2021届高三高考物理一轮复习考点专题11 牛顿第二定律及应用【含答案】
2022届高考物理一轮复习 第11讲 牛顿第二定律应用(一) 讲义(考点+经典例题)

第十一讲牛顿第二定律应用(一)一、动力学的两类基本问题1.基本思路2.基本步骤3.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析。
(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁。
4.常用方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用合成法。
(2)正交分解法:若物体的受力个数较多(3个或3个以上)时,则采用正交分解法。
类型1已知物体受力情况,分析物体运动情况【典例1】如图甲所示,滑沙运动时,沙板相对沙地的速度大小会影响沙地对沙板的动摩擦因数。
假设滑沙者的速度超过8 m/s时,滑沙板与沙地间的动摩擦因数就会由μ1=0.5变为μ2=0.25。
如图乙所示,一滑沙者从倾角θ=37°的坡顶A 处由静止开始下滑,滑至坡底B (B 处为一平滑小圆弧)后又滑上一段水平地面,最后停在C 处。
已知沙板与水平地面间的动摩擦因数恒为μ3=0.4,AB 坡长L =20.5 m ,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,不计空气阻力,求:(1)滑沙者到B 处时的速度大小;(2)滑沙者在水平地面上运动的最大距离;(3)滑沙者在AB 段与BC 段运动的时间之比。
解析 (1)滑沙者在斜面上刚开始运动时速度较小,设经过t 1时间下滑速度达到8 m/s ,根据牛顿第二定律得mg sin θ-μ1mg cos θ=ma 1解得a 1=2 m/s 2所以t 1=v a 1=4 s 下滑的距离为x 1=12a 1t 21=16 m接下来下滑时的加速度a 2=g sin θ-μ2g cos θ=4 m/s 2下滑到B 点时,有v 2B -v 2=2a 2(L -x 1) 解得v B =10 m/s 。
(2)滑沙者在水平地面减速时的加速度大小a 3=μ3g =4 m/s 2所以能滑行的最远距离x 2=v 2B 2a 3=12.5 m 。
实验4 验证牛顿第二定律(题型专练)-2021年高考物理一轮复习实验专题考点全析(解析版)

实验4 验证牛顿第二定律则一.多选题1.研究小组的同学们用如图所示的装置探究物体的加速度与力、质量的关系之后,对此实验又做了进一步的分析:在实验前通过垫块已经平衡了阻力,且砂和砂桶的总质量远小于小车和车上砝码的总质量,由静止释放小车后,下列说法中正确的是()A.砂和砂桶减少的重力势能大于车和砝码增加的动能B.砂和砂桶的动量变化等于对应过程中其所受重力的冲量C.小车和砝码增加的动量等于对应过程中细绳对小车拉力的冲量D.小车和砝码增加的动能等于对应过程中细绳对小车拉力所做的功【答案】ACD【解析】A、将小车(含车上砝码)和砂(含砂桶)当成一个系统,在小车(含车上砝码)运动过程中,木板对小车的摩擦力要做负功,即小车运动过程除重力外还要克服摩擦力做功,故系统机械减小,所以砂和砂桶减少的重力势能大于车和砝码增加的动能,故A正确;B、以砂和砂桶为研究对象,受到自身的重力以及绳子的拉力,根据动量定理得到:砂和砂桶的动量变化等于对应过程中其所受重力与绳子拉力的合力所产生的冲量,故B错误;CD、平衡摩擦力后,小车和砝码所受的合力就是绳子的拉力,根据动量定理得到:小车和砝码增加的动量等于对应过程中细绳对小车拉力的冲量;根据动能定理得到:小车和砝码增加的动能等于对应过程中细绳对小车拉力所做的功,故CD正确;故选:ACD。
2.如图是某同学利用教材提供的方案进行“探究加速度与力、质量的关系”实验时,正要打开夹子时的情况.某同学指出了实验时的几个错误,其说法正确的有()A.该实验前没有平衡摩擦力B.拉小车的细线应平行桌面C.实验电源应为交流电电源D.释放小车前打点计时器应向左移动以靠近小车【答案】ABC【解析】A、木板水平放置,该实验前没有平衡摩擦力,故A正确。
B、如果细线不保持水平,那么小车的合力就不等于绳子的拉力。
小车的合力就不能正确测量,故B正确。
C、电火花和电磁计时器都使用交流电源,故C正确。
D、小车应靠近打点计时器且打点计时器应距左端较远,这样便于小车运动一段过程,从而能准确测量小车的加速度,减小误差,故不能移动打点计时器,只能向右移动小车。
2021年高考物理一轮复习 第三章 第2课 牛顿第二定律 单位制课时作业(含解析)

2021年高考物理一轮复习第三章第2课牛顿第二定律单位制课时作业(含解析)题号 1 2 3 45 6 7 8 9 10 答案D.返回舱在喷气过程中处于失重状态解析:在火箭喷气过程中返回舱做减速直线运动,加速度方向向上,返回舱处于超重状态,动能减小,返回舱所受合外力做负功,返回舱在喷气过程中减速的主要原因是缓冲火箭向下喷气而获得向上的反冲力.火箭开始喷气前匀速下降,拉力等于重力减去返回舱受到的空气阻力,火箭开始喷气瞬间反冲力直接对返回舱产生向上的作用力因而伞绳对返回舱的拉力变小.答案:A5.放在光滑水平面上的木块受到两个水平力F 1与F2的作用静止不动.现保持F1不变F2大小变化如图甲所示,则在此过程中,能正确描述木块运动情况的vt图象是图乙中的( )解析:由于F2均匀减小到零然后又均匀增大到原值,所以物体受到的合外力的变化情况为先增大后减小到零,根据牛顿第二定律知物体加速度也是先增大后减小到零,而速度一直在增大,最后达到最大值.符合上述规律的vt图象只有D项.答案:D二、不定项选择题6.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的vt图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t1时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间内,小物块受到的摩擦力不变D.0~t3时间内,小物块始终受到大小不变的摩擦力作用解析:由题图乙可知,在t1时刻物块的速度为零,离开A点的距离最大,A正确;t2时刻,小物块刚好相对传送带静止,此时相对传送带滑动的距离最大,B正确;0~t2时间内,小物块在摩擦力的作用下先减速再反向加速,摩擦力不变,C正确;t2~t3时间内,小物块相对传送带静止且随水平传送带一起匀速运动,不受摩擦力作用,D错误.答案:ABC7.如图所示,质量为M的小车放在光滑的水平地面上,右面靠墙,小车的上表面是一个光滑的斜面,斜面的倾角为α,当地重力加速度为g.那么,当有一个质量为m的物体在这个斜面上自由下滑时,( )A.小车对右侧墙壁的压力大小是mgsin αcos αB.