线路光纤差动保护测试原理及实操方法

合集下载

光纤差动保护原理

光纤差动保护原理

光纤差动保护原理光纤差动保护是一种对光纤通信系统进行差动保护的技术,通过监测发送光信号和接收光信号之间的差动光功率来判断线路的可用性和故障情况,从而实现对信号的快速切换和保护。

其原理主要包括光功率检测、差动计算和切换决策三个方面。

首先,光功率检测是光纤差动保护的基本步骤。

光功率检测通过光功率监测器获取发送光信号和接收光信号的功率值。

这些功率值用来判断线路的传输质量和故障情况。

当两个功率值相等时,说明光信号的传输正常;而当两个功率值差异较大时,说明光信号的传输可能发生了故障。

接下来,差动计算是通过计算发送光信号和接收光信号之间的差动光功率来判断光信号传输是否正常。

差动光功率可以用以下公式来表示:ΔP = Psend - Precv,其中ΔP表示差动光功率,Psend表示发送光功率,Precv表示接收光功率。

通过比较差动光功率的大小可以判断光信号的传输是否正常。

当差动光功率小于一个预设值时,说明光信号传输正常;而当差动光功率大于预设值时,说明光信号传输可能发生了故障。

最后,切换决策是根据差动光功率的大小来决定是否进行切换。

切换可以分为两种情况:一是正常切换,即当差动光功率大于预设值时,由主光路切换到备用光路,以保证信号的连续性和可靠性;二是故障切换,即当差动光功率大于故障切换阈值时,由故障光路切换到备用光路,以修复故障导致的信号中断。

切换决策一般由差动保护装置自动完成,根据预设的切换逻辑和切换阈值,实现对信号的快速切换和保护。

总结起来,光纤差动保护的原理是通过光功率检测、差动计算和切换决策三个步骤来实现对光纤通信系统的差动保护。

其中,光功率检测用于获取发送光信号和接收光信号的功率值;差动计算用于计算发送光信号和接收光信号之间的差动光功率;切换决策用于根据差动光功率的大小来决定是否进行切换。

通过这些步骤的组合,可以实现对光信号传输的快速切换和保护,提高光纤通信系统的可用性和可靠性。

4.4线路光纤差动保护

4.4线路光纤差动保护

饱和开放:
1
虚拟制动电流抗TA饱和判据
理想情况: 一个周波 | i | 0.2 | i | 只有三个点。 考虑采样点的偏差(采样点 不在过零点)也只有四个点。
k max
0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
0
10
20
30
40
50
60
70
80
对24点采样来说,采样点间隔为 15度,sin15º =0.2588
Es
N M TA TA
ER
2
1
1、在K点发生故障,母差动作后,故障点未切除,为了让N端保护能快速 切除故障,可将M端母线保护动作的接点接在电流差动保护装置的“远跳” 端子上,保护装置发现该端子的输入接点闭合后立即向N端发“远跳”信 号。N端接收到该信号后再经(或不经)起动元件动作作为就地判据发三 相跳闸命令并闭锁重合闸。
TA回路原理图

Ls u U m sin( t a ) i1
?
s 2
e2
?
s 1
u2
i2
t (90 ) max I max

R2

(1 T1 ) 0
由磁通公式可以得出:
故障电流越大,越容易饱和; 二次负载越大,越容易饱和; 有剩磁,更容易饱和; 一次系统时间常数越大,越容易饱和;
防止TA断线误动的措施
本端起动元件启动 本端差动继电器动作 收到对端“差动动作”信号 采取以上措施后: 1、当本端TA断线时本端电流可能有突变,或可能出现零序电流,故而起动 元件起动。在故障计算程序中检测到差动继电器也动作。 2、对端TA没有断线,对端三相是正常,虽然差动继电器可能会动作,但起 动元件不起动。 3、对端不会给本端发“差动动作”允许信号,所以本端差动保护不动作。 & 本端差动动作

