高中数学必修2-1.3.1《柱体、锥体、台体的表面积与体积》同步练习
2014-2015学年高中数学(人教版必修二)课时训练第一章 1.3 1.3.1 柱体、锥体、台体的表面积与体积

解析:设棱台的高为 h,S△ABC=S,则 S△A1B1C1=4S. 1 1 ∴VA1ABC= S△ABC· h= Sh, 3 3 1 4 VCA1B1C1= S△A1B1C1· h= Sh. 3 3 1 7 又 V 台= h(S+4S+2S)= Sh, 3 3 ∴VBA1B1C=V 台-VA1ABC-VCA1B1C1 7 Sh 4Sh 2 = Sh- - = Sh, 3 3 3 3 ∴体积比为 1∶2∶4,∴应选 C.
1 Sh (2)锥体:锥体的底面面积为 S,高为 h,则 V=______. 3
(3)台体:台体的上,下底面面积分别为 S′,S,高为 h, 则
1 (S′+ S′S+S)h 3 V=____________.
栏 目 链 接
练习 4:正方体的表面积为 100,对角线长度为________.
答案:5 2
栏 目 链 接
点评: 求几何体的表面积问题,通常将所给几
何体分成基本的柱、锥、台,再通过这些基本柱、 锥、台的表面积,进行求和或作差,从而获得几何 体的表面积.
栏 目 链 接
跟 踪 训 练
1.如下图所示,一个空间几何体的主视图和左视图都是 边长为 1 的正方形,俯视图是一个直径为 1 的圆,那么这个 几何体的表面积为( C )
答案:4π 12π 20π
练习 3:圆台上底面半径为 2,下底面半径为 3,母线长为 4, 上底面积为 ______;下底面积为______;侧面积为________;表 面积为________.
答案:4π 9π 20π 33π
基 础 梳 理
2.体积公式. (1)柱体:柱体的底面面积为 S,高为 h,则 V=____. Sh
《棱柱、棱锥、棱台的表面积和体积》教学设计、导学案、同步练习

《8.3.1 棱柱、棱锥、棱台的表面积和体积》教学设计【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课主要学习棱柱、棱锥、棱台的表面积和体积的表面积、体积公式及其求法,还有简单组合体的体积的求解。
教材从分析简单几何体的侧面展开图得到了它们的表面积公式,体现了立体问题平面化的解决策略,这是本节课的灵魂,也是立体几何的灵魂,在立体几何中,要注意将立体问题转化为平面几何问题,在教学中应加以重视。
【教学目标与核心素养】课程目标学科素养A..通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积与体积的求法.B.会求棱柱、棱锥、棱台有关的组合体的表面积与体积.1.数学抽象:棱柱、棱锥、棱台的表面积与体积的公式;2.逻辑推理:推导棱柱、棱锥、棱台的表面积与体积的公式;3.数学运算:求棱柱、棱锥、棱台及有关组合体的表面积与体积;4.直观想象:棱柱、棱锥、棱台体积之间的关系。
【教学重点】:棱柱、棱锥、棱台的表面积与体积;【教学难点】:求棱柱、棱锥、棱台有关的组合体的表面积与体积.【教学过程】教学过程教学设计意图一、复习回顾,温故知新1.北京奥运会场馆图通过观看图片及复习初中所学知识,引入本节新课。
建立知识间的联系,提高学生概括、类2. 北京奥运会结束后,国家对体育场馆都进行了改造,从专业比赛场馆逐步成为公众观光、健身的综合性体育场馆,国家游泳中心也完成了上述变身,新增了内部开放面积,并建成了大型的水上乐园.经营方出于多种考虑,近几年内“水立方”外墙暂不承接商业化广告,但出于长远考虑,决定为水立方外墙订制特殊显示屏,届时“水立方”将重新焕发活力,大放异彩.能否计算出“水立方”外墙所用显示屏的面积?3.学生回答下列公式矩形面积、三角形面积、梯形面积、长方体体积、正方体体积4.在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?二、探索新知探究:棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?思考1:棱柱的侧面展开图是什么?如何计算它的表面积?侧面展开图是几个矩形,表面积是上下底面面积与侧面展开图的面积的和。
1.3.1柱体、锥体、台体的表面积与体积

图(1)
提示:相等.
