滚动轴承故障振动分析
基于振动分析的滚动轴承故障诊断技术概述及发展趋势

。机械 与电子 0
S INC CE E&T C N OG F R E H OL YI O MATO N IN
21 0 1年
第2 3期
基于振动分析的滚动轴承故障诊断 技术概述及发展趋势
滕 丽丽 唐 涛 王明锋 ( 山东滕州兖矿鲁南化肥厂 山东 滕州 2 7 2 ) 7 57
0 前 言
滚动轴承是机械设备 中最常用也最易损坏的零件之一。 据不完全 统计 . 旋转机械的故障约有 3 %是 因滚动轴 承引起 的。滚 动轴 承有多 0 种损坏形式 , 常见的有磨损失效 、 疲劳失效 、 腐蚀失效 、 断裂失 效 、 压痕 失效和胶合失效 。
1 滚 动 轴 承 的 振 动 特 征
一
2 滚动轴承的振动诊断ቤተ መጻሕፍቲ ባይዱ法
从振动信号 中分析 出故障并不是很简单 。 在滚动轴承的振动诊断 中, 常用的诊断方法有倒 频谱 分析 、 较 特征参数分 析法 、 冲击 脉冲法 、 包络分析法 、 小波分析等 : 21 倒频谱分析法 . 倒频谱分析也称为二次频谱分析 , 是对信号 x t ( 作进 一步的谱分 ) 析而得到 的, 中较常用的一种工程用定义为 : 其
l 1 I 2
() f 1 0 I =F { r 9}
工程上常用其开方 . 称为倒频率 . 即
c ()、 ( = ( ∽ ) r:/ r I 1 ) 1
其 中: {为傅里叶逆变换 : F。 } r为时间变量 ,。 s 通过对 滚动轴承典 型故障 的振 动信号功率谱 和倒 频谱 的比较分 析. 可知倒频谱能将主要 的信息从复杂的频率成分和 噪声 中识别 出来, 能较好地辨别 出故障特征频率和其它特征频率 在相关文献中采用倒 频谱分析技术准确 . 快速地判定故障发生在轴承滚动体上。 22 特征参数分析法 . 2 . 时域特征参数分析 .1 2 时域的特征参数分析包括有效值 . 峰值 . 峰值因子 。 峭度指标 等方 法 。有效值是指振动振幅的均方根值 . 表现滚动轴承振动 的瞬时值随 着时间在不断地进行变化 . 可用于检测表面皱裂无规则振动波形 的异 3 基于振动分析的滚动轴承故障诊 断技 术发展趋势 常 .但对表面剥落或伤痕等具有瞬变冲击振动 的异常是不适 用的 : 峰 值是在某个 时间 内振 幅的最大值 .对 瞬时现象也 可得 出正确 的指示 31 各种振动信号处理技术信号之间的融合 . 随着机械故障诊断技术的发展 . 单一的信号处理技术 已不 能很好 值, 对滚 动体对保 持架 的冲击及突发性外 界干扰 、 或灰 尘等原 因引起 的瞬时振动 比较 敏感 : 峰值 因子是峰值 与有效值 的比 . 该值适用 于点 地满 足故 障诊 断要求. 各种信号处理技 术相互融合成为发展方 向 比 蚀类故障 的诊断 。通过对峰值 因子值 随时间变化趋势的监测, 以有 如小波分形 、 可 包络小波 、 分形神经网络 、 模糊神经 网络及传统 的振动技 频带能量分析和包络 效地对滚 动轴承进行 早期预报 , 能反 映故障 的发展趋势 : 并 峭度 指标 术结合等 。唐贵基提 出了一种基于小波包分析 、 K 定义为归一化 的 4阶矩 . 于其振幅满足正态分布规 律的无故障 分析相结合 的滚动轴承故障诊断方法 v 对 首先利用小波包将滚动轴承振 轴承 。 峭度指标值 约为 3随着故 障的出现和发展 , 其 , 峭度指标值 具有 动信号分解 到不 同的节 点上 . 然后求 出各频率段 的能量 . 根据频带 能 与峰值因子类似的变化趋势 : 量 的变化情况 . 出滚动轴承 的故障所在 的频带 最后对故 障频带 的 找 重 构信 号做包络谱 , 将谱 峰处 的频率 同滚动轴 承的故 ( 转第 9 下 5页 ) 2 . 频域特征参数分析 .2 2
(完整word版)(整理)滚动轴承故障诊断分析章节

滚动轴承故障诊断滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。
许多旋转机械的故障都与滚动轴承的状态有关。
据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。
可见,轴承的好坏对机器工作状态影响极大。
通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。
而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。
最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。
这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听音棒以提高灵敏度。
后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。
