。

目前所报道的对全长文库的构建一般按照美国CLONTECH 公司的SMART cDNA Library Construction Kit 方法或GeneRacer 试剂盒(Invitrogen,USA) 使用说明进行。

判断一个cDNA 文库中的cDNA 序列是否是全长基因的cDNA,主要方法有以下几种。

1.2.1 直接从序列上评价5'端:如果有同源全长基因的比较,可以通过与其它生物已知的对应基因5'末端进行比较来判断。

如果无同源基因的新基因,则首先判断编码框架是否完整,即在开放阅读框的第1个ATG 上游有无同框架的终止密码子;其次,判断是否有转录起始点,一般加在5'帽结构后有一段富含嘧啶的区域,或者是cDNA 5'序列与基因组序列中经过酶切保护的部分相同,则可以确定得到的cDNA 的5'端是完整的。

3'端:同样可以用其它生物已知的对应基因3'末端进行比较来判断,或编码框架的下游有终止密码子,或有1个以上的PolyA 加尾信号,或无明显加尾信号的则也有PolyA 尾。

1.2.2 用实验方法证实可以通过引物延伸法确定5'端和3'端的长度,如:5'端RACE,3'端RACE,或者通过Northern Blot 证实大小是否一致。

1.3 对cDNA 文库的分析对cDNA 文库质量的评价主要有两个方面。

第一方面为文库的代表性,cDNA 文库的代表性是指文库中包含的重组cDNA 分子反映来源细胞中表达信息(即mRNA 种类)的完整性,它是体现文库质量的最重要指标。

文库的代表性好坏可用文库的库容量来衡量,它是指构建的原始cDNA 文库中所包含的独立的重组子克隆数。

库容量取决于来源细胞中表达出的mRNA 种类和每种mRNA 序列的拷贝数,1个正常细胞含10000~30000种不同的mRNA,按丰度可分为低丰度、中丰度和高丰度三种,其中低丰度mRNA 是指某一种在细胞总计数群中所占比例少于0.5%时。

满足最低要求的cDNA 文库的库容量可以用Clack-Carbor 公式N=Ln(1-P)/(1-1/n) 计算( P 为文库中任何一种mRNA 序列信息的概率,通常设为99%;N 为文库中以P 概率出现细胞中任何一种mRNA 序列理论上应具有的最少重组子克隆数;n 为细胞中最稀少的mRNA 序列的拷贝数;T 为细胞中表达出的所有mRNA 的总拷贝数)。

第二方面是重组cDNA 片段的序列完整性。

在细胞中表达出的各种mRNA 片段的序列完整性。

在细胞中表达出的各种mRNA 尽管具体序列不同,但基本上都是由3部分组成,即5'端非翻译区,中间的编码区和3'端非翻译区。

非翻译区的序列特征对基因的表达具有重要的调控作用,编码序列则是合成基因产物—蛋白质模板。

因此,要从文库中分离获得目的基因完整的序列和功能信息,要求文库中的重组cDNA 片段足够长以便尽可能地反应出天然基因的结构。

2 cDNA 文库构建的其它类型2.1 均一化cDNA 文库它是指某一特定组织或细胞的所有表达基因均包含其中,且在cDNA 文库中表达基因对应的cDNA 的拷贝数相等或接近。

WEISSMAN 早就提出了可以通过基因组DNA 饱和杂交的原理将cDNA 文库进行均一化的理论。

但该理论一直以来都被认为不能应用于实际。

其主要限制因素是难以提供足量的极低表达丰度的cDNA 用于饱和杂交,从而可能会造成部分基因的cDNA 的丢失。

20年前,基于DNA-RNA 杂交的研究就已经将基因的转录水平分为高中低3类。

随后研究进一步表明,绝大多数基因是处于中等或低等表达丰度的,在单个细胞中含有近1~15个拷贝,而高丰度表达基因的转录产物在单个细胞中最高可达5000个左右拷贝,约占总表达量的25%。

这种基因表达能力上的巨大差异成了获得一个具有完整代表性的cDNA 文库的障碍,其表达量上的巨大差异更为大规模研究增添了困难。

对单一组织的cDNA 文库而言,高拷贝基因序列的大量存在给基因的筛选和鉴定带来不必要的浪费,尤其是在大规模的EST 测序中。

均一化cDNA 文库是克服基因转录水平上巨大差异给文库筛选和分析带来障碍的有效措施,有利于研究基因的表达和序列分析。

现在,在构建均一化的cDNA 文库中至少有2种主要的观点:一种是基于复性动力学的原理,高丰度的cDNA 在退火条件下复性的速度快,而低丰度的cDNA 复性要很长时间,从而可以通过控制复性时间来降低丰度;另一种是基于基因组DNA 在拷贝数上具有相对均一化的性质,通过cDNA 与基因组DNA 饱和杂交而降低在文库中高拷贝存在的cDNA 的丰度。