图(2)
一
二
三
2.棱柱、棱锥、棱台的展开图是怎样的?如何求棱柱、棱锥、棱 台的表面积? 提示:如下图所示,首先需求出各个展开图中的每部分平面图形 的面积,然后求和即可.
一
二
三
3.填空: 棱柱、棱锥、棱台的表面积就是各个面的面积的和,也就是展开 图的面积.
一
二
三
二、圆柱、圆锥、圆台的表面积 【问题思考】 1.如何根据圆柱的展开图,求圆柱的表面积? 提示:圆柱的侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱 的高(母线).设圆柱的底面半径为r,母线长为l,则S圆柱侧=2πrl,S圆柱表 =2πr(r+l),其中r为圆柱底面半径,l为母线长.
探究一
探究二
探究三
思维辨析
空间几何体的体积 【例2】 已知一个三棱台上、下底面分别是边长为20和30的正 三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积 之和,求棱台的高和体积. 思路分析:侧面面积等于上、下底面面积之和→侧面等腰梯形的 高→三棱台的高→三棱台的体积 解:如图所示,在三棱台ABC-A'B'C'中,O',O分别为上、下底面的中 点,D,D'分别是BC,B'C'的中点,则DD'是等腰梯形BCC'B'的高,
答案:(1) (2) (3)×
探究一
探究二
探究三
思维辨析
空间几何体的表面积 【例1】 如图,已知直角梯形ABCD,BC∥AD,∠ABC=90° , AB=5,BC=16,AD=4.求以AB所在直线为轴旋转一周所得几何体 的表面积.
思路分析:分析几何体的形状
求表面积
高一柱体、椎体、台体的表面积和体积练习题

柱体、椎体、台体的表面积和体积练习一、 知识回顾(1)棱柱、棱锥、棱台的表面积 = 侧面积 + ______________;(2)圆柱:r 为底面半径,l 为母线长则侧面积为_______________;表面积为_______________. 圆锥:r 为底面半径,l 为母线长则侧面积为_______________;表面积为_______________.圆台:r ’、r 分别为上、下底面半径,l 为母线长则侧面积为____________;表面积为_____________.(3)柱体体积公式:________________________;(S 为底面积,h 为高)锥体体积公式:________________________;(S 为底面积,h 为高)台体体积公式:________________________;(S ’、S 分别为上、下底面面积,h 为高)二、 典型练习1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ).(A )122ππ+ (B )144ππ+ (C )12ππ+ (D )142ππ+2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).(A )32 (B )43 (C )54 (D )653. 正四棱台的上、下底面边长分别是方程01892=+-x x的两根,其侧面积等于两底面积的和,则其斜高与高分别为 A .25与2 B.2与23C.5与4D.2与34.棱台的上、下底面面积分别为4和9,则这个棱台的高和截得棱台的原棱锥的高的比是A .21 B.31 C.32 D.435.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( )A.B.2:22:D.26、若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为__________.7、一个高为2的圆柱,底面周长为2π.该圆柱的表面积为__________.8. 若等腰直角三角形的直角边长为2,则以一直角边所在直线为轴旋转一周所成的几何体体积是_______9、若一个圆锥的轴截面是边长为3,3,2的三角形,则该圆锥的侧面积是_______10.已知四棱椎P ABCD-的底面是边长为6 的正方形,侧棱PA⊥底面ABCD,且8PA=,则该四棱椎的体积是_________11、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .13. 三棱锥P—ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P—ABC的体积等于______.14、如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=__________.15、如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为__________cm16、如图,正三棱锥O-ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.17、由8个面围成的几何体,每一个面都是正三角形,并且有四个顶点A、B、C、D在同一个平面内,ABCD 是边长为30cm的正方形,求出此几何体的表面积和体积.。
1.3.1柱体、锥体、台体的表面积与体积

8.一个空间几何体的三视图如图所示,则该几何体的表面积为____________.
