压力容器基本知识与结构

压力容器基本知识与结构
压力容器基本知识与结构

压力容器基本知识与结构

一、压力容器基本常识

压力容器,不是指所有承受压力的容器,而是指那些容易发生事故,危险性较大,需有专门机构进行监督,并按规定的技术管理规范进行制造和使用的压力容器。

压力容器安全监察规程规定,具备下列三个条件的容器作为特殊设备来管理:

一)最高工作压力≥0.1兆帕,

二)容积≥25升,且压力*容积≥200升?公斤力/平方厘米(19.6升?兆帕)。

三)介质为气体、液化气体和最高工作温度高于标准沸点的液体。

压力容器是工业生产中的常用设备,它在各个工业领域中都得到广泛的应用,压力容器除了用于工业生产外还用于基本建设、医疗卫生、地质勘探、文教体育等国民经济各部门。

二、压力容器的分类

压力容器的形式很多,根据不同的要求,压力容器可以有许多种分类方法,常用的分类方法有以下几种。

一)按压力分类:

按所承受压力的高低,压力容器可分为低压、中压、高压、超高压四个等级。

最高工作压力小于1.6兆帕的为低压容器,这种低压容器大多用于基本化学工业、机器制造业以及冶金采矿等行业;

压力为1.6兆帕至小于10兆帕的为中压力容器,这种容器多用于石油化学工业;压力为10兆帕至小于100兆帕的为高压容器,这种容器主要用于氮肥工业和一部分石油化学工业;

100兆帕以上的为超高压容器,这种容器目前使用的还不太多,除实验设备外用于工业生产的大部分是高分子聚合设备和人造水晶设备等。

二)按壳体承压方式分类:

按壳体承压方式不同,压力容器可分为内压容器和外压容器两大类。

这两类是截然不同的,它的差别首先反映在设计原理上,内压容器的壁厚是根据强度计算确定的,而外压容器的壁厚设计则主要考虑稳定问题;其次反映在安全性上,外压容器一般较内压容器安全。

三)按设计温度分类:

压力容器按设计温度的高低,它可分为低温容器、常温容器和高温容器三种。低温容器设计温度小于等于负20℃,常温容器设计温度大于20℃小于450℃,高温容器设计温度大于等于450℃。

四)从安全技术管理角度分类:

按安全技术管理分类,压力容器可以分为固定式容器、移动式容器两大类。

固定容器是指固定的安装地点、工艺条件和使用操作人员也比较固定。

容器一般不是单独装设,而是用管道与其它设备相连接的容器,如合成塔、蒸球、管壳式余热锅炉、热交换器、分离器等。

移动式容器,这种容器主要用途是盛装和运送气体或液化气体,容器在气体制造厂充气,然后运送到用气单位,这类容器没有固定的使用地点,一般也没有专门负责的操作人员,使用环境经常变动,管理比较复杂,因而也比较容易发生事故;

移动式容器按容积和结构形状,有气瓶、气筒、罐车等三种。

五)按在生产工艺过程中的作用原理分类:

压力容器可分为反应容器、换热容器、分离容器和储运容器四种类型。反应容器主要是用来完成介质的物理、化学反应的容器;

换热容器主要是用来完成介质的热量交换的容器,如管壳式废热锅炉;

分离容器主要是用来完成介质的液体压力平衡和气体净化分离等的容器;

储运容器主要是用来盛装生产和生活用的原料气体、液体、液化气体等容器,如各种形式的储槽、槽车、铁路槽车、公路槽车。

六)容规对压力容器的分类:

为了有利于安全技术管理和监督检查,根据容器的压力高低,介质的危害程度以及生产过程中的重要作用,容规将其适用范围的容器划分三类。

一类容器包括非易燃和无毒介质的低压容器,易燃或有毒介质的低压分类容器和换热容器;

二类容器包括中压容器、剧毒介质的低压容器、易燃或有毒介质的低压反应容器和储运容器,内径小于1米的低压废热锅炉;

三类容器包括高压、超高压、剧毒介质且工作压力乘以容积大于等于190升兆帕的低压容器或剧毒介质的中压容器,易燃或有毒介质且工作压力乘以容积率大于等于490升兆帕的中压反应容器,或工作压力乘以容积大于等于4900升兆帕中央储运容器,中压废热锅炉和内径大于1米的低压废热锅炉。

七)其他分类方法:

按容器的壁厚分类可分为厚壁容器和薄壁容器两类;

按壳体的几何形状分类有球形容器、圆筒形容器、圆锥形容器等三种;

按制造方法分类有焊接容器,锻造容器、铆接容器、铸造容器及各式组合制造容器等;

按结构材料分类有钢制容器、铸铁容器、有色金属容器和非金属容器等等;

按容器的安放形式分类有立式容器、卧式容器等。

三、压力容器的基本结构

压力容器的结构形式是多种多样的,它是根据容器的作用、工艺要求、加工设备和制造方法等因素确定的。

这些压力容器是由承受压力的壳体、连接件、密封元件、接管与开孔及其补强、支座等组成的。

我们看到的这些都是壳体,是压力容器最主要的组成部分,它的作用是储存物料,完成化学反应所需用的反应空间,它的形状有圆筒形、球形、锥形和组合形等数种,但最常用的是圆筒形和球形两种。

圆筒形壳体,它是由一个圆柱形的筒体和两个封头或端盖组成的,它的特点是轴对称,圆筒体是一个平滑的曲面,应力分布比较均匀,承载能力较高,易制造,因而得到广泛的应用。

球形壳体,也就是这些壳体呈球形,通常又称为球罐,它的特点是受力均匀。在相同的壁厚条件下,它的承载能力高;在相同容积的条件下,它的表面积最小。从受力状态和节约材料来说,它是压力容器最理想的外形,但也存在制造比较困难,工时成本高等缺陷。

当压力容器在生产工艺、安装检修时,封头与筒体需采用可拆联接结构时,所用的部件称为连接件,容器的接管与外部管道连接,也需用连接件连接,这种连接件一般采用法兰螺栓结构。

在可拆连接结构的容器中,放在两个法兰或封头与筒体端部的接触面之间,借助螺栓等连接件的压力,而起密封作用的元件,叫作密封元件。

密封元件根据材料的不同分为非金属、金属、组合式密封元件三种。

如按截面形状的不同又可分为平垫片、三角形、八角形、透镜式垫片等。

压力容器与介质输送管道或仪表、安全附件、管道等进行连接的附件称为接管。

常用的有螺纹短管、法兰短管、平法兰短管三种。

螺纹短管式接管是一段带有内螺纹或外螺纹的短管,它插入并焊接在容器的器壁上,短管螺纹是用来与外部管件连接,它一般用于连接直径较小的管道,如安装测量仪表等。

法兰短管是接管的一端焊有管法兰,另一端插入并焊接在容器的器壁上,它的作用是与外部管件连接,这种接管,要求在容器外面的短管要有一定的长度,以便与外部管件连接时能顺利的穿进螺栓和上紧螺帽,短管的长度一般不能小于一百毫米,它多用于直径稍大的接管。

平法兰接管是法兰短管式接管除掉了短管的一种特殊形式,是直接焊在容器开孔上的一个法兰管,它的螺孔与一般管法兰的孔不同,是一种带有内螺纹的不穿透孔,在与容器连接时有贴合式,插入式两种。

压力容器为了检查清理内部、装卸修理工艺内件等的需要应开设手孔和人孔。手孔和人孔分为圆形或椭圆形两种。

他们开孔的大小是以手握有装拆工器和安装零件时手能自动出入、人能自由出入为准,他们的封闭形式分为内封闭和外封闭两种,内封闭式适用于高温有毒气体的容器,多封闭式适于装在高处的人孔结构。

容器的筒体封头开孔后减小了容器壁的受力面积,使应力集中,开孔边缘处应力增加几倍,对容器的安全运行极为不利,为了补偿开口处的薄弱部位,一般采用局部补强法,常用的补强结构有补强圈补强、后壁短管补强和整体锻造补强等数种。