第一种方法的掌握对技术的要求比较高,对多数人而言需要多次摸索才能找到最适条件;而后一种方法易于掌握,但有研究者根据复性动力学的原理也提出了其不利因素,即采用基因组DNA 饱和杂交的方法会因为低拷贝的表达基因拷贝数少而无法被杂交上。

目前已报到的均一化cDNA 文库多是根据第二种原理构建的,常用策略有基于PCR 技术利用cDNA 多次复性mRNA-cDNA 杂交等。

有研究报道,针对各自选择的高表达靶序列进行分析后,均一化处理后文库的高丰度表达cDNA 是处理前的0.3%~2.5%,基本满足节约筛选的要求。

均一化cDNA 文库具有以下4方面的优点:第一,在经济上具有广泛的应用空间,可以节约大量试验成本。

第二,增加克隆低丰度mRNA 的机会,适用于分析各种发育阶段或各种组织的基因表达及突变检测。

第三,与原始丰度的mRNA 拷贝数相对应的cDNA 探针与均一化的cDNA 文库作杂交,可以估计出大多数基因的表达水平及发现一些组织特异的基因。

而以往的文库构建,忽略了mRNA 丰度的影响。

第四,可以用于遗传图谱的制作和进行大规模的原位杂交,作为优化的文库系统还可以用于大规模的测序或芯片制作等研究。

2.2 差减cDNA 文库(Subtractive cDNA library)差减文库也称扣除文库,使用两种遗传背景相同或大致相同但在个别功能或特性上不同的材料(如不同基因处理细胞系或植物的近等基因系等)提取mRNA (或反转录后合成cDNA),在一定条件下用大大过量不含目的基因的一方作为驱动子( Driver )与含有目的基因的试验方( Tester )进行杂交,选择性的祛除两部分共同基因杂交形成的复合物,往往进行多次的杂交—祛除过程,最后将含有相关目的基因的未杂交部分收集后,并连接到载体形成文库。

消减杂交是构建差减cDNA 文库的核心,差减文库是否构建成功很大程度上决定于差减杂交的效率。

差减杂交的方法主要有(1)羟基磷灰石柱层析法(HAP);(2)生物素标记、链亲和蛋白结合排除法;(3)限制性内切酶技术相结合的差减方法;(4)差减抑制杂交法(SSH);(5)磁珠介导的差减法(MAST),其中SSH 法最为常用。

抑制性消减杂交技术(Suppression Subtractive Hybridization,SSH) 是DIATCHENKO 等人于1996年依据消减杂交和抑制PCR 发展出来的一种分离差异表达基因的新方法,主要用于分离两种细胞或两种组织的细胞中的差异表达基因。

它主要是利用抑制PCR 对差减杂交后丰度一致的目的材料中两端连有不同接头的差异表达片段进行指数扩增,而两端连接上同一接头的同源双链片段仅呈线形扩增,从而达到富集差异表达基因的目的。

因此应用该技术能够对两个有差异表达的材料(细胞或组织)高、中、低丰度目的基因都进行有效、快速、简便克隆。

近年来已成功应用于植物发育、肿瘤与疾病、以及外界因子诱导组织细胞中相关的应答基因的分析和克隆。

2.3 固相cDNA 文库构建cDNA 的固相合成是人们早为熟知的技术,但局限之处oligo(dT) 与纤维素胶粒或磁珠的结合比较牢固,将cDNA 洗脱下来时得率不是很高,而且以后的反应步骤也不能都在介质上进行,这可能是该技术应用并不十分广泛的原因。

最近THOMAS ROEDE 提出了一种新的cDNA 文库固相合成方法( THOMAS ROEDE,1998),克服了以前文库构建中存在的缺点,所用的酶和试剂与传统方法完全相同,不同的是cDNA 的合成和修饰均在固相支持物—磁珠上完成。

cDNA 通过一个生物素固定在链霉素偶联的磁珠上,这样在反应过程中就可以简便而迅速的实现酶和缓冲液的更换,因此它将快速与高质量的文库构建结合在一起(构建文库只需1 d),并且构建的文库适合大多数的研究目的。

相关文档
最新文档