泸县二中高 2017 届 数学 科第二 期导学案
第
页 用时:
编号:
原编写者: 郑国勇
修订人: 周钰
审阅人:
三、解答题 9.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为 8、高为 4 的等腰三角 形,侧视图是一个底边长为 6、高为 4 的等腰三角形. (1)求该几何体的体积 V; (2)求该几何体的侧面积 S.
=BC=AC=2 3,取 BC 的中点 D,连接 VD, 则 VD= VB2-BD2= 42- 32= 13, 1 1 ∴S△VBC= ×VD×BC= × 13×2 3= 39, 2 2
泸县二中高 2017 届 数学 科第二 期导学案
第
页 用时:
编号:
原编写者: 郑国勇
修订人: 周钰
审阅人:
1 3 S△ABC= ×(2 3)2× =3 3, 2 2 ∴三棱锥 V—ABC 的表面积为 3S△VBC+S△ABC=3 39+3 3=3( 39+ 3). 点 V 在底面 ABC 上的射影为 H, 则 A,H,D 三点共线, VH 即为三棱锥 V—ABC 的高, VH= VD2-HD2= = 132-12=2 3, 1 ∴VV—ABC= S△ABC· VH 3 1 = ×3 3×2 3=6, 3 所以正三棱锥的体积是 6. 当堂检测 1.C 2.C 课时作业 1.B 2.D 3.C 4.B 5.C 3π 6.3 7. S 8. 解析:据三视图可知该几何体为四棱锥,其中底面为 2 52+ 5 22 5 6 = ,因此表面积 2 2 3. 24 1 2 VD2- 3AD
2 =π(r1+r2)· AB+πr2 1+πr2
高中数学 1.3.1 第1课时 柱体、锥体、台体的表面积强

【成才之路】2014-2015学年高中数学 1.3.1 第1课时 柱体、锥体、台体的表面积强化练习 新人教A 版必修2一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( ) A .4倍 B .3倍 C .2倍 D .2倍[答案] D[解析] 由已知得l =2r ,S 侧S 底=πrl πr 2=lr=2, 故选D.2.长方体的高为1,底面积为2,垂直于底的对角面的面积是5,则长方体的侧面积等于( )A .27B .4 3C .6D .3[答案] C[解析] 设长方体的长、宽、高分别为a 、b 、c , 则c =1,ab =2,a 2+b 2·c =5, ∴a =2,b =1,故S 侧=2(ac +bc )=6.3.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π[答案] A[解析] 设圆柱的底面半径为r ,高为h ,则由题设知h =2πr ,∴S 全=2πr 2+2πr ·h =2πr 2(1+2π)又S 侧=h 2=4π2r 2,∴S 全S 侧=1+2π2π.规律总结:圆柱的侧面展开图是一个矩形,矩形两边长分别为圆柱底面周长和高;圆锥侧面展开图是一个扇形,半径为圆锥的母线,弧长为圆锥底面周长;圆台侧面展开图是一个扇环,其两段弧长为圆台两底周长,扇形两半径的差为圆台的母线长,对于柱、锥、台的有关问题,有时要通过侧面展开图来求解.4.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( ) A .6a 2B .12a 2C .18a 2D .24a 2[答案] B[解析] 原来正方体表面积为S 1=6a 2,切割成27个全等的小正方体后,每个小正方体的棱长为13a ,其表面积为6×⎝ ⎛⎭⎪⎫13a 2=23a 2,总表面积S 2=27×23a 2=18a 2,∴增加了S 2-S 1=12a 2. 5.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B .16+16 2C .48D .16+32 2[答案] B[解析] 易知此四棱锥为正四棱锥,底面边长为4,高为2,则斜高为22,故S 侧=4×12×4×22=162,S 底=4×4=16,所以S 表=16+16 2.6.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240[答案] D[分析] 根据三视图可以确定此几何体为四棱柱,再由数量关系分别去确定侧面积与底面面积,相加为该几何体的表面积.[解析] 几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,腰为5的等腰梯形,故两个底面面积的和为12×(2+8)×4×2=40,四个侧面面积的和为(2+8+5×2)×10=200,所以直四棱柱的表面积为S =40+200=240.[易错警示] 本题在求解过程中易错误将3作为等腰梯形的腰长,从而误求结果为200.二、填空题7.已知圆柱OO ′的母线l =4 cm ,全面积为42π cm 2,则圆柱OO ′的底面半径r = ________cm.