补强圈补强结构是在开孔的边缘焊一个加强圈,将加强圈贴合容器外壁上,与壳体和接管焊接在一起,圈上开一带螺纹的小孔备作补强圈周围焊缝的气密性试验之用,加强圈的材料与容器材料相同,焊接性能好,厚度与容器壁厚相同,外径为孔径的两倍。

这种补强结构,用于需开孔补强的结构,但容器上有些开孔是不需要补强的,这是因为容器在设计时存在某些加强因素,但当开孔较小削弱程度不大,孔边应力集中程度在容许范围以内时,开口处可以不另行补强。

对压力容器起支撑和固定作用的叫支座,根据圆筒形容器安装位置的不同,可分为立式容器支座,卧式容器支座两类。

四、圆筒体的结构

圆筒体的结构可分为整体式筒体、组合式筒体两大类,它们包括单层卷焊、整体锻造、锻焊、铸锻焊、电渣重熔、多层板式结构、绕制式等。

单层卷焊筒体的制造过程:

单层卷焊式筒体是用卷板机将钢板卷成圆筒,然后焊上纵焊缝制成筒节,再将若干个筒节组焊成筒体与封头和端盖组成容器,它是应用最广泛的一种容器。

单层卷焊式筒体也存在某些缺陷:

一)其壁厚往往受到钢材杂质和卷制能力的限制,我国目前单层卷焊筒体的最大壁厚一般小于等于120毫米。

二)规格相同的压力容器产品,单层卷焊筒体所用钢板厚度最大,厚钢板各项性能差异大且综合性能也不如薄板和中厚板,因此产生脆性破坏的危险性增大。三)在壁厚方向上应力分布不均匀,材料利用不够合理,随着压力容器制造技术的改进单层卷焊结构的上述不足将逐步得到克服。

五、封头

凡与筒体焊接连接而不可拆的都称作封头

如按形状它可分为三类:凸形封头、锥形封头和平板封头。

凸形封头是一种被广泛采用的一种封头,它有半球形、蝶形、椭圆形、无折边形四种类型。

半球形封头,也就是说封头是一个半球体。

它的制造方法是,直径较小的半球形封头可整体压制成型,直径较大的则采用数块大小相同的梯形球面板,和顶部中心的一块圆形球面板,组焊而成的,它的优点是受力均匀,但制造困难,一般较少采用,多用于压力较高直径较大的储罐,或其他特殊设备。

蝶形封又可称作带折边的球形封头,它通常由半径为R的球面,高度为L的圆筒形折边,半径为小r的连接球面与折边的过渡区三部分组成。

它的优点是制造比较容易,可模压成型,也可用手工锻打的方法制造。

椭圆形封头是由半椭球体、连筒体两部分组成。

一般封头的内直径与封头两倍深度之值,以不大于二点六为宜,封头的内直径与封头两倍深度之比应等于椭圆封头,我们称为标准椭圆形封头;

它的优点是受力状态比蝶形封头好,但不如半球形封头,是压力容器中常用的一种封头。

无折边球形封头是将半球形封头或蝶形封头的大部分除掉取其上的球面体而成;为了保证封头与筒体连接处不遭破坏,连接处的焊缝应采用全焊结构;

它的优点是,制造容易,结构简单,成本低,但也存在受力情况不良等缺陷;一般只用在直径较小压力较低的容器上。

锥形封头就是一节圆锥形筒体;

它有无折边锥形封头和折边锥形封头两种形式;

折边锥形封头是指带有过圆弧部分,它包括圆锥体、折边和圆筒体三个部分;多用于椎体半顶角大于30度的场合,就受力状态来说,它比半球型,蝶型、椭圆形封头都差,但有时为了使气体在容器内均匀分布,或者要改变流体的流速,也需采用锥形封头。

六、法兰连接结构

法兰在容器与管道中起连接与密封作用;

螺栓连接的法兰结构特点:

法兰就是连在管道和容器端部的圆环,它上面开有若干螺栓孔,一对相组配的法兰之间装有垫片,用螺栓连接在一起,通过拧紧螺栓来连接一对法兰,压紧热片使垫片表面产生塑性变形阻塞容器内介质外流的通道,起到密封的作用,这也就是法兰密封的原理。

根据法兰与筒体的连接形式不同,容器法兰又分为整体法兰、活套法兰和任意法兰三种;

法兰与法兰颈部为一整体或法兰与容器的连接视为整体结构的法兰,称为整体法兰,这就是整体法兰。

根据它与筒体的连接形式又分为平焊法兰和对焊法兰两类;

平焊法兰:

它是将法兰环套在筒体外面,用填角焊与筒体连接的法兰。

它的优点是结构简单,制造容易,使用广泛,但也存在受力后易变形、泄漏,有时导致筒体弯曲的缺陷。这种法兰一般只用于直径较小,压力温度较低的低压容器上。

对焊法兰:

它是通过锥颈与筒体对焊连接的法兰;

它的优点是,由于根部带有较厚的锥颈圈,刚性较好,不易变形,局部应力比平焊法兰低,而且强度增加,但它制造比较困难,仅在中压容器上使用。

活套法兰:

它是将法兰环套在筒体外面,但不与筒壁固定成整体的法兰,这是用螺纹与筒体连接的活套法兰,因加工螺纹比较麻烦,所以只用在管式容器上。

活套这种法兰拆卸、维修、更换比较方便,这种法兰一般仅用于搪瓷或有色金属制造的低压容器上。

七、法兰密封面及垫片

法兰密封面及垫片是在法兰连接中起密封作用的关键一环,为了防止泄露,保证密封效果。

法兰密封面也就是法兰接触面,简称法兰面。它需精密的加工足够的粗糙度和精

度才能达到密封效果,常用的法兰密封面有平面型、凹凸型、榫槽型、四井型等数种。

平面型密封面:

它只有一个光滑的平面,为改善密封性能常在密封面上,车制出几道同心圆沟槽,如同锯齿;

它的优点是,结构简单易加工,但也存在安装时垫片不易装正,紧螺栓时易挤出等缺陷;

这种密封面一般用于低压无毒的介质上。

凹凸型密封面:

它是一对法兰的密封面分别凹面和凸面,凸面高度略大于凹面的深度;

它的优点是,安装时把垫片放在凹面上,易装正,密封性能优于平面性,但加工困难;

这种密封平面,一般用于中压容器。

榫sǔn槽型密封面:

它是在一对法兰的密封面上,将其中一个加工出一圈宽度较小的榫头,将另一个加工出与榫头相配合的榫槽, 安装时垫片放在榫槽内;

它的优点是,密封性能好,但这种密封面结构复杂加工困难,更换垫片费时,榫头易损坏;

它只用于易燃或有毒的工作介质或工作压力较高的中压容器上。

法兰密封面不管经过多精密的加工,在法兰面之间,也会存在微小的间隙,成为介质泄漏的通道,垫片的作用就是在螺栓预紧力的作用下产生塑性变形,这塑性变形填充了法兰密封面之间存在的微小间隙,堵塞了介质泄漏的通道从而达到密封作用。

容器法兰连接所用的垫片,它有金属和非金属等数种。

常用的三种非金属软垫片:

非金属软垫片是用弹性较好的板材,按法兰密封面的不同直径和宽度制成的一个圆环;

这种非金属软垫片所用的材料主要有橡胶板、石棉橡胶板、石棉板等等。

这是用橡胶制成的不同规格的垫片,这种非金属软垫片一般都用在低压常温和无腐蚀的介质的容器上。

这是用石棉板制成的各种不同规格的垫片,这种石棉板制成垫片适于在介质温度较高的中低压容器,腐蚀性介质的低压容器上使用,压力较高时可用聚乙烯或四氟乙烯板制成垫片。

金属垫片主要包括金属包垫片、金属垫片。

这是金属包垫片,它用薄金属板内包石棉材料等卷制而成的圆环,这种垫片耐高温、弹性好、防腐能力强,有较好的密封性能,一般只用于直径较大的低压容器或中压容器上。

法兰连接的紧固形式:

它有螺栓紧固、带铰链的螺栓紧固、快开式法兰紧固等数种。

这是螺栓紧固式,

它结构简单、安全可靠,是法兰广泛采用的一种紧固形式,但也存在,拆装费时的弱点,所以这种紧固形式只用于一些不经常拆卸的法兰连接。

如若容器端盖长期开启,则需用带铰链的螺栓紧固,这就是带铰链的螺栓紧固式,它因螺栓带有铰链,法兰上螺孔开有缺口,拆卸时不用从螺栓上卸下螺母,只需拧松螺栓后,绕铰链轴从法兰边翻转下来。

八、支座

支座它是对压力容器起支撑和固定作用的,它分为立式容器支座、卧式容器支座、球形容器支座三种类型。

压力容器制造资质级别说明

中华人民共和国压力容器制造资质级别说明 日期:2005-12-3 23:26:01 来源:来自网络查看:[ ] 作者:不详热度:1991 AR1:指第一、二、三类低、中压容器,高压容器 AR2:指第一、二、三类低、中压容器 AR3:指球形压力容器现场组焊 AR4:指超高压容器 AR5:指医用氧舱 CR1:指液化气体铁路罐车 CR2:指液化气体汽车罐车 DR1:指无缝气瓶 DR2:指焊接气瓶 DR3:指溶解乙炔气瓶 DR4:指特种气瓶 DR5:指液化石油气瓶 BR1:指第一、二类低、中压容器 BR2:指第一类压力容器 注:QP:指球片压制 压力容器制造许可级别划分级别 A 超高压容器、高压容器(A1); 第三类低、中压容器(A2); 球形储罐现场组焊或球壳板制造(A3);

非金属压力容器(A4); 医用氧舱(A5) A1 应注明单层、锻焊、多层包扎、绕带、热套、绕板、无缝、锻造、管制等结构形式B 无缝气瓶(B1); 焊接气瓶(B2); 特种气瓶(B3) B2 注明含(限)溶解乙炔气瓶或液化石油气瓶。 B3 注明机动车用、缠绕、非重复充装、真空绝热低温气瓶等 C 铁路罐车(C1); 汽车罐车或长管拖车(C2); 罐式集装箱(C3) D 第一类压力容器(D1); 第二类低、中压容器(D2) 注:1. 一、二、三类压力容器的划分按照《压力容器安全技术监察规程》确定; 2. 超高压容器:设计压力大于及等于100MPa 的压力容器;高压容器:设计压力 大于及等于10MPa 且小于100MPa 的压力容器;中压容器:设计压力大于及等 于且小于10MPa 的压力容器;低压容器:设计压力大于及等于且小于的压 力容器。

RQ-1 压力容器基础知识

压力容器基础知识 第一节压力容器的定义与管辖边界 一、弄清“压力容器”的概念需要区分 >>容器 盛装、容纳物品的器皿或设备。一般具有固定形状。 如:箱、罐、坛,油轮、原油储罐 各种常压容器、压力容器等 >>压力容器 承受一定压力的封闭设备。 此处压力是容器内部的绝对压力与所处环境或外部绝对压力的压力差。 如:压力锅,汽车轮胎,压缩机气缸,深海潜水器,以及各种需要强制安全管理的压力容器(即“法规意义的压力容器”) >>法规意义的压力容器 压力差的存在会造成危险性,失效后会带来人员伤亡和/或财产损失。因此,危险性较大的压力容器需要进行强制安全管理,由此国家出台了系列法律法规和安全技术规范、标准。按照特种设备安全法的规定,采用目录管理。 目前执行: 质检总局2014.10.30公布的《特种设备目录》(2014年第114号) 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力。 大于或者等于0.1MPa(表压)的气体、液化气体和最高工作温度高于或者等于标准沸点的液体、容积大于或者等于30L且内直径(非圆形截面指截面内边界最大几何尺寸)大于或者等于150mm的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱。 二、五个要点 ·要点1:涵盖的种类(均具有单独的安全技术监察规程) 固定式压力容器示例 移动式压力容器示例

气瓶示例 氧舱示例

·要点2:压力限定 固定式容器:最高工作压力大于或者等于0.1MPa(表压) 移动式容器:最高工作压力大于或者等于0.1MPa(表压) 气瓶:公称工作压力大于或者等于0.2MPa(表压) 氧舱:未限定 所述“压力”指内压力。 ·要点3:尺寸/体积限定 固定式容器:容积大于或者等于30L且内直径大于或者等于150mm(非圆形截面指截面内边界最大几何尺寸) 移动式容器:(同上) 气瓶:压力与容积的乘积大于或者等于1.0MPa·L 氧舱:未限定 ·要点4:盛装介质限定 固定式容器:气体、液化气体和最高工作温度高于或者等于标准沸点的液体 移动式容器:(同上) 气瓶:气体、液化气体和标准沸点等于或者低于60℃液体 氧舱:未限定 要点5:同时满足 同时满足压力、介质、几何尺寸要求的固定式压力容器、移动式压力容器和气瓶,才属于“法规意义的压力容器”范畴。 未对氧舱的压力、介质、几何尺寸进行限定。 “法规意义的压力容器”通常简称为“压力容器” 三、几个概念 最高工作压力:在正常工作情况下,容器顶部可能达到的最高压力。(表压力) 最高工作温度:在正常工作情况下,容器介质的最高温度。 公称工作压力:对压缩气体,是指在基准温度(20 ℃)下,气瓶内压缩气体达到完全均匀状态时的限定压力(表压力)。对高(低)压液化气体、溶解气体、低温液化气体、混合气体的公称工作压力在“瓶规”中均有界定。 标准沸点:在一个标准大气压下(101325Pa)的沸点称为该液体的“标准沸点”,例如水的标准沸点为100℃。 液化气体:指临界温度高于等于-50 ℃的高(低)压液化气体(常温),临界温度低于-50 ℃的低温液化气体。 四、《特种设备安全监察条例》对压力容器的界定 (一)从压力、介质、几何尺寸等方面对压力容器管辖边界的界定 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),且压力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高工作温度高于或者等于标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L 的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱等。 1.TSG21-2016 大固容规对固定式压力容器的界定 固定式压力容器是指安装在固定位置使用的压力容器。 本规程适用于特种设备目录所定义的、同时具备以下条件的压力容器: (1)工作压力大于或者等于0.1 MPa; (2)容积大于或者等于0.03 m3并且内直径(非圆形截面指截面内边界最大几何尺寸)

压力容器设计文件编制规定

目录 1、总则 2、设计文件的分类及组成 2.1设计文件的分类 2.2各种设计文件的说明 2.3设计文件的组成 3、图样) 3.1 制图 3.2 图纸幅面 3.3 图样在图纸上的安排原则 3.4 图样上的文字、符号及代号 3.5 不需单独绘制图样的原则 3.6 需单独绘制部件图的原则 3.7 图样的比例 3.8 图样上尺寸标注的补充规定 3.9 零件、部件的件号 3.10 技术特性表 3.11 管口表 3.12 明细栏 3.13 标题栏 3.14 大、小主标题栏 3.15 简单标题栏 3.16 附注 3.17 设备净重 3.18 技术要求和技术条件 3.19底图的描、校签字栏及选用表 3.20 图样的简化画法 4、技术文件 4.1 幅面 4.2 文字、符合及代号 4.3 章、条、款、项的划分、编号和排列格式 4.4 “注”及脚注 4.5 图及表的编排方法 4.6 文件号的编排方法 4.7 编写方法及内容 5 设计文件的修改 5.1 修改原则 5.2 修改方法

1 总则 1.0.1本规定适用于压力容器产品(以下称设备)设计文件的编制。 1.0.2设计文件应按每个设备、通用部件和标准部件单独成套。 1.0.3使用本规定时,必须同时遵守现行国家标准的有关规定及各级标准的管理办法。 1.0.4 与国外发生联系的设备设计文件的编制办法,除参照本规定执行外,可另行规定。 2 设计文件的分类及组成 2.1 设计文件的分类 初步设计文件 按设计阶段分工程图 施工图设计文件通用图 标准图 总图 装配图 设部件图 计零件图 文图样表格图 件特殊工具图 的管口方位图 分预焊件图 类按文件内容分 图纸目录 技术文件技术条件 计算书 说明书 原图及原稿 按使用目的和性质分底图 复印图(蓝图)