小车对右侧墙壁的压力大小是MmgM+msin αcos αC.小车对地面的压力大小为(M+m)g-mgsin2αD.小车对地面的压力大小为(M+m)g-mgsin αcos α解析:先用隔离法,分析物体的受力情况,物体沿斜面向下的加速度a=gsin α,将a 沿水平方向和竖直方向分解,则a x=acos α=gsin αcos α,a y=asin α=gsin2α;整体法,墙对小车的弹力F=ma x=mgsin αcos α,(M+m)g-N=ma y=mgsin2α.所以F=mgsin αcos α,N=(M+m)g-mgsin2α.再由牛顿第三定律可知选项A、C正确.答案:AC8.如图所示,将质量为m的滑块放在倾角为θ的固定斜面上.滑块与斜面之间的动摩擦因数为μ.若滑块与斜面之间的最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,则( )A .将滑块由静止释放,如果μ<tan θ,滑块将下滑B .给滑块沿斜面向下的初速度,如果μ<tan θ,滑块将减速下滑C .用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tan θ拉力大小应是2mgsin θD .用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tan θ拉力大小应是mgsin θ解析:如果μ<tan θ,mgsin θ>μmgcos θ滑块将下滑;此时给滑块沿斜面向下的初速度,滑块将加速下滑,如果μ=tan θ,用平行于斜面向上的力拉滑块向上匀速滑动,F =mgsin θ+μmg cos θ=2mgsin θ.综上所述,选项A 、C 正确.答案:AC9.如图所示,质量不等的木块A 和B 的质量分别为m 1和m 2,置于光滑的水平面上,当水平力F 作用于左端A 上,两物体一起做匀加速运动时,A 、B 间作用力大小为F 1.当水平力F 作用于右端B 上,两物体一起做匀加速运动时,A 、B 间作用力大小为F 2则( )A .在两次作用过程中,物体的加速度的大小相等B .在两次作用过程中,F 1+F 2<FC .在两次作用过程中,F 1+F 2=FD .在两次作用过程中,F 1F 2=m 1m 2解析:对整体易知两次作用的加速度大小相同.a =Fm 1+m 2.第一种情况对B :F 1=m 2a ;第二种情况对A :F 2=m 1a ,所以F 2+F 1=F ,F 1F 2=m 2m 1,选项C 正确.答案:C10.如图(a)所示,用一水平外力F 拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图象如图(b)所示,若重力加速度g 取10 m/s 2.根据图(b)中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .斜面的长度D .加速度为6 m/s 2时物体的速度解析:由牛顿第二定律得:a =Fcos θ-mgsin θm =Fcos θm -gsin θ,可见图线的斜率是cos θm ,在纵轴上的截距是gsin θ,所以物体的质量和斜面的倾角均可求出,所以选A 、B.答案:AB 三、非选择题11.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=0.5,如图所示.保持小球所受风力F =0.5mg 不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下2.4 m 所需的时间为多少?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)解析:对小球作受力分析,并对这些力进行正交分解,如图所示. 在y 轴上,因Fsin θ<mgcos θ,故F N 应垂直于杆向上.由平衡条件,有:F N +Fsin θ-mgcos θ=0,得:F N =0.5mg.①在x 轴上,由牛顿第二定律,有: mgsin θ+Fcos θ-F f =ma.② 又F f =μF N ,③①②③式联立得:a =7.5 m/s 2.又由运动学公式s =12at 2,得小球从静止出发在细杆上滑下距离s =2.4 m 所需时间为t=0.8 s.答案:0.8 s12.质量为2 kg 的物体在水平推力的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的vt 图象如图所示.g 取10 m/s 2,求:(1)物体与水平面间的动摩擦因数μ; (2)水平推力F 的大小.解析:(1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则:a 2=v 2t -v 20Δt 2=-2 m/s 2.①设物体所受的摩擦力为F f ,根据牛顿第二定律,有: F f =ma 2,② F f =-μmg,③联立①②③得:μ=-a 2g=0.2.④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则:a 1=v 1t -v 10Δt 1=1 m/s 2.⑤根据牛顿第二定律,有: F -F f =ma 1.⑥联立③⑥得:F =μmg+ma 1=6 N. 答案:(1)0.2 (2)6 N13.质量为40 kg 的雪橇在倾角θ=37°的斜面上向下滑动(如图甲所示),所受的空气阻力与速度成正比.今测得雪橇运动的vt 图象如图乙所示,且AB 是曲线的切线,B 点坐标为(4,15),CD 是曲线的渐近线.试求空气的阻力系数k 和雪橇与斜坡间的动摩擦因数μ.解析:对雪橇由牛顿运动定律得:mgsin θ-μN-kv =ma ,① N =mgcos θ,②由图象得A 点对应速度v A =5 m/s ,加速度a A =15-54 m/s 2=2.5 m/s 2.最终雪橇匀速运动时的最大速度v m =10 m/s ,a =0. 把以上v A 、a A 、v m 、a 的数值代入①式并联立②式 解得:μ=0.125,k =20 N ·s/m.答案:20 N ·s/m 0.12532733 7FDD 翝32286 7E1E 縞$ 24865 6121 愡31031 7937 礷33626 835A 荚2+29776 7450 瑐38984 9848 顈h35581 8AFD 諽[。
高三物理一轮复习牛顿第二定律的应用