[答案] 3[解析] 圆柱OO ′的侧面积为2πrl =8πr (cm 2),两底面积为2×πr 2=2πr 2(cm 2),∴2πr 2+8πr =42π, 解得r =3或r =-7(舍去), ∴圆柱的底面半径为3 cm.8.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.[答案] 24+2 3[解析] 该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2×(12×2×3)+3×(4×2)=24+2 3.9.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,则该组合体的表面积等于________.[答案] (410+28)π[解析] 挖去的圆锥的母线长为62+22=210,则圆锥的侧面积等于410π.圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面积为π×22=4π,所以组合体的表面积为410π+24π+4π=(410+28)π.三、解答题10.已知圆台的上、下底面半径分别是2,5,且侧面积等于两底面面积之和,求该圆台的母线长.[答案]297[解析] 设圆台的母线长为l ,则 圆台的上底面面积为S 上=π×22=4π, 圆台的下底面面积为S 下=π×52=25π, 所以圆台的底面面积为S =S 上+S 下=29π. 又圆台的侧面积S 侧=π(2+5)l =7πl ,则7πl =29π,解得l =297,即该圆台的母线长为297.11.(2013~2014·嘉兴高一检测)如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解析] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S . 则R =OC =2,AC =4,AO =42-22=2 3.如图所示易知△AEB ∽△AOC ,∴AEAO=EBOC,即323=r2,∴r=1,S底=2πr2=2π,S侧=2πr·h=23π.∴S=S底+S侧=2π+23π=(2+23)π.12.已知某几何体的三视图如图,求该几何体的表面积.(单位:cm) [解析]几何体的直观图如图.这是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求棱锥的斜高h ′=22,其表面积S =42+4×4×2+(12×4×22)×4=48+16 2 cm 2.。
高中数学1.3.1 柱体、锥体、台体的表面积与体积
(3)柱体、锥体、台体的体积公式之间的关系
(4)求台体的体积转化为求锥体的体积.根据台体的定义进行“补形”, 还原为锥体,采用“大锥体”减去“小锥体”的方法求台体的体积.
【题型探究】 类型一 柱体、锥体、台体的表面积 【典例】1.(2015·陕西高考)一个几何体的三视图如图所示,则该几 何体的表面积为 ( )
2
四个侧面的面积和为(2+8+5×2)×10=200.
所以四棱柱的表面积为S=40+200=240.
【方法技巧】空间几何体的表面积的求法技巧 (1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展 为平面图形计算,而表面积是侧面积与底面圆的面积之和.
2.旋转体的侧面积与表面积的求解 (1)求圆柱、圆锥、圆台的侧面积或表面积时,可直接使用公式.但像 圆台的表面积公式比较复杂,不要求记忆,因此,表面积的求解方法是 最重要的. (2)在计算圆柱、圆锥、圆台的侧面积时,应根据条件计算旋转体的母 线长和底面圆的半径长. (3)这些公式的推导方法向我们提示了立体几何问题的解题思路,主要 通过空间观念等有关知识,将立体几何问题转化为平面几何问题.
Байду номын сангаас
积S1=πr2=π,侧面积S2=2×2+12 ·2πr·2=2π+4,所以此几何体的
表面积S=S1+S2=π+2π+4=3π+4.
2.选D.由已知得l=2r,
S侧 S底
=
rl r 2
=
l r
=2.
3.选D.几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4的
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
高一数学必修2课件:1-3-1-1 柱体、锥体、台体的表面积
因为BC=a,SD= SB2-BD2 = a2-a22= 23a, 所以S△SBC=12BC·SD=12a× 23a= 43a2. 因此,四面体S-ABC的表面积S=4× 43a2= 3a2.
(2)如上图所示,圆锥的底面半径r=a2,母线长l=a,则其 表面积为S表=πr(r+l)=π×a2(a2+a)=34πa2.