(整理)锅炉压力容器课程设计

锅炉压力容器 课 程 设 计 设计题目压力容器设计 能源与安全工程学院安全工程专业(二)班 设计者 学号 指导老师田兆君 课程设计时间 2011 年5月29日起至2011年 6月 12日

一、 课程设计题目: 压力容器设计 二、 课程设计工作自 2011 年5月29日起2011年 6月 12 日止 三、 课程设计的内容及要求: 一)基本工艺参数 主要设计参数 二)学生完成的工作 1. 总装备图一张(1号图纸) 要求:图面布局合理,表达清晰,字迹工整,有标题栏、技术要求、技术特性表、管口表 2. 由指导老师指定零件图一张(要求同上) 3. 设计说明书一份 (1)根据工艺参数选定容器及夹套尺寸(包括直径、厚度、夹套与容器间距及连接尺

2.筒体形状 i i D H =1.2, 3.设计压力 P 设计=1.25P 操作 五、参考资料 1、《压力容器与化工设备实用手册》 2、《化工机械基础课程设计指导书》 3、《钢制石油化工压力容器设计规定》 4、《压力容器标准规范汇编》 指导教师: 田兆君 负责教师: 田兆君 学生签名: 程锋 附注:任务书应该附在已完成的课程设计说明书首页

锅炉压力容器课程设计 1 前言 锅炉、压力容器广发应用于电力、机械、化工、轻工、交通等运输部门及日常生活中, 与我们的日常生活息息相关。且随着社会经济的发展,对锅炉、压力容器的需求数量也日益增加。通过对锅炉压力容器的分析,运用锅炉压力容器应力分析、强度设计、制造质量控制及安全装置相关的知识,了解其工作原理与各个部分的相关作用及其工作原理,并分析锅炉中可能出现的相关问题和缺陷并作出预防,从而加强对锅炉的认识。 2 相关计算 一、筒体及封头的几何尺寸确定: (1)筒体及封头的形式:选择圆柱筒体及标准椭球形封头。 (2)确定筒体及封头直径: 由P 设计 =1.25P 操作 知 P 设计=1.25*0.4=0.5MPa 筒体直径确定: i i D H =1.2 D i =2r 得出 D=1.168m 封头直径确定:由上可知 D=1.168m (3)选定封头的尺寸: 封头内直径为1168mm 选取D N =1200mm 通过查询《压力容器与化工设备实用手册》第258页 选取直边高度为40mm (41m D V V H i i 089.131 .1271 .05.14 /2 封头 =-= -= π 取公称直径尺度为1H =1000mm (5)选取夹套直径:D=1400mm 。

压力容器基本知识

压力容器基本知识目录 一.基本概念 1.1 压力容器设计应遵循的法规和规程 1.2 标准和法规(规程)的关系。 1.3 压力容器的含义(定义) 1.4 压力容器设计标准简述 1.5 D1级和D2级压力容器说明 二.GB150-1998《钢制压力容器》 1.范围 2.标准 3.总论 3.1 设计单位的资格和职责 3.3 GB150管辖的容器范围 3.4 定义及含义 3.5 设计参数选用的一般规定 3.6 许用应力 3.7 焊接接头系数 3.8 压力试验和试验压力 4.对材料的要求 4.1 选择压力容器用钢应考虑的因素 4. 2 D类压力容器受压元件用钢板 4.3 钢管 4.4 钢锻件 4. 5 焊接材料 4.6 采用国外钢材的要求 4.7 钢材的代用规定 4.8 特殊工作环境下的选材 5.内压圆筒和内压球体的计算 5. 1 内压圆筒和内压球体计算的理论基础5.2 内压圆筒计算 5.3 球壳计算 6.外压圆筒和外压球壳的设计 6.1 受均匀外压的圆筒(和外压管子) 6.2 外压球壳 6.3 受外压圆筒和球壳计算图的来源简介6.4 外压圆筒加强圈的计算

7.封头的设计和计算 7.1 封头标准 7.2 椭圆形封头 7. 3 碟形封头 7.4 球冠形封头 7.5 锥壳 8.开孔和开孔补强 8.1 开孔的作用 8.2 开检查孔的要求 8.3 开孔的形状和尺寸限制 8.4 补强要求 8.5 有效补强范围及补强面积 8.6 多个开孔的补强 9 法兰连接 9.1 简介 9.2 法兰连接密封原理 9. 3 法兰密封面的常用型式及优缺点 9.4 法兰型式 9.5 法兰连接计算要点 9.6 管法兰连接 10.压力容器的制造、检验和验收 10.1 制造许可 10.2 材料验收及加工成形 10. 3 焊接 10.4 D类压力容器热处理 10.5 试板和试样 10.8 无损检测 10. 9 液压试验 10.10 容器出厂证明文件。 11.安全附件和超压泄放装置 11.1 安全附件 11.2 超压泄放装置 11.3 压力容器的安全泄放量 11.4 安全阀 GB151-1999《管壳式换热器》 01 简述 02 标准与GB150-1998《钢制压力容器》的关系。03基本章节 1 适用范围 2 组成

压力容器设计说明书(储罐液氨)

武汉工程大学 课程设计 题目:液氨储罐设计 院系:化学工程学院 专业:化学工程与工艺 班级: 姓名: 指导教师: 完成日期:2010年12月25日

设计任务书 设计题目:液氨储罐设计 设计任务:试设计一液氨储罐,完成主体设备的工艺设计和附属设备的选型设计。 包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图。 已知工艺参数如下: 最高使用温度:T=50℃; 公称直径:DN=3000㎜; 筒体长度(不含封头):Lo=5900㎜。 任务下达时间:2010年11月19日 完成截止时间:2010年12月30日

目录 设计任务书 1 前言 (1) 2 设计选材及结构 (2) 2.1 工艺参数的设定 (2) 2.1.1设计压力 (2) 2.1.2筒体的选材及结构 (2) 2.1.3封头的结构及选材 (2) 3 设计计算 (4) 3.1 筒体壁厚计算 (4) 3.2封头壁厚计算 (4) 3.3压力试验 (5) 4 附件的选择 (6) 4.1人孔的选择 (6) 4.2人孔补强的计算 (7) 4.3进出料接管的选择 (9) 4.4液面计的设计 (10) 4.5安全阀的选择 (10) 4.6排污管的选择 (10) 4.7 鞍座的选择 (11) 4.7.1鞍座结构和材料的选取 (11) 4.7.2容器载荷计算 (12) 4.7.3鞍座选取标准 (12) 4.7.4鞍座强度校核 (13) 5 容器焊缝标准 (14) 5.1压力容器焊接结构设计要求 (14) 5.2筒体与椭圆封头的焊接接头 (14) 5.3管法兰与接管的焊接接头 (14) 5.4接管与壳体的焊接接头 (14)

压力容器设计说明书(储罐液氨)液态二氧化碳储罐设计

焊接结构课程设计任务书

目录 第一章.设计选材及结构 (3) 1.设计压力 (3) 2.筒体的选材及结构 (3) 3.封头的结构及选材 (3) 第二章.设计计算 (4) 1. 筒体壁厚及长度计算 (4) 2.封头壁厚计算 (5) 3.压力试验 (5) 第三章.人孔补强设计方法判别 (6) 第四章.接管、法兰、垫片和螺栓的选择 (7) 第五章.鞍座选型和结构设计 (10) 第六章.容器焊缝标准 (12) 第七章.筒体和封头的校核 (12) 1. 筒体轴向应力校核 (15) (1)由弯矩引起的轴向应力 (14) (2)设计压力引起的轴向应力 (14) (3)轴向应力组合与校核 (14) 2.筒体和封头切向应力校核 (15) 第八章.焊缝接头的布置 (15) 第九章.外层绝热材料 (16) 7 总结 ................................................. 错误!未定义书签。参考文献 . (19)