光纤差动保护原理

光纤差动保护原理

光纤差动保护原理光纤差动保护是一种用于光纤通信系统的保护方式,它可以在光纤通信系统中实现对光纤线路的快速故障检测和切换,从而保证通信系统的稳定性和可靠性。

光纤差动保护原理主要是基于光纤差动检测技术和光纤切换技术,通过对光纤信号的差动变化进行监测和判断,实现对光纤线路的快速故障切换,从而保证通信系统的正常运行。

光纤差动保护原理的核心是光纤差动检测技术,它通过比较两路光纤信号的差动变化来判断光纤线路是否发生故障。

一般情况下,光纤信号会同时经过主用光纤和备用光纤,如果主用光纤发生故障,备用光纤上的信号就会与主用光纤上的信号产生差动变化。

光纤差动保护系统会通过光纤差动检测器实时监测主用光纤和备用光纤上的信号,并对信号的差动变化进行判断,从而实现对光纤线路的快速故障检测。

在光纤差动保护系统中,一旦检测到主用光纤发生故障,系统会立即启动光纤切换技术,将光纤通信信号切换到备用光纤上,从而实现对光纤线路的快速切换,确保通信系统的连续性和稳定性。

光纤切换技术通常采用光开关或光耦合器等光学器件来实现,它能够在毫秒级的时间内完成对光纤信号的切换,保证通信系统的快速故障恢复。

光纤差动保护原理的优势在于其快速、可靠的故障检测和切换能力,能够有效地提高光纤通信系统的稳定性和可靠性。

与传统的光纤保护方式相比,光纤差动保护能够实现对光纤线路故障的快速响应,减少通信系统的中断时间,提高通信系统的可用性。

此外,光纤差动保护还能够实现对多个光纤线路的集中管理和保护,为大规模光纤通信系统的运维管理提供了便利。

总的来说,光纤差动保护原理是一种高效、可靠的光纤通信保护方式,它通过光纤差动检测技术和光纤切换技术实现对光纤线路的快速故障检测和切换,保证通信系统的稳定性和可靠性。

在未来的光纤通信系统中,光纤差动保护将会得到更广泛的应用,为光纤通信系统的稳定运行提供强有力的保障。

光差保护实验报告

光差保护实验报告

一、实验目的1. 理解光差保护的基本原理和功能。

2. 掌握光差保护装置的安装、调试和操作方法。

3. 通过实验验证光差保护在实际电力系统中的应用效果。

二、实验原理光差保护是一种基于光纤差动原理的保护装置,它利用光纤通道将两侧断路器的电气量进行对比,当流入电流等于流出电流时,产生差流达到保护定值即动作。

光差保护具有全线快速保护、动作可靠等优点,在电力系统中得到广泛应用。

三、实验器材1. 光差保护装置一套2. 光纤通道一套3. 断路器一套4. 电源一套5. 测试仪器一套四、实验步骤1. 安装与调试(1)按照说明书要求,将光差保护装置安装在相应的断路器上。

(2)连接光纤通道,确保光纤连接牢固。

(3)调整光差保护装置的参数,包括保护定值、延时等。

(4)检查电源和测试仪器的正常工作。

2. 实验操作(1)模拟故障情况,例如单相接地故障,观察光差保护装置的动作情况。

(2)记录光差保护装置的动作时间、动作电流等参数。

(3)分析光差保护装置的动作效果,与理论预期进行对比。

3. 实验数据与分析在实验过程中,记录以下数据:(1)故障类型:单相接地故障(2)故障电流:50A(3)光差保护装置动作时间:0.1秒(4)光差保护装置动作电流:50A通过实验数据分析,得出以下结论:1. 光差保护装置在模拟故障情况下能够迅速动作,动作时间为0.1秒,满足实际电力系统的保护要求。

2. 光差保护装置的动作电流与故障电流相等,表明光差保护装置的动作可靠。

3. 光差保护装置在实际应用中,能够有效保护电力系统,提高电力系统的安全性和可靠性。

五、实验结论1. 光差保护装置是一种有效的保护装置,具有全线快速保护、动作可靠等优点。

2. 通过实验验证,光差保护装置在实际电力系统中具有良好的应用效果。

3. 在今后的电力系统保护工作中,应进一步推广光差保护装置的应用。

六、实验建议1. 在实际应用中,应根据电力系统的具体情况,选择合适的光差保护装置。

2. 定期对光差保护装置进行检查和维护,确保其正常运行。

光纤差动保护原理分析

光纤差动保护原理分析

光纤差动保护原理分析光纤差动保护(Optical Fiber Differential Protection)是一种应用于电力系统中的差动保护技术,主要用于高压输电线路和变电站的保护,其原理是通过光纤通信技术实现对电力系统中两端差动保护装置之间的电信号传输,以实现设备间的保护、通信和协调。