高三物理一轮复习牛顿第二定律的应用一、运动学1、)(220222100知三推二⎪⎩⎪⎨⎧=-+=+=asv v at t v x at v v 2、临界条件:速度相等→算时间→算位移二、力学:受力分析→正交分解→合外力产生加速度 三、两类动力学问题(传送带、板块运动) 1、已知力,求运动思路:受力分析→正交分解→合外力产生加速度→速度相等→算时间→算位移2、已知运动,求力四、思路:必须利用运动学公式、图像t v -获得加速度→受力分析→正交分解→合外力产生加速度 五、例题1、传送带(小物块静止释放,传送逆时针转动) 受力分析:1cos sin ma mg mg =+θμθ①小物块先以1a 做匀加速直线运动,直到离开传送带传物v v ≤②小物块先以1a 做匀加速直线运动,与传送带共速后一起匀速离开传送带传物v v mg mg =>⇒<,tan cos sin θμθμθ③小物块先以1a 做匀加速直线运动,与传送带共速后接着以2a 做匀加速直线运动直到离开传送带传物v v ma mg mg mg mg >=-⇒>,cos sin cos sin 2θμθθμθ2、板块运动共速后的运动(整体法)①整体法获得共同的加速度共a ,隔离法获得小物块的最大加速度m ax a②⎪⎩⎪⎨⎧⇒<⇒>小物块与木板一起运动小物块与木板分开运动共共max max a a a a 六、习题物体在水平传送带上的运动情况的计算1、如图所示,水平放置的传送带以速度v=2m/s 向右运行,现将一小物体轻轻地放在传送带A 端,物体与传送带间的动摩擦因数μ=0.2,若A 端与B 端相距4m,求物体由A 到B 的时间和物体到B 端时的速度2、一水平传送带两轮之间的距离为20m,以2m/s 的速度向右作匀速运动。
已知某小物体与传送带间的动摩擦因数为0.1,将该小物体沿传送带向右以4m/s 的初速度滑出,设初速度速率不受影响,则物体从初速度左端运动到右端所需时间是多少?3、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.物体在倾斜传送带上运动的计算1、如图所示,传送带与地面的倾角θ=37°,从A端到B端的长度为16m,传送带以v0=10m/s的速度沿逆时针方向转动,在传送带上端A 处无初速度地放置一个质量为0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,求物体从A端运动到B端所需的时间是多少?(sin37°=0.6,cos37°=0.8)2、如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2m/s 的速率运行.现把一质量m=10kg 的工件(可看做质点)轻轻放在皮带的底端,工件与皮带间的动摩擦因数μ=,工件被传送到h=1.5m 的高处,取g=10m/s 2.求:所需时间是多少?23板块运动1.(2017新课标Ⅲ)如图,两个滑块A和B的质量分别为A m=1 kg和B m =5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为1μ=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为2μ=0.1。
2021届高考物理专题卷:专题11(研究匀变速直线运动;探究弹力和弹簧伸长的关系;答案与解析

2021届专题卷物理专题十一答案与解析1.【命题立意】本题考查实验数据处理方法。
【思路点拨】可用v—t图象求加速度。
【答案】ACD【解析】验证牛顿运动定律时,可测出速度画出v—t图象,根据v—t图象求加速度。
2.【命题立意】本题考查验证力的平行四边形定则及探究应用创新能力。
【思路点拨】若对于O点的位置生搬硬套课本认为是不变的,而本实验采用的方法与课本不一致,并非等效替代法。
【答案】AD【解析】由于橡皮筋的弹力与形变量成正比,故可以用形变量等效替代弹力,做平行四边形来验证平行四边形定则,要求得形变量必须测量橡皮筋的长度以及橡皮筋的原长,A选项正确,C选项错误;劲度系数大的橡皮筋施加一定弹力的形变量小,测量误差大,作图时误差也较大,B选项错误;本实验中采用的是三根橡皮条共点力的平衡验证,即使O点不固定OA弹力与OB、OC合力始终等值反向都可做平行四边形验证,D选项正确。
3.【命题立意】本题考查探究动能定理这一实验的注意事项及数据处理。
【思路点拨】(1)橡皮筋变为原长时,小车到达最大速度;(2)弹力做功结束后,小车做匀速直线运动。
【答案】C【解析】木板倾角过大时,相邻两点之间的间隔会越来越大,选项A错误;当橡皮筋处于原长时,小车达到最大速度,而不是小车在两铁钉的连线处,选项B错误;本实验平衡阻力后,橡皮筋做功结束后,小车做匀速直线运动,选项C正确、选项D错误。
4.【命题立意】本题考查验证牛顿运动定律实验的误差分析。
【思路点拨】该实验的误差主要来源是:没有平衡摩擦力或平衡摩擦力不足;平衡摩擦力过大;没有满足钩码质量远小于小车质量。
【答案】BC【解析】拉力不为零时,加速度仍为零,可能没有平衡摩擦力,选项A错误、选项B正确;造成上部点迹有向下弯曲趋势,原因是没有满足所挂钩码的总质量远远小于小车质量,选项C正确、选项D错误。
5.【命题立意】本题以图象为载体考查验证机械能守恒定律的实验。
【思路点拨】结合功能关系找出各物理量之间变化规律。
2025年高考人教版物理一轮复习专题训练—牛顿第二定律的综合应用(附答案解析)

2025年高考人教版物理一轮复习专题训练—牛顿第二定律的综合应用(附答案解析)1.(2023·北京卷·6)如图所示,在光滑水平地面上,两相同物块用细线相连,两物块质量均为1kg,细线能承受的最大拉力为2N。
若在水平拉力F作用下,两物块一起向右做匀加速直线运动。
则F的最大值为()A.1N B.2N C.4N D.5N2.某列车由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。
若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.F B.19F20C.F19D.F203.(多选)(2024·吉林通化市模拟)如图所示,用力F拉着A、B、C三个物体在光滑水平面上运动,现在中间的B物体上加一块橡皮泥,它和中间的物体一起运动,且原拉力F不变,那么加上橡皮泥以后,两段绳的拉力F TA和F TB的变化情况是()A.F TA增大B.F TB增大C.F TA减小D.F TB减小4.(2021·海南卷·7)如图,两物块P、Q用跨过光滑轻质定滑轮的轻绳相连,开始时P静止在水平桌面上。
将一个水平向右的推力F作用在P上后,轻绳的张力变为原来的一半。
已知P、Q两物块的质量分别为m P=0.5kg、m Q=0.2kg,P与桌面间的动摩擦因数μ=0.5,重力加速度g=10m/s2。