第一章. 设计选材及结构 1.设计压力 设计压力:2.16 MPa 的压力合适。0.6MP p 10a a MP ≤<属于中压容器[5]。 设计温度:为-40℃~40℃条件下工作属于低温容器。 2.筒体的选材及结构 16MnDR 3.封头的结构及选材 筒体的公称直径Di 有标准选择,而它的长度L 可以根据容积要求来决定。 设计L/D=4 V =123 m 公式 计算出Di =1.589mm 圆整后Di =1600mm 采用EHA 椭圆形封头 表2.1 椭圆封头标准 公称直径 DN/mm 总熔深H/mm 容积V/3 m 质量Kg 1600 425 0.5864 323.4 封头取与筒体相同材料。 %) 51(m 124 32+=πL Di

压力容器常用材料的基本知识

压力容器常用材料的基本知识 1、压力容器用钢板选用时应考虑: ①设计压力;② 设计温度;③ 介质特性;④ 容器类别。 2、从材料力学性能来说,升温等效于升压,降温将导致钢材的脆性增加。 3、对同一种材料来说,随温度和板厚的增加,其许用应力则降低。因而当容器壳体 的名义厚度处于钢板许用应力变化的临界值时,应考虑此问题。如处于16mm的 Q235-B、Q235-C和16mm、36mm的Q345R都会发生许用应力跳档现象。 4、钢材的强度和塑性指标可通过拉伸试验和冷弯试验(室温下进行)获得。 5、板材供货时薄板以热轧状态供货,厚板以正火状态供货(因强度和韧性下降)。 6、压力容器用钢板当达到一定的厚度时,应在正火状态下使用,即使用正火板,如用 于壳体厚度〉30mm的Q345R钢板必须要求正火状态下供货和使用。需注意:正火仅对板材而言,而非整体设备。(热轧板呈铁红色,正火板呈铁青色)。 7、压力容器用钢与锅炉用钢类同,首先要保证足够的强度,还要有足够的塑性,质地均 匀等。因此,必须选用杂质(S、P)和有害气体含量较低的碳素钢和低合金钢,均为镇静钢。且为保证受压元件材料的焊接性能,一般须控制材料的含碳量<0.25%。材料的含碳量升高,则其冲击韧性下降,脆性转变温度升高,在焊接时容易产生裂纹。 8、低合金钢的机械性能、耐腐蚀性、耐热性、耐磨性等均比碳素钢有所提高,其中最常 用的是:Q345R。它不仅S、P含量控制较严,更重要的是要求保证足够的冲击韧性,在材料验收方面也比较严格。因此其使用压力不受限制,使用温度上限为475 C,下限为-20 C。板厚为3 ~ 200mm。是应用很广的材料。 9、Q345R(GB713-2008 )代替原16MnR)的使用说明: ①、Q345R的适用范围是:使用压力不限、使用温度为-20?475 C。 ②、Q345R用作压力容器壳体的板厚>30mm时,则容器需焊后作退火热处理,热 处理的温度为600?650 C;若焊前预热至100 C,则板厚可提高至34mm 。 ③、Q345R 钢板一般是以热轧状态供货;当板厚>30mm 时,为保证塑性和韧 性,一般采用正火板,且逐张钢板应超声波检测,皿级合格。 ④、Q345R 用作法兰、平盖、管板等厚度>50mm 时,应在正火状态下使用。 ⑤、Q345R 属C-Mn 钢,是屈服强度为350MPa 级的普通低合金高强度钢,具有 良好的低温冲击韧性。手工焊时,若为压力容器则一般采用碱性焊条(如 J507 ),自动焊时,一般选用H08MnA 或H10Mn2 焊丝和HJ431 焊剂。 ⑥、Q345R钢板的最小厚度是3mm ,钢板厚度负偏差为0.3mm。 10、Q235-B适用于:设计压力P v 1.6MPa、钢板使用温度为20?300 C、用于容器壳

压力容器主要由哪几部分组成

1. 压力容器主要由哪几部分组成?分别起什么作用? 答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全附件六大部件组成。 筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。 封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。 密封装置的作用:保证承压容器不泄漏。 开孔接管的作用:满足工艺要求和检修需要。 支座的作用:支承并把压力容器固定在基础上。 安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全和工艺过程的正常进行。 2,《压力容器安全技术监察规程》的适用范围:○ 1最高工作压力≥0.1MPa (不含液体静压力);○ 2内直径(非圆形截面指其最大尺寸)≥0.15m ,且容积≥0.025m 3 ;○3盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。 GB150的适用范围:○ 10.1MPa ≤p ≤35MPa ,真空度不低于0.02MPa ;○2按钢材允许的使用温度确定(最高为700℃,最低为-196℃);○ 3对介质不限;○4弹性失效设计准则和失稳失效设计准则;○5以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;○6最大应力理论;○ 7不适用疲劳分析容器。 1. 一壳体成为回转薄壳轴对称问题的条件是什么? 答:几何形状、承受载荷、边界支承、材料性质均对旋转轴对称。 1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。若壳体材料由20R (MPa MPa s b 245,400==σσ) 改为16MnR ( MPa MPa s b 345,510==σσ)时,圆柱壳中的应力如何变化?为什么? 解:○ 1求解圆柱壳中的应力 应力分量表示的微体和区域平衡方程式: δ σσθ φ z p R R - =+ 2 1 φσππ φs i n 220 t r dr rp F k r z k =-=? 圆筒壳体:R 1=∞,R 2=R ,p z =-p ,r k =R ,φ=π/2 t pR pr t pR k 2sin 2= = = φδσσφθ ○ 2壳体材料由20R 改为16MnR ,圆柱壳中的应力不变化。因为无力矩理论是力学上的静定问题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分布和大小不受材料变化的影响。

压力容器计算说明书

**** 储罐C-2013001-JS 强度计算书 第 1 页共 9 页 强度计算按GB150-1998 《钢制压力容器》、《固定式压力容器安全技术监察规程》及质检特函〔2010〕86 号函<关于《固定式压力容器安全技术监察规程》的实施意见 >进行计算。 目录 一、技术参数????????????????????2 二、筒体强度计算??????????????????2 三、筒体开孔及开孔补强计算?????????????3 四、封头强度计算??????????????????6 资料来源编制 校核 标准化 提出部门审核 标记处数更改文件号签字日期批准文号批准 序 目符 计算公式数据单位 项计算依据号号

一、技术参数 1.最高工作压力 2. 3.设计压力 4.最高工作温度 5.设计温度 6.介质 7.选用材料 8.许用应力 9.许用应力 10.许用应力 二、筒体强度计算 **** 储罐C-2013001-JS 强度计算书 第 2 页共 9 页 符 计算依据计算公式数据单位号 P e给定 1.25Mpa GB150.1-2011 Pc Pc=(1.05~1.1)Pe =1.25 × 1.1=1.375 1.375MPa P19 te任务书给定193℃t c193+(15~30)210℃饱和水蒸气任务书给定 GB150-2011Q345R/GB713 、 20/GB8163、 P4720/NB47008 t 根据 GB150.2-2011 GB713 B-1碳素钢和低合金 钢钢板许用应力,筒体材料 Q345R,板厚< 16mm,184.2MPa 温度 193℃所得应力值 t 根据 GB150.2-2011 GB713 B-3碳素钢和低合金 钢钢板许用应力,人孔圈及接管材料184.2MPa 20/GB8163 ,板厚< 16,温度 193℃所得应力值 t 根据 GB150.2-2011 GB/6479 B-6碳素钢和低 合金钢钢管许用应力,接管材料20 钢,板厚184.2MPa 15mm,温度 193℃所得应力值 1.筒体内直径D n1400mm 2.S S=δ+C+ =6.17+1.8+2.03=10 10mm 筒体壁厚 为除去负偏差的圆整量 3.筒体壁厚附加量C C1=0.8 ; C2=1 ; C=C1+C2=1.8 1.8mm GB150- 4.焊缝系数2011局部无损检测0.85 P13