这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。
随着对滚动轴承运动学、动力学的深化研究,对轴承振动信号中频率成分和轴承零件的几何尺寸及缺陷类型的关系有了比较清楚的了解,FFT级数的发展也使得利用频率域分析和检测轴承故障成为一种有效的途径。
也是目前滚动轴承监测诊断的基础。
从发展的历程看,滚动轴承故障检测诊断技术大致经历了以下阶段:1961年,W.F.Stokey完成了轴承圈自由共振频率公式的推导,并发表;1964年,O.G.Gustafsson研究了滚动轴承振动和缺陷、尺寸不均匀及磨损之间的关系,这与目前诊断滚动轴承故障的方法是基本一致的;1969年,H.L.Balderston根据滚动轴承的运动分析得出了滚动轴承的滚动体在内外滚道上的通过频率和滚动体及保持架的旋转频率的计算公式。
至此,有关滚动轴承监测诊断的理论体系已经基本完成;1976年,日本新日铁株式会社研制了MCV-021A机器检测仪,其方法是通过检测低频、中频和高频段轴承的信号特征来判断轴承的工作状态;1976~1983年之间,日本精工公司也积极在滚动轴承检测仪器方面做工作,相继推出了NB系列轴承检测仪,利用1~15kHz范围内的轴承振动信号的有效值(rms)和峰峰值(p-p)来诊断轴承的故障;1980年代至今,以改良频率分析的方法来精密诊断滚动轴承的故障、确定故障位置,一直是精密诊断采取的必备方法,其中包括细化谱分析、倒频谱分析、共振解调技术、包络分析技术等。
振动信号频谱分析法检测铁道车辆滚动轴承故障初探

() 3 运用 中 的车 辆 轴 承 故 障 检 测 , 主
要 是 依 靠 红 外 线 轴 温 探 测 器 或 检 车 员 手 摸 轴 承 表 面 , 其 温 度 的 高 低 来 判 别 是 否 以
一
( ) 用 本 法 后 , 但 能 提 高 滚 动 轴 1采 不
有故 障 。
2 2 在 问 题 .存
通 过 电 测手 段 . 将 这些 物 理量 测 取并 记 可
2 目 前 车 辆 滚 动 轴 承 的 检 测 方 法 及 效 应 有 振 动 、 声 、 度 、 力 和 应 变 等 。 子 数 量 。 . 噪 温 压 存 在 的 问题
2 1 查 方 法 .检
对 外 圈 擦 伤 的 滚 动 轴 承 采 用 单 个 轮
信 号 , 换 成 相 应 的 电 信 , 后 进 行 时 域 转 中 轴 承 的 振 动 信 号 , 根 据 其 信 号 规 转 然 再
一
频 域 变 换 , 成 振 动 信 号 频 谱 图 ( 频 律 , 度 、 率判 断是 否有 故障 。 形 即 幅 频 实 验 结 果 证 明 , 如 此 简 单 的 方 法 也 能 用 分 析 仪 消 除 人 工经 验 判 别 所 产生 的不 稳 定 因 素 , 检 测 准 确 性 是可 以信 赖 的 。 其
机 械设 备 的各 种 状 态和 运转 过 程 , 通
荷 与 热 切 事 故 密 切 相 关 , 荷 对 轴 承 寿 命 中 的 应 用 载
常 以 其 “ 次 效 应 ” 映 出 来 , 型 的 二 次 滚 子 中 心 间 直 径 ; 为 滚 子 直 径 ; 为 滚 二 反 典 D M
4 结论 、
, 作 外 观 检 查 , 用 人 工 手 旋 轮 对 上 的 轴 率 分 布 图 ) 通 过 对 轴 承 运 转 时 各 配 件 特 即 障 , 认 为 有 故 障 , 退 轴 检 查 , 则 继 续 本 原 理 见 图 1 如 再 否 。 投 入使用 。
滚动轴承失效的四种形式

滚动轴承失效的四种形式
滚动轴承的失效主要有以下四种形式:
1、疲劳点蚀:滚动轴承在载荷作用下,滚动体与内、外滚道之间将产生接触应力。
轴承转动时,接触应力是循环变化的,当工作若干时间以后,滚动体或滚道的局部表层金属脱落,使轴承产生振动和噪声而失效。
2、塑性变形:当轴承的转速很低或间歇摆动时,轴承不会发生疲劳点蚀,此时轴承失效是因受过大的载荷(称为静载荷)或冲击载荷,使滚动体或内、外圈滚道上出现大的塑性变形,形成不均匀的凹坑,从而加大轴承的摩擦力矩,振动和噪声增加,运动精度降低。
3、磨料磨损:在轴承组合设计时,轴承处均设有密封装置。
但在多尘条件下的轴承,外界的尘土、杂质仍会侵入到轴承内,使滚动体与滚道表面产生磨粒磨损。
如果润滑不良,滚动轴承内有滑动的摩擦表面,还会产生粘着磨损,轴承转速越高,粘着磨损越严重。
经磨损后,轴承游隙加大,轴承游隙加大,运动精度降低,振动和噪声增加。
4、安装问题:安装不当也可能导致滚动轴承失效。
轴承故障检测、诊断、分析技巧

为了尽可能长时间地以良好状态维持轴承本来的性能,必须保养、检测、检修、以求防事故于未然,确保运转的可靠性,提高生产性、经济性。
对长期运行中的设备来讲,平时的检测跟踪尤为重要,检测项目包括轴承的旋转音、振动、温度、润滑剂的状态等,根据检测结果,设备维护人员可以准确地判断设备的问题点,提早作出预防和解决方案。