则推力F的大小为()A.4.0N B.3.0N C.2.5N D.1.5N5.(多选)如图,P、Q两物体叠放在水平面上,已知两物体质量均为m=2kg,P与Q间的动摩擦因数为μ1=0.3,Q与水平面间的动摩擦因数为μ2=0.1,最大静摩擦力等于滑动摩擦力,重力加速度取g=10m/s2,当水平向右的外力F=12N作用在Q物体上时,下列说法正确的是()A.Q对P的摩擦力方向水平向右B.水平面对Q的摩擦力大小为2NC.P与Q之间的摩擦力大小为4ND.P与Q发生相对滑动6.(多选)(2023·陕西西安市期末)一辆货车运载着圆柱形的光滑空油桶。
2021届高考物理考前特训:牛顿运动定律 (解析版)
牛顿运动定律【原卷】1.如图所示,物块A 的质量4kg M =,它与木板B 间的动摩擦因数10.2μ=,木板B 的质量2kg m =,长6m =L ,它与水平地面间的动摩擦因数20.1μ=。
开始时物块A 在木板B 的最左端,二者均处于静止状态。
现用9N 的水平恒力向右拉物块A ,经过4s 后将此恒力突增为16N ,再经过时间t 后撤去此拉力,物块A 最终恰好没从木板B 上掉落,g 取210m/s ,求:(1)最初4s 物块A 的加速度;(2)时间t 为多少;(3)物块A 最终静止时距初始位置的距离。
2.如图所示,长木板B 放在光滑的水平桌面上,滑块C 与长木板B 用质量不计且不可伸长的细绳拴接在一起,在长木板的最左端放置另一可视为质点的滑块A 。
已知A 、B 、C 的质量相等,滑块A 与长木板B 之间的动摩擦因数为0.1μ=,现给滑块A 水平向右的速度0 6.5m /s v =,同时将B 、C 由静止释放,以后的过程中长木板始终没有碰到滑轮且滑块A 恰好未从长木板B 的右端滑下,重力加速度2g 10m /s =。
求:(1)欲满足题中的条件,长木板B 的长度应为多长; (2)当滑块C 下落的高度10.5m h =时,滑块A 距离长木板右端的间距应为多少。
23.大货车在行驶过程中,通常不能急刹车,急刹车可能会造成货物撞向驾驶室,从而对车和人造成重大损伤。
如图乙所示,大货车的大货箱放在货车的平板上没做固定,货箱的前部到驾驶室的距离是 1.6m L =,货箱和平板间的动摩擦因数是0.5μ=,货箱质量2000kg m =。
(1)如图-甲所示,货车行驶过程中经过一段下坡路面,坡高4m h =,长200m S =。
货车以036km /h v =的速度驶入斜坡,经40s t =到达坡底,货车近似做匀减速运动,求下坡过程中货箱受到的摩擦力的大小和方向;(2)如图-乙所示,货车以120m /s v =速度沿平直公路行驶。
实验4 验证牛顿第二定律(考点解读)-2021年高考物理一轮复习实验专题考点全析
实验4 验证牛顿第二定律➢要点梳理一、实验目的(1)学会用控制变量法研究物理规律;(2)验证牛顿第二定律;(3)学会利用图像处理数据。
二、实验原理探究加速度a与力F及质量M的关系时,应用的基本方法是控制变量法,即先控制一个参量即小车的质量M不变,讨论加速度a与力F的关系,再控制砝码盘和砝码的质量不变,即力F 不变,改变小车的质量M,讨论加速度a与质量M的关系。
三、实验器材小车、砝码、钩码、细线、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、复写纸、托盘天平、刻度尺。
四、实验步骤1.称量质量——用天平测量小车的质量m0。
2.安装器材——按照如图所示的装置把实验器材安装好,只是不把悬挂钩码的细绳系在小车上(即不给小车牵引力)。
3.平衡摩擦力——在长木板不带定滑轮的一端下面垫上一块薄木块,反复移动薄木块的位置,直至小车在斜面上运动时可以保持匀速运动状态。
4.让小车靠近打点计时器,挂上钩码,先接通电源,再让小车拖着纸带在木板上匀加速下滑,打出一条纸带。
钩码的重力即为小车所受的合外力,由纸带计算出小车的加速度,并记录力和对应的加速度。
5.改变钩码的个数,重复步骤4,并多做几次。
6.保持钩码的个数不变,在小车上放上砝码改变小车的质量,让小车在木板上滑动打出纸带。
计算小车和砝码的总质量m,并由纸带计算出小车对应的加速度,记录对应的质量和加速度。
7.改变小车上砝码的个数,重复步骤6,并多做几次。
五、数据处理1.计算加速度——先在纸带上标明计数点,测量各计数点间的距离,根据逐差法计算各条纸带对应的加速度。
2.作图像找关系——根据记录的各组对应的加速度a与小车所受牵引力F,建立直角坐标系,描点画a-F图像,如果图像是一条过原点的倾斜直线,便证明加速度与作用力成正比。
再根据记录的各组对应的加速度a与小车和砝码总质量m,建立直角坐标系,描点画图像,如果图像是一条过原点的倾斜直线,就证明了加速度与质量成反比。
2021版高考物理一轮复习课件学案第3章牛顿运动定律第2讲牛顿第二定律的应用
专题突破训练[基础训练试题]1.(多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A.木块立即做减速运动B.木块在一段时间内速度仍增大C.当F 等于弹簧弹力时,木块速度最大D.弹簧压缩量最大时,木块速度为零但加速度不为零【试题解答】:选BCD.木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N,那么从该时刻起经过6 s,汽车行驶的路程是( )A.50 mB.42 mC.25 mD.24 m【试题解答】:选 C.汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102 s =5 s,故汽车行驶的路程x =v 02t =102×5 m =25 m,故选项C 正确.3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A.倾角θ越大,雨滴下滑时的加速度越大B.倾角θ越大,雨滴对屋顶压力越大C.倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的速度越大D.倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的时间越短【试题解答】:选AC.设屋檐的底角为θ,底边长度为L,注意底边长度是不变的,屋顶的坡面长度为x,雨滴下滑时加速度为a,对雨滴受力分析,只受重力mg和屋顶对雨滴的支持力F N,垂直于屋顶方向:mg cos θ=F N,平行于屋顶方向:ma=mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sinθ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图甲所示,质量为m=1 kg的物体置于倾角为θ=37°的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F,t1=0.5 s时撤去拉力,物体速度与时间(v -t)的部分图象如图乙所示.