压力容器常用材料的基本知识

压力容器常用材料的基本知识 1 、压力容器用钢板选用时应考虑:①设计压力;②设计温度;③介质特性;④容器类别。2、从材料力学性能来说,升温等效于升压,降温将导致钢材的脆性增加。3、对同一种材料来说,随温度和板厚的增加,其许用应力则降低。因而当容器壳体的名义厚度处于钢板许用应力变化的临界值时,应考虑此问题。如处于16mm的Q235-B、Q235-C和16mm、36mm的Q345R都会发生许用应力跳档现象。4、钢材的强度和塑性指标可通过拉伸试验和冷弯试验(室温下进行)获得。 5、板材供货时薄板以热轧状态供货,厚板以正火状态供货(因强度和韧性下降)。6、压力容器用钢板当达到一定的厚度时,应在正火状态下使用,即使用正火板,如用于壳体厚度>36mm的Q345R钢板必须要求正火状态下供货和使用。需注意:正火仅对板材而言,而非整体设备。(热轧板呈铁红色,正火板呈铁青色)。7、压力容器用钢与锅炉用钢类同,首先要保证足够的强度,还要有足够的塑性,质地均匀等。因此,必须选用杂质(S、P)和有害气体含量较低的碳素钢和低合金钢,均为镇静钢。且为保证受压元件材料的焊接性能,一般须控制材料的含碳量≤0.25%。材料的含碳量升高,则其冲击韧性下降,脆性转变温度升高,在焊接时容易产生裂纹。8、低合金钢的机械性能、耐腐蚀性、耐热性、耐磨性等均比碳素钢有所提高,其中最常用的是:Q345R。它不仅S、P 含量控制较严,更重要的是要求保证足够的冲击韧性,在材料验收方面也比较严格。因此其使用压力不受限制,使用温度上限为475℃,下限为-20℃。板厚为3~200mm。是应用很广的材料。9 、Q345R(GB713-2008,代替原16MnR)的使用说明:①、Q345R的适用范围是:使用压力不限、使用温度为-20~475℃。②、 Q345R用作压力容器壳体的板厚>30mm时,则容器需焊后作退火热处理,热处理的温度为600~650℃;若焊前预热至100℃,则板厚可提高至34mm。③、Q345R钢板一般是以热轧状态供货;当板厚δ>36mm时,为保证塑性和韧性,一般采用正火板,且逐张钢板应超声波检测,30<δ≤36时Ⅲ级合格,δ>36时Ⅱ级合格。④、Q345R用作法兰、平盖、管板等厚度>50mm时,应在正火状态下使用。⑤、Q345R属C-Mn钢,是屈服强度为350MPa级的普通低合金高强度钢,具有良好的低温冲击韧性。手工焊时,一般采用碱性焊条(如J507),自动焊时,焊丝/焊剂可选用H08MnA/HJ431或H10Mn2/HJ350(厚板且热处理时)。⑥、Q345R钢板的最小厚度是3mm,钢板厚度负偏差为0.3mm。 名人堂:众名人带你感受他们的驱动人生 马云任志强李嘉诚柳传志史玉柱 10、Q235-B适用于: P≤1.6MPa、0~350℃、壳体δn≤20,非高度危害介质。11、Q235-C 适用于: P≤2.5MPa、0~400℃、壳体δn≤30。12 、奥氏体不锈钢可用于:使用压力不限、使用温度为-196~700℃。使用的介质条件为:①介质腐蚀性较强;②防铁离子污染;③ T>500℃的耐热钢(0Cr型)或T<-100℃的低温用钢(00Cr型)。 13、奥氏体不锈钢既是耐酸钢,又是耐热钢。从耐腐蚀性能来说,需降低含碳量;从耐高温性能来说,需适当提高含碳量。14、奥氏体不锈钢在高温条件下使用时(>525℃),钢中含碳量应不小于0.04%,(即采用1Cr或0Cr,而不采用00Cr)。因为使用温度高于525℃时,钢中含碳量太低,强度和抗氧化性会显著下降,因此超低碳不锈钢和双相不锈钢都不可用作耐热钢。15、奥氏体不锈钢的焊接接头一般均采用射线进行检测,而不采用超声波检测。16、奥氏体不锈钢制压力容器一般不需进行焊后消除应力的热处理。17、奥氏体不锈钢在常温和低温下有很高的塑性和韧性,不具磁性。在许多介质中有很高的耐蚀性,其中铬是抗氧化性和耐蚀性的基本元素。合金中含碳量的增加将降低耐蚀性能,所以该含碳量0.08~0.12%左右为高碳级不锈钢,钢号前以“1”表示。含碳量0.03

压力容器设计习题答案

“压力容器设计”习题答案 一、选择题: 1.我国钢制压力容器设计规范<>采用的强度理论为: ( A ) (A )Ⅰ; (B )Ⅱ; (C )Ⅲ; (D )Ⅳ。 2.毒性为高度或极度危害介质PV 0.2MPa ·m 3的低压容器应定为几类容器? ( C ) (A )Ⅰ类; (B )Ⅱ类; (C )Ⅲ类; (D )其他。 3.一空气贮罐,操作压力为0.6Mpa ,操作温度为常温,若设计厚度超过10毫米,则下列碳素钢材中不能够使用的钢种为: ( A ) (A )Q235AF (A3F );(B )Q235A (A3);(C )20R 。 4.在弹性力学平面应力问题中,应力和应变分量分别为: ( C ) (A )бZ ≠0、εZ =0;(B )бZ ≠0、εZ ≠0 ;(C )бZ =0、εZ ≠0。 5.受均匀内压作用的球形容器,经向薄膜应力和周向薄膜应力的关系为 ( C ) (A ) < (B ) > (C )==pR/2t (D )==pR/t 6.受均匀内压作用的圆柱形容器,经向薄膜应力和周向薄膜应力的关系为 ( B ) (A )=2=pR/2t ;(B )=2=pR/t ;(C )=2=pR/t ;(D )=2=pR/2t 7.均匀内压作用的椭圆形封头的顶点处,经向薄膜应力和周向薄膜应力的关系为 ( A )。 A 、= B 、 < C 、 > D 、 > 1/2 8.由边缘力和弯矩产生的边缘应力,影响的范围为 (A )Rt ; (B )Rt 2; (C )Rt 2; (D )Rt 9.受均布横向载荷作用的周边简支圆形薄平板,最大径向弯曲应力在: ( A ) (A ) 中央; (B )周边;( C )12半径处; D. 3/8半径处。 10.受均布横向载荷作用的周边固支圆形薄平板,板上最大应力为周边径向弯曲应力,当载荷一定时,降低最大应力的方法有: ( A ) (A ). 增加厚度;(B )采用高强钢;(C )加固周边支撑;(D )增大圆板直径。 11.容器下封头采用圆平板,由于封头与筒体和裙座全部焊牢,其受力状态近似于固支,

压力容器焊接设计说明书

焊接工艺说明书 一.零件的名称及批量 名称:压力容器1 批量:100件/年 二.零件的作用 分部件名称:1.瓶体; 2.瓶嘴; 三.零件的工艺分析 (一).结构分析:1.金属材料的焊接性 2.金属材料的选择及利用 3.划分结构 的零部件 4.焊接的结构形式 5.焊缝布置 6.装配焊接顺序; (二).方法分析:1.从焊接材料分析选择焊接方法 2.从焊接方法直接考虑; (三).缺陷分析: 1.材料焊接性 2.焊接应力 3.焊接变形。 四.确定毛坯的制造形式 1.瓶体上部:产量100件,由于加工面只存在圆弧面和平面,结构较为简单,可 使用拉深成型并冲孔; 2.瓶体下部:产量100件,直接由板材拉深成型; 3.瓶嘴:产量100件,拉深成型并车内螺纹。 五.零件的焊接工艺分析 (一).结构分析 1.金属材料的焊接性金属材料的焊接性包括两个方面的内容:一是焊接接头产生工艺缺陷的倾向,尤其是出现给中裂纹的可能性;二是焊接接头在使用中的可靠性,包括焊接接头的机械性能及其他特殊性能。 2.金属材料的选择及利用