1.光纤通信原理:光纤作为传输介质,能够将信号通过光的折射和反射实现传输。

光纤具有高带宽,低损耗和抗电磁干扰等特点,能够实现远距离的传输。

2.典型接线方式:光纤差动保护通过将一根光纤分别连接在同一段高压线路或变电站的两个差动保护装置上,形成一条闭环的光纤接线。

3.光纤传感器:在光纤接线路上,布置有一定数量的光纤传感器,用于感测电流和电压信号。

光纤传感器可以通过不同的方式(例如布拉格光纤光栅)实现测量信号的变化。

4.差动保护算法:差动保护算法是光纤差动保护的核心部分,主要用于判断电流或电压的差异,当差异超过设定阈值时,触发保护动作。

差动保护算法可以根据实际需求选择,常见的有电流差动保护和电压差动保护。

5.通信和协调:在光纤差动保护中,各差动保护装置之间通过光纤传输电信号,实现保护装置之间的通信和协调。

一般采用光纤通信协议(如G.652光纤)或使用冗余备份的通信系统,以确保通信的可靠性和稳定性。

1.灵敏性高:光纤差动保护通过传感器对电流和电压进行实时监测,能够检测到小到毫安级别的故障电流,具有很高的灵敏性。

2.速度快:光纤差动保护的通信速度非常快,通常在毫秒级别内即可完成差动保护算法的计算和保护动作的触发,能够迅速切断故障电路,防止故障扩大。

3.抗干扰性好:光纤差动保护采用光纤通信技术,能够有效地抵御电磁干扰和地电流影响,提高保护的可靠性和稳定性。

4.可扩展性强:光纤差动保护支持多通道传输,可以连接多个差动保护装置,实现不同部分的保护和协调,具有较强的工程可扩展性。

总之,光纤差动保护是一种先进的电力系统保护技术,通过光纤通信技术实现差动保护装置之间的通信和协调,具有灵敏性高、速度快、抗干扰性好和可扩展性强等优点,能够提高电力系统的可靠性和稳定性。

光纤差动保护动作原理

光纤差动保护动作原理

光纤差动保护动作原理今天来聊聊光纤差动保护动作原理,这可是个很有趣却又有些复杂的东西呢。

我记得以前家里用电的时候,要是哪里突然出问题了,电路就会断开,这是一种简单的保护措施。

那光纤差动保护呢,其实也像一个非常智能又敏感的电路保镖。

先给你解释下什么是光纤差动保护。

简单说,光纤差动就是通过光纤来比较线路两端的电流情况。

打个比方,就好比两个人在路的两端看守一个宝藏(这里宝藏可以看作是需要保护的电力线路等设备),他们时刻观察着经过到手边的水流(把电流比作水流,比较形象)的大小和方向。

这两个人怎么判断是不是有异常情况呢?如果宝藏安安稳稳的,正常情况下,从路的一头流进宝藏的水量和从宝藏流向另一头的水量应该是差不多的,这就类似于电路正常的时候,进线端的电流和出线端的电流差值很小。

要是有小偷(故障,可以是相间短路或者接地短路等故障像小偷偷宝藏一样破坏电路的正常运行)突然出现,从一头流入宝藏的水突然增多或者减少,另一个看守的就能通过他们之前定好的通信方式(光纤就是他俩的通信方式)迅速知道情况不对了。

说到这里,你可能会问,那光纤在这当中到底起什么特别的作用呢?其实光纤就像一个信息高速公路,两端收集到的电流信息能快速又准确地在上面传送,这样一旦线路两端电流差值超过了我们设定的一个正常范围(这个范围是根据工程实际和相关原理设定的,就好比看守宝藏的两人心里清楚正常水流波动范围是多少一样),保护装置就会迅速动作,把电路断开,防止故障进一步影响整个电力系统。

老实说,我一开始也不明白为什么一定要用光纤呢。

后来研究了才知道,光纤传输信息又快又不容易受干扰,对于精确地比较两端电流的差动保护来说是非常理想的。

比如说,如果用普通电缆传输电流检测信号,就像是用一条嘈杂的小路传递消息,可能会有杂音(干扰),但是光纤就干净利落多了。

在实际应用上,在大型变电站和发电厂的电力线路保护中经常能看到光纤差动保护的身影。

这就像给那些电力系统的心脏和血管加上了一道道精准的防护栏,一旦哪里有差池,立马就保护起来,避免大面积停电之类的严重后果。

35KV线路光纤差动保护原理doc资料

35KV线路光纤差动保护原理doc资料

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。

即使是微机保护装置,其原理也是这样的。

但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。

纵联保护的通道一般有以下几种类型:1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号;2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输;3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道;4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。