一、异常旋转音分析诊断异常旋转音检测分析是采用听诊法对轴承工作状态进行监测的分析方法,常用工具是木柄长螺钉旋具,也可以使用外径为20mm左右的硬塑料管。
相对而言,使用电子听诊器进行监测,更有利于提高监测的可靠性。
轴承处于正常工作状态时,运转平稳、轻快,无停滞现象,发生的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。
异常声响所反映的轴承故障如下:1、轴承发出均匀而连续的“咝咝”声,这种声音由滚动体在内外圈中旋转而产生,包含有与转速无关的不规则的金属振动声响。
一般表现为轴承内加脂量不足,应进行补充。
若设备停机时间过长,特别是在冬季的低温情况下,轴承运转中有时会发出“咝咝沙沙”的声音,这与轴承径向间隙变小、润滑脂工作针入度变小有关。
应适当调整轴承间隙,更换针入度大一点的新润滑脂。
2、轴承在连续的“哗哗”声中发出均匀的周期性“嗬罗”声,这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。
声响的周期与轴承的转速成正比。
应对轴承进行更换。
3、轴承发出不规律、不均匀的“嚓嚓”声,这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。
声响强度较小,与转数没有联系。
应对轴承进行清洗,重新加脂或换油。
4、轴承发出连续而不规则的“沙沙”声,这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系。
声响强度较大时,应对轴承的配合关系进行检查,发现问题及时修理。
二、振动信号分析诊断轴承振动对轴承的损伤很敏感,例如剥落、压痕、锈蚀、裂纹、磨损等都会在轴承及振动测量中反映出来。
所以,通过采用特殊的轴承振动测量器(频率分析器等)可测量出振动的大小,通过频率分布可推断出异常的具体情况。
滚动轴承和齿轮振动信号分析与故障诊断方法

2.3 滚动轴承的振动类型及故障特征分析 .................................9
2.3.1 滚动轴承的旋转机构 ..................................................................9 2.3.2 滚动轴承的振动类型 ................................................................10 2.3.2.1 滚动轴承的固有振动频率 ...............................................11 2.3.2.2 滚动轴承的缺陷特征频率 ...............................................11 2.3.2.3 滚动轴承的振动及其故障特征 ........................................12
Keywords: Rolling-Element bearing Hilbert transform
Gears
Fault Diagnosis
Envelope Analysis
Correlation-Envelope Analysis
- II -
西北工业大学硕士学位论文
目
录
目
录
第一章 绪
论 ................................................................... 1
3.4 齿轮振动信号的特征 ........................................................ 25
3.4.1 啮合频率及其各次谐波 .............................................................26 3.4.2 隐含成分 ..................................................................................26 3.4.3 调制效应产生边频带 ................................................................26 3.4.3.1 幅值调制 ........................................................................27 3.4.3.2 调频效应 ........................................................................27 3.4.4 轴速频率及其低次谐波 .............................................................27 3.4.5 啮合频率及其各次谐波的分析 ..................................................27 3.4.6 边带分析 ..................................................................................28