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)问:(1)拉力F的大小为多少?(2)物体沿斜面向上滑行的最大距离s为多少?【试题解答】:(1)设物体在力F作用时的加速度为a1,撤去力F后物体的加速度为a2,根据图象可知:a1=Δv1Δt1=8-00.5m/s2=16 m/s2a2=Δv2Δt2=4-80.5m/s2=-8 m/s2力F作用时,对物体进行受力分析,由牛顿第二定律可知F-mg sin θ-μmg cos θ=ma1,撤去力F后对物体进行受力分析,由牛顿第二定律可知-(mg sin θ+μmg cos θ)=ma2,解得:F=24 N.(2)设撤去力F后物体运动到最高点所用时间为t2,此时物体速度为零,有t2=0-v ma2=0-8-8s=1 s向上滑行的最大距离:s=v m2·(t1+t2)=82×1.5 m=6 m.答案:(1)24 N(2)6 m5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m.求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.【试题解答】:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma , 解得:μ=36. (2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能. 由x =12a 1t 2,得a 1=2 m/s 2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma 1, 代入数据解得:F =7635 N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma 1, 代入数据解得:F =437 N.答案:(1)36 (2)7635 N 或437N [能力提升训练试题]6.(多选)一个质量为2 kg 的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N 和10 N 的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是( )A.一定做匀变速直线运动,加速度大小可能是5 m/s 2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s 2D.可能做匀速圆周运动,向心加速度大小是5 m/s 2【试题解答】:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N 和10 N 的两个力后,物体的合力大小范围为5 N ≤F 合≤25 N,根据牛顿第二定律a =Fm得:物体的加速度范围为2.5 m/s 2≤a ≤12.5 m/s 2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s 2,故A 错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B 正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C 正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D 错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P 点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置( )A.在同一水平线上B.在同一竖直线上C.在同一抛物线上D.在同一圆周上【试题解答】:选D.设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm=g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A.1B.2C.3D.4【试题解答】:选C.物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B 到C ∶0-⎝⎛⎭⎫v 22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC为有效区域.已知BC长度L2=1 m,木箱的质量m=50 kg,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F=200 N,木箱沿AC做直线运动,若木箱可视为质点,g取10 m/s2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小;(2)推力作用在木箱上的时间满足的条件.【试题解答】:(1)设推力作用在木箱上时的加速度大小为a1,根据牛顿第二定律得F-μmg=ma1,解得a1=3 m/s2.(2)设撤去推力后,木箱的加速度大小为a2,根据牛顿第二定律得μmg=ma2,解得a2=1 m/s2.推力作用在木箱上时间t内的位移为x1=12a1t2.撤去推力后木箱继续滑行的距离为x2=(a1t)2 2a2.为使木箱停在有效区域内,要满足L1-L2≤x1+x2≤L1,解得1 s≤t≤76s.答案:(1)3 m/s2(2)1 s≤t≤76s10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F=6.5 N,玩具的质量m=1 kg,经过时间t=2.0 s,玩具移动的距离x=2 3 m,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g取10 m/s2)求:(1)玩具与地面间的动摩擦因数.(2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F与水平方向夹角θ为多少时拉力F最小?【试题解答】:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得x=12at2,解得a= 3 m/s2,对玩具,由牛顿第二定律得F cos 30°-μ(mg-F sin 30°)=ma,解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s 松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2. 由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ), 所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°。