差动保护差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。

保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名差动保护外文名Differential protection目录1. 1概述2. 2原理3. 3技术参数4. ▪环境条件1. ▪工作电源2. ▪控制电源3. ▪交流电流回路4. ▪交流电压回路5. ▪开关量输入回路1. ▪继电器输出回路2. 4功能3. 5主要措施4. 6缺点概述编辑电流差动保护是继电保护中的一种保护。

正相序是A超前B,B超前C各是120度。

反相序(即是逆相序)是A 超前C,C 超前B各是120度。

有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。

差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。

差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。

光纤差动保护原理构成和动作结果基础知识讲解

光纤差动保护原理构成和动作结果基础知识讲解
19
七、案例共享
1、某电站35kV 高压开关柜PT间隔保险卡子爬电处理
保险卡子对绝 缘支座爬电
原理:光纤分相电流差动保护的基本原理是借助光纤通道,
实时地向对侧传递每相电流的采样数据,同时接收对侧的 电流采样数据,两侧保护利用本地和对侧电流数据经过 同步处理后分相进行差电流计算。
3
一、光纤差动保护原理
2、光纤差动保护优点
1)光纤纵联保护的优异性能皆源于其光纤通道,充分发挥光纤通道的高带宽、 高可靠性优点,最终使超高压成套线路保护装置发生很大的变化,而性能得以更 加完善。 2)光纤作为继电保护的通道介质具有不怕超高压与雷电电磁干扰、对电场绝缘 、频带宽和衰耗低等优点。 3)能够准确地区分内部与外部故障,不需要相邻线路在保护上配合,可以实现 全线速动。 4)简单可靠,继电保护四性“速动性、选择性、可靠性、灵敏性” 同时满足要 求。 5)能适应非全相、电力系统震荡等。 6)装置简单,易于集成化板件式运维,某一原件故障,可插拔式更换,便于检 修和维护。 7)稳定性高,TA、TV断线误动可能性低。
18
六、光纤差动保护动作处理
• 完整、准确记录报警信号及保护装置屏显示的信息。 • 检查后台机(或打印机)的保护动作事件记录。 • 打印故障录波的故障波形,及时从保护装置及故障录波器中导出并保
存故障录波数据文件。 • 及时上报现场主管领导或调度部门。 • 详细记录保护动作情况。 • 分析保护动作原因,判断保护动作正确性。 • 积极查找故障点,如有明显设备故障点,应及时保存图片资料。 • 整理保护动作分析报告,以速报形式上报上级管理部门。
15
三、光纤差动保护应用
3)设备运行操作 35KV线路光钎差动保护装置投入步骤 • 查线路保护装置全部出口压板在退出。 • 查线路保护装置全部保护功能压板在退出。 • 退出装置检修压板。 • 合上直流馈线盘至35KV保护盘电源开关。 • 合上UPS交流馈线盘至35KV保护盘电源开关。 • 合上保护盘后直流操作电源开关 • 合上保护盘后交流220V电源开关 • 合上保护盘后35KV线路TV电压引入开关。 • 查保护装置上电正常。 • 按规定投入功能保护压板。 • 按规定投入跳闸出口压板。 • 再次确认保护压板投入正确。 35KV 线路光纤纵差保护装置退出步骤 • 查保护装置无报警信息。 • 退出保护装置出口跳闸压板。 • 退出保护装置功能压板。 • 投入装置检修压板。 • 分开保护盘后35KV线路TV电压引入开关。 • 分开保护盘后交流220V电源开关。 • 分开保护盘后直流操作电源开关。 • 分开直流馈线盘至35KV保护盘电源开关。 • 分开UPS交流馈线盘至35KV保护盘电源开关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测试设备:长园深瑞PRS-753S 光纤纵差成套保护装置
使用设备:继保之星-1600 继电保护测试系统
▲继保之星-1600 继电保护测试系统
测试原理:假设M侧为送电端,N侧为受电端。