焊接母材选择20钢。如上图所示,可以看到20钢的化学成分及抗拉强度σ b 、抗压强度σs、延伸率δ等机械性能。同时根据碳当量法:C egu =C+Mn/6+1/5 (Cr+Mo+V)+1/15(Ni+Cu)来估算及测定该碳钢的焊接性。当C egu ≤0.4%时,钢 材的淬硬性倾向不明显,可焊性优良,焊接时不需要预热。由计算可得,20( C egu )≤0.4%。 3.划分结构的零部件 零件整体为支座,依据结构和焊接位置可将其划分为三个分部件,为:瓶嘴、瓶体上部、瓶体下部。具体可由补绘的CAD部件图中查看。 4.焊接的结构形式 在此零件的焊接工艺中,焊缝的接头形式主要是不开坡口的角接接头以及对接接头。对接接头不开坡口,因为压力容器壁薄,不易开坡口。焊接时应尽量减少焊缝金属的填充量,便于装配和保证焊接接头的质量,应尽量考虑下列几条原则: (1)是否能保证焊接焊透; (2)应尽量可能的提高生产率,节省填充金属; (3)焊后焊件变形应尽可能小。 5.焊缝布置 该零件的焊缝主要形式为环缝平焊,因有的焊缝位于底面和侧边,应考虑使用翻转架和支撑板。支板垂直焊接于横底板正中,其焊缝位于支板与横底板两接触边;横底板和下底板的焊接为四条焊缝,两条角焊缝,两条对接焊缝,两块下底板分别焊接于横底板下,并与两端对齐。 6.装配焊接顺序 焊接顺序为:①瓶体上部-瓶嘴;②主环缝(瓶体上部-瓶体下部);(二).方法分析 焊接母材为20钢,属于低碳钢,其塑性好,含碳及其他合金少,淬硬倾向小,具有良好的焊接性能,一般不需要进行焊前预热和焊后热处理。几乎可采用所有的焊接方法进行焊接,且都能够保证焊接接头的良好质量。常用的焊接方法是手工电弧焊、埋弧自动焊、二氧化碳气体保护焊和电渣焊等。由于工件产量小,整体形状不大且较为简单,因此选用焊接方法较为简单的手工电弧焊或者二氧化碳气体保护焊。在此,具体选用手工电弧焊和埋弧自动焊。 六.零件的焊接工艺确定

第2章 压力容器的基本知识

第二章压力容器的基本知识 §2-1压力容器 一、压力 (一)压力及单位 均匀地垂直作用于单位面积上的力,实际上就是压强。 MKS制→国际单位制(SI)→1牛顿/米2=1Pa(帕斯卡)=10-6MPa CGS制→1dyn/cm2(达因/厘米2)=1μbar(微巴)=10-6bar 工程单位→1Kgf/cm2(公斤力/厘米2)=1工程大气压(at) (atm)标准大气压或物理大气压→在纬度为450的海平面上(即重力加速度为9.80665米/秒2处),大气的压力相当于在每平方厘米的面积上作用着1.0332公斤力。 表压力——压力表上所指示的压力值是指容器中的压力与容器周围大气压力之差,这个压力值称作表压力,是相对值。 绝对压力——表压力+容器周围的大气压力。 (二)压力的形成—— 气体的分子与分子之间存有很大的间隙,分子引力甚小,因而分子在其中就可以不受分子力的约束而作无规则的运动。无数个分子频繁地碰撞器壁的结果,自然就会对器壁产生一个持续而稳定的垂直作用力,这样就形成了气体的压力。 气体压力的大小决定于在单位时间内气体分子对器壁的碰撞次数和每个分子对器壁冲击力的大小。碰撞次数取决于:①单位容积内气体的分子数;②分子的平均运动速度。冲击力取决于:①气体的分子质量(一般是一定的);②分子的运动速度。所以气体的压力与它的分子的平均运动速度的平方以及单位容积内的气体分子数成正比。 二、压力容器定义及其运行特性 (一)压力容器的定义 承受流体介质压力的密闭壳体都可属于压力容器。我们能考虑的压力容器是指那些相对来说比较容易发生事故,而且事故的危害性比较大的特殊设备。它们需要由专门的机构进行监督,并按规定的技术管理规范进行制造和使用。 压力容器的界限,国际上还没有一个完全统一的规定,它的界限范围就应该从发生事故的可能性和事故危害性的大小来考虑。一般来说,压力容器发生爆炸事故时,其危害的严重程度与压力容器的工作介质,工作压力及容积有关。 工作介质是指容器内所盛装的、或在容器中参加反应的物质。压力容器爆破时所释放的能量与它的工作介质的物性状态有关。一个容积为10米3,工作压力为11个绝对大气压的容器:①空气爆破时释放能量(气体绝对膨胀所作的功)1.3×107焦耳;②如果装水时释放能量为2.16×103焦耳;前者为后者的6200倍。 一般都不把介质为液体的容器列入作为特殊设备的压力容器的范围。这里所说的液体是

石油存储罐压力容器设计说明

目录 毕业设计任务书 (Ⅰ) 开题报告 (Ⅲ) 指导教师审查意见 (Ⅺ) 评阅教师评语 (Ⅻ) 答辩会议记录 (ⅩⅢ) 中文摘要 (ⅩⅣ) 外文摘要 (ⅩⅤ) 1前言 (1) 2选题背景 (2) 3方案论证 (2) 4 工艺设计 (3) 4.1液化石油气参数的确定 (3) 4.2设计温度 (3) 4.3设计压力 (4) 4.4设计储量 (5) 5 机械设计 (5) 5.1初步选型: (5)

5.2筒体设计 (5) 5.3封头设计 (6) 6壁厚设计 (7) 6.1各项参数 (7) 6.2筒体壁厚设计计算 (8) 6.3封头壁厚设计与强度校核 (10) 7开孔补强和人孔的设计 (11) 7.1人孔设计选型 (11) 7.2人孔补强计算 (12) 8 安全阀和液面计选型 (15) 8.1安全阀的选型与校核 (15) 8.2液面计的选型 (18) 9接管,法兰,垫片和螺栓的选择 (19) 9.1、接管和法兰 (19) 9.2垫片的选择 (22) 9.3螺栓(螺柱)的选择 (23) 10 鞍座选型和结构设计 (24) 10.1鞍座选型 (24) 10.2鞍座位置的确定 (27)

11 焊接接头的设计 (28) 11.1筒体和封头的焊接: (28) 11.2接管与筒体的焊接: (28) 12 主要参数汇总表 (28) 13 总结 (29) 参考文献 (30) 致 (32)

1前言 随着石油化学工业的发展,液化石油气作为一种化工基本原料和新型燃料,已愈来愈受到人们的重视。在化工生产方面,液化石油气经过分离得到乙烯、丙烯、丁烯、丁二烯等,用来生产合塑料、合成橡胶、合成纤维及生产医药、炸药、染料等产品。然而,由于液化石油气具有易燃易爆的特性,与空气混合能形成爆炸性混合物.遇热和明火有燃烧爆炸的危险。因此,液化石油气的储存安全性、可靠性、实用性、经济性就自然被作为设计液化石油气储罐的基本考虑因素。本次设计的50立方米液化石油气储罐常用于乡镇的液化石油气加气站储存液化石油气,对于生产生活具有重要意义。 本次设计中综合考虑经济性、实用性、安全可靠性等。各项设计参数都参考了行业使用标准或国家标准,这样使设计有章可循,并考虑结构方面的要求,合理进行设计。其设计包括了液化石油气储罐的工艺设计、机械设计、壁厚设计、人孔的开孔及补强、安全阀、液面计等部件的选型,对应的接管、法兰、垫片等选取,支座的选型,焊接头的设计等。 通过这些时间的学习,现在储罐的发展趋势为:(1)大型化通过大量大型储罐的设计、建造和使用发现,采用大容量油罐储油具有节省钢材、减少占地面积、方便操作管理、减少油罐附件及管线长度和节省投资等优点(2)新型材料的应用油罐的大型化而产生的主要问题之一就是对材料的要求更高。为了避免底层罐壁过厚带来的整体热处理问题和解决焊接问题,对于大型油罐的设计,均采用高强度钢。大型油罐一般采用屈服强490MPa 级的钢材。武钢联合有关单位自主研制的WH610D2 钢板不仅具有高强度、高韧性,而且具有优良的焊接性能,尤其是能够适用于大线能量焊接工艺条件 对于公称容积小于100立方的液化石油气储罐,目前国研究已趋向于成熟,因此,这次的设计相对于其他小型储罐的设计没有太大的区别。安全性和经济性作为设计的两大准则。