2021届高考一轮物理:力、运动、牛顿运动定律含答案
2021届高考一轮物理:力、运动、牛顿运动定律含答案复习:力、运动、牛顿运动定律1、如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m 2B.32m C .m D .2m2、如图所示,甲、乙两物体靠在一起,放在光滑的水平面上,在水平力F 1和F 2共同作用下,一起从静止开始运动,已知F 1>F 2,两物体运动一段时间后( BC )A . 若突然撤去F 1,甲的加速度一定减小B . 若突然撤去F 1,甲乙间的作用力减小C . 若突然撤去F 2,乙的加速度一定增大D . 若突然撤去F 2,甲乙间的作用力增大3、一个物体从静止开始做匀加速直线运动,以T 为时间间隔,在第三个T 时间内位移是3 m ,第三个T 时间末的瞬时速度为3 m/s ,则( )A .物体的加速度是1 m/s 2B .第一个T 时间末的瞬时速度为0.6 m/sC .时间间隔T 为1 sD .物体在第1个T 时间内的位移为0.6 m4、[多选]一快艇从离岸边100 m 远的河流中央向岸边行驶。
已知快艇在静水中的速度图像如图甲所示;河中各处水流速度相同,且速度图像如图乙所示。
则( )A.快艇的运动轨迹一定为直线B.快艇的运动轨迹一定为曲线C.快艇最快到达岸边,所用的时间为20 sD.快艇最快到达岸边,经过的位移为100 m5、用轻弹簧竖直悬挂质量为m的物体,静止时弹簧伸长量为L.现用该弹簧沿斜面方向拉住质量为2m的物体,系统静止时弹簧伸长量也为L,斜面倾角为30°,如图所示,则斜面上物体所受摩擦力(重力加速度为g)()A.大小为mg,方向沿斜面向上B.大小为12mg,方向沿斜面向下C.大小为32mg,方向沿斜面向上D.等于零6、如图所示,位于同一高度的小球A,B分别以v1和v2的速度水平抛出,都落在了倾角为30°的斜面上的C点,小球B恰好垂直打到斜面上,则v1,v2之比为()A.1∶1 B.2∶1C.3∶2 D.2∶37、[多选]如图所示,不可伸长的轻质细绳一端固定在光滑竖直杆上,轻质弹簧用光滑轻环套在杆上,细绳和弹簧的另一端固定在质量为m的小球上,开始时处于静止状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题(11)牛顿第二定律及应用考点一对牛顿第二定律的理解牛顿第二定律的“六”个性质题型1牛顿第二定律的矢量性【典例1】(多选)如图所示,带支架的平板小车沿水平面向左做直线运动,小球A用细线悬挂于支架前端,质量为m的物块B始终相对小车静止地摆放在右端.B与小车平板间的动摩擦因数为μ.若某时刻观察到细线偏离竖直方向θ角,则此刻()A.小车对物块B的摩擦力大小为μmgB.小车对物块B的摩擦力水平向右C.小车对物块B的摩擦力大小为mg tan θD.小车对物块B的合力大小为mg1+tan2θ【答案】BCD【解析】以整体(小车、支架、小球、物块)为研究对象,其加速度方向只能是水平方向;以小球A为研究对象,受力分析知其合力水平向右,由牛顿第二定律有m A g tan θ=m A a,可得小车向左做加速度大小为a=g tan θ的匀减速运动;以物块B为研究对象,小车对物块B向右的静摩擦力F f=ma=mg tan θ,小车对物块B竖直向上的支持力F N=mg,故小车对物块B产生的作用力的大小为F=F2N+F2f=mg1+tan2θ,方向为斜向右上方,选项B、C、D正确.【变式1】如图所示,顶端固定着小球的直杆固定在小车上,小车向右做匀加速运动,小球所受直杆的作用力的方向沿图中的OO′方向,若增大小车的加速度,小球所受直杆的作用力的方向可能沿()A.OA方向B.OB方向C.OC方向D.OD方向【答案】C【解析】小球加速水平向右运动,根据牛顿第二定律F=ma可知,加速度的方向与合力的方向相同,合力水平向右,即合力沿图中的OD方向,根据力的合成的平行四边形定则,直杆对小球的作用力斜向右上方;当加速度增加时,水平合力增加,而竖直方向重力不变,则小球所受直杆的作用力的方向变为沿OC方向,故选C.【提分笔记】由于加速度的方向与合力的方向总相同,若已知合力方向,即可确定加速度方向;反之,若已知加速度方向,即可确定合力的方向.题型2牛顿第二定律的瞬时性【典例2】如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有()A.两图中两球加速度均为g sin θB.两图中A球的加速度均为零C.图乙中轻杆的作用力一定不为零D.图甲中B球的加速度是图乙中B球加速度的2倍【答案】D【解析】撤去挡板前,挡板对B球的弹力大小为2mg sin θ.因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A球所受合力为零,加速度为零,B球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A、B球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D正确.【变式2】(多选)水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零.已知小球与水平面间的动摩擦因数μ=0.2,当剪断轻绳的瞬间,取g=10 m/s2,以下说法正确的是()A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0 【答案】ABD【解析】在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力作用处于平衡状态,根据共点力平衡得,弹簧的弹力:F =mg tan 45°=10×2 N =20 N ,故A 正确;小球所受的滑动摩擦力为f =μmg =0.2×20 N =4 N ,根据牛顿第二定律得小球的加速度为a =F -f m =20-42 m/s 2=8 m/s 2,合力方向向左,故B 正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C 错误,D 正确.