正常状态下或者发生区外故障时M、N两侧电流幅值相同、方向相反。

根据差动电流原理(差动电流为本侧与对侧电流向量和)得出差流为零。

当发生区内故障时,N侧电流反向,此时M、N两侧流入的电流幅值相等,方向相同,产生的差流为各相故障电流的两倍。

▲光纤电流差动保护系统构成示意图
根据保护要求,当差动电流幅值小于整定值0.95倍时,保护可靠不动作;当差动电流值大于或者等于整定值1.05倍时,保护可靠动作且动作时间低于100mS。

注意:实际测试中通常将保护装置尾纤(与对侧保护连接的光纤)进行自环,并将本侧、对侧识别码设置为相同。

此时保护装置通过光纤收到的对侧(实际是本侧)发出的故障电流值与本侧故障电流值相加即为试验差动电流值。

由此,可推算出实际加入的实验电流值是产生的差动电流值的二分之一。

保护装置整定值:
变化量启动电流定值:0.2A
差动动作电流定值1.2A
测试方法
1、保护装置设置
压板设置:检修压板投入,纵联差动保护投入,A 、B、C跳闸出口压板退出。

控制字设置:定值整定-纵联差动保护设置为1,其他控制字设置为0。

2、接线
▲接线原理图
断开IA、IB、IC、IN端子排上的连接划片,使保护装置与线路断开
将测试仪的IA、IB、IC、IN输出端口接入对应端子排保护装置侧
将测试仪UA、UB、UC、UN接入相应的端子排
测试仪开关量输入+KM端子接入装置正电源端子口
测试仪开关量输入A端子接入装置跳闸线圈端子口(本次选择压板跳闸出口)
▲继保之星-1600 接线图
▲电压电流接线
▲开关量+KM接线
▲跳闸线圈接线
▲光纤自环前
▲自环后
实验操作
1、验证0.95倍整定值下,差动保护可靠不动作。

(单独验证A相,其他相可参考此设置)
根据差动动作值1.2A计算可得,差动电流实验值1.2*0.95=1.14A,实验电流为0.57A。

1)在“状态序列”菜单里,添加故障前、故障两个状态。

UA=UB=UC=57.734V
IA=IB=IC=0A
电压电流均为正序
触发方式:时间触发15S
▲正常态标签参数设置
UA=UB=UC=57.734V
IA=0.57A
电压电流均为正序
触发方式:时间触发0.1S
▲故障态标签参数设置
2)加量
设置完成后,点击运行。

继保之星-1600 继电保护测试系统按照正常态设定值输出持续时间15S,15S后装置自动切换至下一状态,继保之星-1600
按照故障态设定值输出持续时间0.1S。

实验结果:测试仪未采集到跳闸信号。

2、验证1.05倍整定值下,差动保护可靠不动作。

(单独验证A相,其他相可参考此设置)
根据差动动作值1.2A计算可得,差动电流实验值为1.2*1.05=1.26A,实验电流为0.63A。

1)在“状态序列”菜单里,添加故障前、故障两个状态。

UA=UB=UC=57.734V
IA=IB=IC=0A
电压电流均为正序
触发方式:时间触发15S
▲故障态标签参数设置
正常态标签参数设置:
UA=UB=UC=57.734V
IA=0.63A
电压电流均为正序
触发方式:时间触发0.1S
2)加量
设置完成后,点击运行。

继保之星-1600 继电保护测试系统按照正常态设定值输出持续时间15S,15S后装置自动切换至下一状态,继保之星-1600 按照故障态设定值输出持续时间0.1S。

实验结果:测试仪收到保护发出的跳闸信号(此实验跳闸方式为三相跳闸),测试仪开关量输入A端口测得动作时间为32mS。

根据实验要求,本次实验测得整定值1.2A差动电流下保护性能满足规程要求。

0.95倍差动电流下保护可靠不动作、1.05倍差动电流下保护可靠动作,动作时间32mS满足速断要求。

武汉市豪迈电力自动化技术有限责任公司(简称豪迈电力)成立于1999年,是专注于电力系统二次测试、在线监测、检测设备的研发、生产与销售的高新技术企业。

公司研发和生产了以“继保之星”系列为代表的继电保护测试仪、“CTP”系列为代表的互感器测试仪、直流系统测试仪以及自动化测试维护、在线监测、新能源测试设备等,累计为10000多家大中型企业提供产品与服务。

相关文档
最新文档