压力容器基本知识

1、应力集中系数:容器开孔边缘处或接管根部最大应力与容器壳体膜应力最大值之比。 2、易燃介质:指与空气混合的爆炸下限小于10%,或爆炸上限与下限之差值大于等于20% 的气体 3、焊缝系数u :由于焊缝热影响区有热应力的存在,焊缝金属晶粒粗大,及焊缝中出现气孔,未焊透等缺陷影响焊缝金属强度,采用焊缝系数,以补偿焊缝强度的削弱,即焊缝金属材料的许用应力的利用率。 4、整体管板的有效厚度:Se=S-Y-Y ' Se――管板有效厚度;S――管板的实际(名义) 厚度,mm ; Y ――管程隔板开槽值,mm ; K与C2取大者;Y'――壳程隔板开槽值,K与壳程腐蚀裕量C' 2取大者 5、许用应力:指按材料各项强度数据分别除以各安全系数的最小值 6、夹套压力容器的设计总图上,应注明哪些与压力试验有关的内容? 答(1)应分别说明壳体和夹套的试验压力;(2)允许的内外压差值; (3)试验步骤;(4)试验的要求 7、选用公称直径250mm的无缝钢管做压力容器壳体,选择椭圆形封头的直径为多少? 答:Dg250mm的无缝钢管外径为273mm ,按钢管外径选封头,封头外径为273mm。 8、按现行规定,在压力容器图纸上如何注明磁粉检测合格标准? 答:符合JB4730 11.13.1条和11.13.2条I级的要求 9、划分压力容器类别和确定《容规》适用范围使用的压力有何不同?可能产生什么问题?答:确定《容规》适用范围的压力为最高工作压力,划分容类别的压力为设计压力。划分类别时有限制条件,即必须是对划入《容规》的压力容器进行分类,实际工作中,有时将不属于《容规》管辖的压力容器划成了某类别压力容器。 10、一台压力容器,按介质、压力、内直径、容积等条件,均属于第三类压力容器。那么,该台容器一定得划分 为第三类压力容器吗?为什么? 答:不一定,因为搪玻璃压力容器一律划分为第二类压力容器。 11、GB150中“相当于双面焊的全焊透对接焊缝”指什么样的焊缝? 答:指单面焊双面成形的对接焊缝。包括:(1)衬垫焊接焊缝(衬垫焊后拆除,通常为铝、 铜);(2)氩酸焊打底的单面焊尚未定论。 12、多腔压力容器的划类原则如何?设计时对各腔要求是否相同? 答:划一个类别,以类别高腔作为该容器类别。其设计要求可按各腔的压力、介质、容积的不同,区别对待。13、5.7 | - 1.25P[ d ]/ [ d ]t 5.8压力容器液压试验压力公式Pt= MPa,取两者中的较大值 -P+0.1 ⑴ 式中的[d ]/ [ d ]t选取原则是什么? ⑵什么情况下可以选用Pt小于P+0.1Mpa? 答:(1)容器各元件(圆筒、封头、接管、法兰及紧固件等)所用材料不同时,应取各元 件[d ]/ [ d ]t之比值中最小者。(2)因选用P+0.1MPa导致壳体厚度增大时,允许适当降低试验压力。但最低不小于1.25P 14、钢制压力容器焊缝系数虽然为1,但对接焊缝不进行100%射线探伤的情况有哪些? 答:1、筒体采用无缝钢管时的环焊缝;2、壁厚超过38mm的纵环焊缝;3、压力容器上公 称直径小于250mm接管环焊缝。 15、采用国外材料制造压力容器时,材料的安全系数如何选取?答:采用我国相应的压力容器规范中规定的安全系数。 16、固定管板式换热器耐压试验顺序如何?如果管程设计压力在于壳程,应怎么办? 答:(1 )顺序为:先壳程,后管程。(2)如管程设计压力大于壳程,在允许情况下,则按 壳程耐压试验压力与管程相同。如不允许,则采用在壳程设计压力下检查采用氨一一空气混合体。

压力容器设计

《过程设备设计基础》 教案 4—压力容器设计 课程名称:过程设备设计基础 专业:过程装备与控制工程 任课教师:

第4章压力容器设计 本章主要介绍压力容器设计准则、常规设计方法和分析设计方法,重点是常规设计的基本原理和设计方法。 §4-1 概述 4.1概述 教学重点:压力容器设计的基本概念、设计要求 教学难点:无 压力容器发展趋势越来越大型化、高参数、选用高强度材料,本章着重介绍压力容器设计思想、常规设计方法和分析设计方法。 什么是压力容器的设计? 压力容器设计是指根据给定的工艺设计条件,遵循现行规范标准的规定,在确保安全的前提下,经济正确地选取材料,并进行结构、强(刚)度和密封设计。 结构设计--------确定合理、经济的结构形式,满足制造、检验、装配和维修等要求。 强(刚)度设计--------- 确定结构尺寸,满足强度、刚度和稳定性要求,以确保容器安全、可靠地运行。 密封设计--------选择合适的密封结构和材料保证密封性能良好。 4.1.1设计要求 设计的基本要求是安全性和经济性的统一,安全是前提,经济是目标,在充分保证安全的前提下尽可能做到经济,经济性包括材料的节约、经济的制造过程和经济的安装维修。 4.1.2设计文件

压力容器的设计文件包括:设计图样 技术条件 设计计算书 必要时包括设计或安装使用说明书. 分析设计还应提供应力分析报告 强度计算书包括: ★设计条件、所用的规范和标准、材料、腐蚀裕量、计算厚度、名义厚度、计算应力等。 ★装设安全泄放装置的压力容器,还应计算压力容器安全泄放量安全阀排量和爆破片泄放面积。 ★当采用计算机软件进行计算时,软件必须经“压力容器标准化技术委员会”评审鉴定,并在国家质量技术监督局认证备案,打印结果中应有软件程序编号、输入数据和 计算结果等内容。 设计图样包括:总图和零部件图 总图包括压力容器名称、类别、设计条件; 主要受压元件设计材料牌号及材料要求; 主要受压元件材料牌号及材料要求; 主要特性参数(如容积、换热器换热面积和程数) 制造要求;热处理要求;防腐蚀要求;无损检测要求;耐压试验和气密性试验要求 ;安全附件的规格;压力容器铭牌位置; 包装、运输、现场组焊和安装要求;以及其他特殊要求。 4.1.3设计条件 设计条件可用设计条件图表示(设计任务所提供的原始数据和工艺要求) 设计条件图包含设计要求、简图、接管表等 简图------- 示意性的画出容器本体、主要内件部分结构尺寸、接管位置、支座形式及其他需要表达的内容。 设计要求-------工作介质、压力和温度、操作方式与要求和其他。 为便于填写,设计条件图又分为 一般设计条件图 换热器条件图:应注明换热管规格、管长及根数、排列形式、换热面积与程数等 塔器条件图:应注明塔型、塔板数量及间距、基本风压和地震设计烈度和场地土类别 搅拌容器条件图:应注明搅拌器形式及转向、轴功率等。

相关文档
最新文档