【提 分 笔 记】加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:题型3 牛顿第二定律的独立性【典例3】 如图所示,当小车向右加速运动时,物块M 相对车厢静止于竖直车厢壁上,当车的加速度增大时( )A .M 受静摩擦力增大B .M 对车厢壁的压力减小C .M 仍相对于车厢静止D .M 受静摩擦力减小【答案】C【解析】分析M 受力情况如图所示,因M 相对车厢壁静止,有F f =Mg ,与水平方向的加速度大小无关,A 、D 错误;水平方向,F N =Ma ,F N 随a 的增大而增大,由牛顿第三定律知,B 错误;因F N 增大,物体与车厢壁的最大静摩擦力增大,故M 相对于车厢仍静止,C 正确. 【提 分 笔 记】(1)作用于物体上的每一个力各自产生的加速度都遵循牛顿第二定律. (2)物体的实际加速度等于每个力产生的加速度的矢量和.(3)力和加速度在各个方向上的分量也遵守牛顿第二定律,即a x =F x m ,a y =F ym .题型4 力和运动的定性关系【典例4】 如图所示,劲度系数为k 的轻弹簧竖直放置,下端固定在水平地面上.一质量为m 的小球,从离弹簧上端高h 处自由下落,接触弹簧后继续向下运动.观察小球从开始下落到小球第一次运动到最低点的过程,下列关于小球的速度v 或加速度a 随时间t 变化的图象中符合实际情况的是( )【答案】A【解析】小球先做自由落体运动,接触弹簧后小球做加速度减小的加速运动,直至重力和弹力相等,此时加速度为零,小球速度达到最大值,此后小球继续下降,小球重力小于弹力,加速度方向向上,小球向下做加速度增大的减速运动直至最低点,小球速度为零,加速度最大,故A 项正确,B 项错误;设小球到达最低点时,弹簧的形变量为x ,a -t 图线与坐标轴围成的面积表示速度,由题意知图线在横轴下方的面积应等于在横轴上方的面积,所以在最低点a >g ,故C 项错误;弹簧形变量x 与t 不是线性关系,则a 与t 也不是线性关系,故D 项错误. 【提 分 笔 记】(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度.(2)a =Δv Δt 是加速度的定义式,a 与Δv 、Δt 无必然联系;a =F m 是加速度的决定式,a ∝F ,a ∝1m .(3)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.考点二 超重与失重现象 1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变. (2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态. (4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重 ②物体向下加速或向上减速时,失重上为a 的正方向,则人对地板的压力( )A .t =2 s 时最大B .t =2 s 时最小C .t =8.5 s 时最大D .t =8.5 s 时最小【答案】AD【解析】当电梯有向上的加速度时,人处于超重状态,人对地板的压力大于重力,向上的加速度越大,压力越大,因此t =2 s 时,压力最大,A 项正确;当电梯有向下的加速度时,人处于失重状态,人对地板的压力小于人的重力,向下的加速度越大,压力越小,因此t =8.5 s 时压力最小,D 项正确.【变式3】在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg ,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内,下列说法中正确的是( )A .晓敏同学所受的重力变小B .晓敏对体重计的压力小于体重计对晓敏的支持力C .电梯一定在竖直向下运动D .电梯的加速度大小为g5,方向一定竖直向下【答案】D【解析】体重计显示的是支持力的大小,重力不变,A 错误;晓敏对体重计的压力与体重计对晓敏的支持力是一对作用力与反作用力,大小相等,B 错误;支持力小于重力,说明加速度方向向下,电梯可以向下加速运动或向上减速运动,C 错误;F 合=G -F N =ma ,故a =F 合m =g5,方向竖直向下,D 正确.【变式4】一质量为m 的人站在电梯中,电梯匀加速上升,加速度大小为13g (g 为重力加速度).人对电梯底部的压力大小为( ) A.13mg B .2mg C.43mg D .mg【答案】C【解析】根据牛顿第二定律有F N -mg =ma ,解得电梯底部对人的支持力大小为F N =43mg ,由牛顿第三定律知,人对电梯底部的压力大小为F N ′=43mg ,选项C 正确.考点三 连接体问题 1.连接体问题的处理方法(1)整体法:把加速度相同的物体看作一个整体来研究的方法,整体法不考虑系统内力的影响,只考虑系统所受的外力.(2)隔离法:把系统中某一物体(或某几个物体)隔离出来单独研究的方法,隔离法可以求系统内物体间的相互作用.(3)整体法和隔离法并不是对立的,而是相互结合,交叉运用的. 2.加速度相同的连接体问题(1)求内力时,通常先利用整体法求加速度,再利用隔离法求物体间的作用力. (2)求外力时,通常先利用隔离法求加速度,再利用整体法求整体受到的外加作用力. 3.加速度不同的连接体问题若系统内各个物体的加速度不同,一般采用隔离法.以各个物体分别作为研究对象,对它们分别进行受力分析和运动分析,并注意之间的相互作用力关系,分别列方程联立求解.【典例6】 (多选)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉力大小为F ;当机车在西边拉着车厢以大小为23a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( ) A .8 B .10 C .15 D .18【答案】BC【解析】设挂钩P 、Q 东边有x 节车厢,西边有y 节车厢.设每节车厢的质量为m .当向东行驶时,以y 节车厢为研究对象,则根据牛顿第二定律有F =mya 当向西行驶时,以x 节车厢为研究对象,则根据牛顿第二定律有F =23mxa联立两式可得y =23x 这列车厢的总节数N =x +y =53x ,设x =3n (n =1,2,3…),则N =5n ,故可知选项B 、C正确.【变式5】(多选)如图所示,a 、b 、c 为三个质量均为m 的物块,物块a 、b 通过水平轻绳相连后放在水平面上,物块c 放在b 上.现用水平拉力作用于a ,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g .下列说法正确的是( )A .该水平拉力大于轻绳的弹力B .物块c 受到的摩擦力大小为μmgC .当该水平拉力增大为原来的1.5倍时,物块c 受到的摩擦力大小为0.5μmgD .