B.2
3 C.2
1 D.2
[答案] A
[分析] 如图所示,设O1、O分别为棱台上、下底面中 心,M1、M分别为B1C1、BC的中点,连接O1M1、OM,则 M1M为斜高.
过M1作M1H⊥OM于H点,则M1H=OO1, S侧=4×12(1+2)·M1M, S上底+S下底=5. 由已知得2(1+2)·M1M=5, ∴M1M=56. 在Rt△M1HM中,MH=OM-O1M1=12. ∴M1H=O1O= M1M2-MH2 = 562-122=23.
学法指导 必须由三视图准确地还原几何体,再根据定 义或公式求出几何体的表面积.
[例4] 若一个底面是正三角形的三棱柱的正视图如图1, 则其表面积等于________.
[答案] 6+2 3
[解析] 通过三视图还原三棱柱直观图如图2,通过正视
图可以得出该三棱柱底面边长为2,侧棱长为1,三个侧面为
矩形,上下底面为正三角形,∴S表=3×(2×1)+2×
43×22
=6+2 3.
(2011·安徽高考)一个空间几何体的三视图如下图所示,则 该几何体的表面积为( )
A.48 C.48+8 17
B.32+8 17 D.80
[答案] C
[解析] 由三视图可知该几何体是底面为等腰梯形的直棱
:1.3.1.1柱体、椎体、台体的表面积
(2)面积:台体的表面积 S 表=S 侧+S 上底+S 下底.特别地,圆台的上、下 底面半径分别为 r',r,母线长为 l,则侧面积 S 侧=π(r+r')l,表面积 S 表 =π(r2+r'2+rl+r'l).
【检测 3】 圆台的上、下底面半径分别是 3 和 4,母线长为 6,
则其表面积等于( )
底面积:S 底=πr2 侧面积:S 侧=2πrl 表面积:S=2πr(r+l)
底面积:S 底=πr2 侧面积:S 侧=πrl 表面积:S=πr(r+l)
上底面面积:������上底=πr'2 下底面面积:������下底=πr2
侧面积:S 侧=πr'l+πrl 表面积:S=π(r'2+r2+r'l+rl)
求组合体的表面积时,通常先将所给组合体分成基本的柱、锥、
台体,再通过这些基本的柱、锥、台体的表面积,进行求和或作差,从 而获得组合体的表面积.本题中将组合体的表面积表达为正方体的 表面积与圆柱侧面积的和是非常有创意的想法,如果忽略正方体没 有被打透这一点,思考就会变得复杂,当然结果也会是错误的.
题型二
A.72
B.42π
C.67π
D.72π
小结:本节课你学到什么?
多面体的展开 图及其表面积
公式
圆锥的侧 面展开图 及其侧面、 表面积公
式
圆柱的侧 面展开图 及侧面、 表面积公
式
圆台的侧 面展开图 及其侧面、 表面积公
式
图形 多面体
表面积公式
多面体的表面积就是各个面 的面积的和,也就是多面体展开图 的面积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1《柱体、锥体、台体的表面积与体积》同步练习(1)一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( ) A .4倍 B .3倍 C .2倍 D .2倍[答案] D[解析] 由已知得l =2r ,S 侧S 底=πrl πr 2=lr =2,故选D.2.长方体的高为1,底面积为2,垂直于底的对角面的面积是5,则长方体的侧面积等于( )A .27B .4 3C .6D .3[答案] C[解析] 设长方体的长、宽、高分别为a 、b 、c , 则c =1,ab =2,a 2+b 2·c =5, ∴a =2,b =1,故S 侧=2(ac +bc )=6.3.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π[答案] A[解析] 设圆柱的底面半径为r ,高为h ,则由题设知h =2πr ,∴S 全=2πr 2+2πr ·h =2πr 2(1+2π)又S 侧=h 2=4π2r 2,∴S 全S 侧=1+2π2π.4.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( ) A .6a 2 B .12a 2 C .18a 2 D .24a 2[答案] B[解析] 原来正方体表面积为S 1=6a 2,切割成27个全等的小正方体后,每个小正方体的棱长为13a ,其表面积为6×⎝⎛⎭⎫13a 2=23a 2,总表面积S 2=27×23a 2=18a 2,∴增加了S 2-S 1=12a 2.5.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B .16+16 2C .48D .16+32 2[答案] B[解析] 易知此四棱锥为正四棱锥,底面边长为4,高为2,则斜高为22,故S 侧=4×12×4×22=162,S 底=4×4=16,所以S 表=16+16 2.6.