滚动轴承的故障诊断方法研究

滚动轴承的故障诊断⽅法研究滚动轴承的故障诊断⽅法研究第1章绪论1.1研究的⽬的和意义滚动轴承是⽣产机械中的地位⽆可替代,当然也最易损坏的部件。
其运⾏状态会直接影响整台机械⼯作效率、精度寿命和可靠性。
滚动轴承的损坏会导致⽣产机械剧烈振动,并伴有强⼤噪声,不仅会影响产品的加⼯质量,严重时会导致⽣产机械的损坏或机械事故。
随着电机的⼴泛应⽤及其⾃动化程度的不断提⾼,对其安全性、精度和故障诊断的准确性的要求也随之提⾼。
传统的诊断⽅法不仅成本较⾼、准确率偏低,并且更新费⽤⾼,已然不能满⾜⾼科技设备的需求。
基于以上原因,本⽂在虚拟仪器的环境下,利⽤多传感器信息融合技术,实现滚动轴承的故障诊断,会对现在和将来的⽣产技术提供强有⼒的帮助。
1.2国内外电机滚动轴承故障诊断的研究现状近现代以来,国内和国外的研究机构及学者在电机滚动轴承故障诊断的理论、技术与⽅法等⽅⾯进⾏了⼤量的研究分析⼯作,发表了诸多研究成果。
在国外,美国南卡罗林娜⼤学运⽤振动响应的多参数多频率的⽅法,对具有裂纹的和损伤的故障轴承进⾏诊断,⽬前已经取得了良好的成果。
美国宾州⼤学采⽤alpha beta -gamma跟踪滤波器和Kalman滤波器,对轴承故障的智能预⽰实现了完美成功。
⽇本九州⼯业⼤学运⽤基因算法优化组合特征参数,成功诊断出⼯况滚动轴承微弱故障。
意⼤利的Cassino⼤学,使⽤⾃谱技术对出现的轴承进⾏检测,判断故障轴承的初始问题,到⽬前为⽌也取得了有效的研究成果。
国外的这些技术有我们值得借鉴的地⽅,去其糟粕取其精华,研究更有技术的故障轴承诊断系统。
在国内,当滚动轴承存在故障时,⼤都以振动检测为主,因为轴承故障后常伴随巨⼤的声响,以及明显的外观表现。
国内的主要研究成果如下图所⽰。
或⾃⾝故障等多个⽅⾯的原因,会对故障造成误判或错判,如:声级计传感器易受到噪声的⼲扰,不能准确、⽆失真的反映滚动轴承的真实信号,温度传感器由于易受到外界温度的⼲扰,也常会出现误判或者错判等等。
滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解
滚动轴承是机械设备中的重要元件,也是故障率最高的构件。
其突发的故障可能会严重影响机械设备的正常运行,即使是轻微的故障,也会降低设备的使用寿命。
因此,对滚动轴承的故障进行及时诊断和维修,是确保轴承的正常运行的关键。
本文将对滚动轴承故障诊断进行全面阐述,以便于有助于轴承的可靠运行。
一般来讲,滚动轴承的故障可以归结为以下几类:
(1)疲劳损坏:由于长期的使用,滚动轴承中的滚动体和锥形齿轮等内部零件可能会因疲劳而损坏,最终导致轴承的故障;
(2)腐蚀破坏:由于设备运行时的温度、湿度及磨损较大,滚动轴承容易受到空气、油品及其他化学性腐蚀剂的作用,从而造成内部零件的磨损;
(3)水分侵入:滚动轴承组装后,如果存在漏油现象,则滚动轴承内部容易污染,从而导致滚动体及锥形齿轮等内部零件受损;
(4)润滑油工作性能不佳:润滑油在机械设备运行时,若由于品质或温度等原因,润滑油的性能不佳,轴承容易受到损坏;
(5)安装不良:滚动轴承安装后,若没有正确地调整轴的负荷和动转瞬间,将会对轴承组件产生振动和噪音,从而导致故障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Detecting rolling element bearing faults with vibration analysis
www.33cm.net www.mobiusinstitute.com
Detecting rolling element bearing faults is the highest priority for most vibration analysts. Detecting the fault at the earliest opportunity should be the priority, however in reality most analysts do not detect the fault in the first or even the second stage of failure. This article is going to help you to detect faults at stage one so that you can truly be in control of your maintenance program.