剪断轻绳后,在物块b 向右运动的过程中,物块c 受到的摩擦力大小为μmg 【答案】ACD【解析】三物块一起做匀速直线运动,对a 、b 、c 系统:由平衡条件得F =3μmg ,对b 、c 系统:由平衡条件得F T =2μmg ,则F >F T ,即水平拉力大于轻绳的弹力,故A 正确;c 做匀速直线运动,处于平衡状态,则c 不受摩擦力,故B 错误;当水平拉力增大为原来的1.5倍时,F ′=1.5F =4.5μmg ,假设三个物块一起匀加速运动,由牛顿第二定律得:对a 、b 、c 系统:F ′-3μmg =3ma ,对c :F f =ma ,解得F f =0.5μmg <μmg ,假设成立,故C 正确;剪断轻绳后,b 、c 一起做匀减速直线运动,对b 、c 系统,由牛顿第二定律得:2μmg =2ma ′,对c :F f ′=ma ′,解得F f ′=μmg ,故D 正确.【变式6】(多选)如图所示,在粗糙的水平面上,质量分别为m 和M 的物块A 、B 用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F 作用于B 上且两物块共同向右以加速度a 1匀加速运动时,弹簧的伸长量为x 1;当用同样大小的恒力F 沿着倾角为θ的光滑斜面方向作用于B 上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是()A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2【答案】AB【解析】在水平面上滑动时,对整体,根据牛顿第二定律,有F-μ(m+M)g=(m+M)a1①隔离物块A,根据牛顿第二定律,有F T-μmg=ma1②联立①②解得F T=Fmm+M③在斜面上滑动时,对整体,根据牛顿第二定律,有F-(m+M)g sin θ=(m+M)a2④隔离物块A,根据牛顿第二定律,有F T′-mg sin θ=ma2⑤联立④⑤解得F T′=FmM+m⑥比较③⑥可知,弹簧弹力相等,与动摩擦因数和斜面的倾角无关,故A、B正确,C、D错误.【变式7】(多选)如图所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右【答案】AC【解析】隔离小球,可知小球的加速度方向为沿斜面向下,大小为g sin θ,对支架系统进行分析,只有斜面光滑,支架系统的加速度才是g sin θ,A正确,B错误;支架系统对斜面体有垂直斜面向下的压力,则对斜面体受力分析可得,斜面体受到地面向左的摩擦力,C正确,D错误.【提分笔记】整体法与隔离法的选用当连接体中各部分的加速度大小和方向都相同时,优先选用“整体法”,如果还要求系统内物体相互作用的内力时,再利用“隔离法”;如果连接体中各部分的加速度不同,一般选用“隔离法”.考点四应用牛顿第二定律解决动力学图象问题1.常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)由已知条件确定某物理量的变化图象.题型1根据图象分析物理过程【典例7】(多选)物体A、B原来静止于光滑水平面上.从t=0时刻开始,A沿水平面做直线运动,速度随时间变化如图甲所示.B受到如图乙所示的水平拉力作用.则在0~4 s的时间内()A.物体A所受合力保持不变B.物体A的速度不断减小C.2 s末物体B改变运动方向D.2 s末物体B速度达到最大【答案】AD【解析】由题图甲可知,物体A速度在均匀变化,即加速度没有发生变化,根据牛顿第二定律可知,物体A 所受合力保持不变,故A项正确;物体A在前2 s速度不断减小,后2 s速度在反向增大,故B项错误;题图乙是物体B所受合力随时间变化图线,前2 s物体B做加速度减小的加速运动,在2 s末速度达到最大,后2 s物体B做加速度增大的减速运动,运动方向不变,故C项错误,D项正确.【变式8】如图甲所示,在光滑水平面上,静止放置一质量为M的足够长木板,质量为m的小滑块(可视为质点)放在长木板上.长木板受到水平拉力F与加速度a的关系如图乙所示,重力加速度大小g取10 m/s2,下列说法正确的是()A.长木板的质量M=2 kgB.小滑块与长木板之间的动摩擦因数为0.4C .当F =14 N 时,长木板的加速度大小为3 m/s 2D .当F 增大时,小滑块的加速度一定增大 【答案】B【解析】当F 等于12 N 时,加速度为a 0=4 m/s 2,对整体分析,由牛顿第二定律有F =(M +m )a 0,代入数据解得M +m =3 kg ;当F 大于12 N 时,m 和M 发生相对滑动,根据牛顿第二定律得F -μmg =Ma ,则F =Ma +μmg ,则知F -a 图线的斜率k =M =12-84 kg =1 kg ,则M =1 kg ,故m =2 kg ,故A 错误;由A 项分析可知:F 大于12 N 时,F =Ma +μmg ,若F =8 N ,a =0,即得μ=0.4,故B 正确;由B 项分析可知:F 大于12 N 时,F =Ma +μmg ,当F =14 N 时,长木板的加速度为:a =6 m/s 2,故C 错误;当F 大于12 N 后,二者发生相对滑动,小滑块的加速度为a =μg ,与F 无关,F 增大时小滑块的加速度不变,故D 错误. 【提 分 笔 记】(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 题型2 根据物理过程选择图象【典例8】 (2018年全国卷Ⅰ)如图所示,轻弹簧的下端固定在水平桌面上,上端放有物块P ,系统处于静止状态.现用一竖直向上的力F 作用在P 上,使其向上做匀加速直线运动.以x 表示P 离开静止位置的位移,在弹簧恢复原长前,下列表示F 和x 之间关系的图象可能正确的是( )【答案】A【解析】设物块静止时弹簧的形变量为x 0,则有mg =kx 0,物块做匀加速直线运动,根据牛顿第二定律可得F -mg +k (x 0-x )=ma ,解得F =ma +kx ,所以F -x 图线是不过原点的、在纵轴上有截距的倾斜直线,故A 正确,B 、C 、D 错误.【变式9】(多选)如图所示,光滑的水平地面上,可视为质点的两滑块A、B在水平外力作用下紧靠在一起压紧弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图所示的一维坐标系.现将外力突然反向并使B向右做匀加速运动,下列关于拉力F、两滑块间的弹力F N与滑块B的位移变化的关系图象,可能正确的是()【答案】BD【解析】当F突然反向后,设A、B的质量分别为m、M,对A、B整体,根据牛顿第二定律可得F+k(x0-x)=(m+M)a,隔离A可得k(x0-x)-F N=ma,当F N=0时,可得k(x0-x)=ma,a>0,则x<x0,此时两物块脱离,此后拉力F保持不变,故B、D正确,A、C错误.【提分笔记】利用数形结合法,先得到F-x的解析式,再选择图象.本题易错点:x不是弹簧的形变量.。