某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240[答案] D[分析] 根据三视图可以确定此几何体为四棱柱,再由数量关系分别去确定侧面积与底面面积,相加为该几何体的表面积.[解析] 几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,腰为5的等腰梯形,故两个底面面积的和为12×(2+8)×4×2=40,四个侧面面积的和为(2+8+5×2)×10=200,所以直四棱柱的表面积为S =40+200=240.[易错警示] 本题在求解过程中易错误将3作为等腰梯形的腰长,从而误求结果为200.二、填空题7.已知圆柱OO ′的母线l =4 cm ,全面积为42π cm 2,则圆柱OO ′的底面半径r = ________cm.[答案] 3[解析] 圆柱OO ′的侧面积为2πrl =8πr (cm 2),两底面积为2×πr 2=2πr 2(cm 2), ∴2πr 2+8πr =42π, 解得r =3或r =-7(舍去), ∴圆柱的底面半径为3 cm.8.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.[答案] 24+2 3[解析] 该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2×(12×2×3)+3×(4×2)=24+2 3.9.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,则该组合体的表面积等于________.[答案] (410+28)π[解析] 挖去的圆锥的母线长为62+22=210,则圆锥的侧面积等于410π.圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面积为π×22=4π,所以组合体的表面积为410π+24π+4π=(410+28)π.三、解答题10.已知圆台的上、下底面半径分别是2,5,且侧面积等于两底面面积之和,求该圆台的母线长.[答案]297[解析] 设圆台的母线长为l ,则 圆台的上底面面积为S 上=π×22=4π, 圆台的下底面面积为S 下=π×52=25π, 所以圆台的底面面积为S =S 上+S 下=29π.又圆台的侧面积S 侧=π(2+5)l =7πl ,则7πl =29π,解得l =297,即该圆台的母线长为297.11.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解析] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S . 则R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC ,∴AE AO =EB OC ,即323=r2,∴r =1, S 底=2πr 2=2π,S 侧=2πr ·h =23π. ∴S =S 底+S 侧=2π+23π=(2+23)π.12.已知某几何体的三视图如图,求该几何体的表面积.(单位:cm)[解析] 几何体的直观图如图.这是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求棱锥的斜高h ′=22,其表面积S =42+4×4×2+(12×4×22)×4=48+16 2 cm 2.1.3.1《柱体、锥体、台体的表面积与体积》同步练习(2)一、选择题1.长方体三个面的面积分别为2、6和9,则长方体的体积是( ) A .63 B .36 C .11 D .12[答案] A[解析] 设长方体长、宽、高分别为a 、b 、c ,则ab =2,ac =6,bc =9,相乘得(abc )2=108,∴V =abc =6 3.2.圆台的体积为7π,上、下底面的半径分别为1和2,则圆台的高为( ) A .3 B .4 C .5 D .6 [答案] A[解析] 由题意,V =13(π+2π+4π)h =7π,∴h =3.3.一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,直角边长为1,则这个几何体的体积为( )A .1B .12C .13D .16[答案] D[解析] 由三视图知,该几何体是三棱锥. 体积V =13×12×1×1×1=16.4.在△ABC 中,AB =2,BC =3,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( )A .6πB .5πC .4πD .3π[答案] D[解析] 如图过A 作AD 垂直BC 于点D ,此几何体为一个大圆锥挖去一个小圆锥V =13π×(3)2×4-13π×(3)2×1=3π.故选D.5.