In this article I will describe the four stages of bearing failure and how to understand and successfully utilize the airborne ultrasound, Shock Pulse, Spike Energy, PeakVue, enveloping/demodulation, time waveform analysis and spectral analysis methods. I will also explain why you should not rely on trending overall level readings.
Reducing bearing faults No article of this nature can be complete without a discussion of the reasons why bearings fail in the first place. Your first priority should be to minimize the causes of bearing failure. If you can do that successfully, then you will not need to rely on the vibration analysis techniques as much. That is not to say that I want to put vibration analyst’s out of work, or that you should even consider downsizing your vibration monitoring program (because there will always be bearing failures and other mechanical faults) – the point is that the path to equipment reliability does not begin with vibration analysis.
The fact is that if you properly purchase, transport, store, install, and lubricate your bearings, and you operate machines that are balanced, aligned and operating well away from natural frequencies, your bearings will last longer.
You may not have control over many of these factors, but if you are involved in vibration analysis then there are two things you can definitely do: look for the presence of conditions that will cause bearings to have a reduced life, and perform root cause analysis when you detect bearing damage.
I opened this article by pointing out that the detection of rolling element bearing faults is the highest priority for most vibration analysts. The sad truth is that for too many analysts it is the only priority. Unbalance, misalignment, soft foot, and resonance often have a much lower priority. Although these faults conditions appear first on most wall charts, they can be the trickiest to diagnose. Phase analysis is a powerful, yet underutilized tool that can greatly help in the detection of these fault conditions – but that was the topic of an earlier article.
The point is that these conditions put additional stress on the bearings, thus reducing their life. If you do not take care of these conditions, it is inevitable that you will soon see the earliest stages of bearing damage.
The pattern of bearing damage Before we get into the specifics of the four stages of bearing failure, I would like to describe how the vibration changes in general terms. In classical teaching, bearing vibration is all about the four forcing frequencies: ball pass outer race (BPFO), ball pas inner race (BPFI), ball spin (BSF), and cage or fundamental train frequency (FTF). We will discuss these in more depth in a moment, but first I want to describe the movement of “broadband energy”.
If a bearing is poorly lubricated, we can detect an increase in the level of “noise” at very high frequencies. It is not a specific, single frequency; instead it will depend on a number of factors to do with the machine’s construction. Suffice to say that you cannot hear it; it is well above your hearing range.
As the state of lubrication worsens, the level of the noise will increase, but the frequency of the noise will slowly reduce – it will move from very high frequencies to high frequencies. That is not to say that you can’t detect the condition at lower frequencies; it is stronger at the higher frequencies.
As the film of lubricant between the bearing surfaces is reduced further, we will have more and more metal-to-metal contact, causing “stress waves” to be generated. Stress waves (also referred to as “shock pulses”) are like ripples in a pond; the moment the metal surfaces make contact, a wave of energy races away from the point of contact at the speed of sound. It all happens very quickly; possibly in less than a thousandth of a second!
Even if the root cause of the bearing fault is not poor lubrication, if the bearings are damaged through poor installation, false brinelling (where the bearing has been vibrating whilst it is stationary), EDM, misalignment, or any one of a number of reasons, there will come a time when there is either metal to metal contact between two surfaces,