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6[答案] B[分析] 根据三视图可知此几何体为棱台,分别确定棱台的底面面积和高即可求得体积.[解析] 由四棱台的三视图可知,台体上底面积S 1=1×1=1,下底面积S 2=2×2=4,高h =2,代入台体的体积公式V =13(S 1+S 1S 2+S 2)h =13×(1+1×4+4)×2=143.6.如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1 cm 和半径为3 cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ,当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个简单几何体的总高度为( )A .29 cmB .30 cmC .32 cmD .48 cm[答案] A[解析] 图(2)和图(3)中,瓶子上部没有液体的部分容积相等,设这个简单几何体的总高度为h ,则有π×12(h -20)=π×32(h -28),解得h =29(cm).二、填空题7.已知圆锥SO 的高为4,体积为4π,则底面半径r =________. [答案]3[解析] 设底面半径为r ,则13πr 2×4=4π,解得r =3,即底面半径为 3.8.如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点.设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.[答案] 1 24[分析] 找到棱锥的底、高与棱柱的底、高之间的关系,从而可以得出它们的体积之比. [解析] 设三棱柱A 1B 1C 1-ABC 的高为h ,底面三角形ABC 的面积为S ,则V 1=13×14S ×12h =124Sh =124V 2,即V 1 V 2=1 24. 9.设甲、乙两个圆柱的底面积分别为S 1、S 2,体积分别为V 1、V 2,若它们的的侧面积相等且S 1 S 2=9 4,则V 1 V 2=________.[答案] 3 2[解析] 设甲圆柱底面半径r 1,高h 1,乙圆柱底面半径r 2,高h 2,S 1S 2=πr 21πr 22=94,∴r 1r 2=32,又侧面积相等得2πr 1h 1=2πr 2h 2,∴h 1h 2=23.因此V 1V 2=πr 21h 122h 2=32.三、解答题10.已知圆台的高为3,在轴截面中,母线AA 1与底面圆直径AB 的夹角为60°,轴截面中的一条对角线垂直于腰,求圆台的体积.[解析] 如图所示,作轴截面A 1ABB 1,设圆台的上、下底面半径和母线长分别为r ,R ,l ,高为h .作A 1D ⊥AB 于点D , 则A 1D =3.又∵∠A 1AB =60°,∴AD =A 1D ·1tan60°,即R -r =3×33,∴R -r = 3. 又∵∠BA 1A =90°,∴∠BA 1D =60°. ∴BD =A 1D ·tan60°,即R +r =3×3, ∴R +r =33,∴R =23,r =3,而h =3, ∴V 圆台=13πh (R 2+Rr +r 2)=13π×3×[(23)2+23×3+(3)2] =21π.所以圆台的体积为21π.11.已知△ABC 的三边长分别是AC =3,BC =4,AB =5,以AB 所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.[分析] 应用锥体的侧面积和体积的计算公式求解.解题流程:△ABC 的特征――→AC ⊥BC 旋转体是两个同底圆锥――→底面半径为CD 求表面积――→高BD ,AD 求体积[解析] 如图,在△ABC 中,过C 作CD ⊥AB ,垂足为D . 由AC =3,BC =4,AB =5, 知AC 2+BC 2=AB 2,则AC ⊥BC . 所以BC ·AC =AB ·CD , 所以CD =125,记为r =125,那么△ABC 以AB 为轴旋转所得旋转体是两个同底的圆锥,且底面半径r =125,母线长分别是AC =3,BC =4,所以S 表面积=πr ·(AC +BC )=π×125×(3+4)=845π,V =13πr 2(AD +BD )=13πr 2·AB=13π×(125)2×5=485π. [特别提醒] 求旋转体的有关问题常需要画出其轴截面,将空间问题转化为平面问题来解决.对于与旋转体有关的组合体问题,要弄清楚它是由哪些简单几何体组成的,然后根据条件分清各个简单几何体底面半径及母线长,再分别代入公式求各自的表面积或体积.12.若某几何体的三视图(单位:cm)如图所示,求此几何体的体积.[解析] 该空间几何体的上部分是底面边长为4,高为2的正四棱柱,体积为16×2=32;下部分是上底面边长为4,下底面边长为8,高为3的正四棱台,体积为13×(16+4×8+64)×3=112.故该空间几何体的体积为144.。