(整理)多孔陶瓷的制备及性能分析.

合集下载

多孔陶瓷挤出成型工艺

多孔陶瓷挤出成型工艺

多孔陶瓷挤出成型工艺多孔陶瓷挤出成型工艺是一种制备多孔陶瓷的方法,其主要原理是通过挤压使陶瓷粉末在模具中形成具有一定孔隙率的坯体,然后在高温下烧结成型。

以下是多孔陶瓷挤出成型工艺的详细介绍:一、原料制备多孔陶瓷挤出成型的原料主要包括陶瓷粉末、有机添加剂和溶剂。

其中,陶瓷粉末是制备多孔陶瓷的主要原料,其颗粒大小和分布对成型过程和成品质量有着重要的影响。

有机添加剂主要是为了提高陶瓷粉末的可塑性和流动性,使其更容易挤出成型。

溶剂则是为了使陶瓷粉末和有机添加剂充分混合,形成均匀的浆料。

二、挤出成型挤出成型是多孔陶瓷制备的关键步骤。

其主要流程包括浆料制备、模具设计、挤出成型和坯体切割等。

具体步骤如下:1.浆料制备:将陶瓷粉末、有机添加剂和溶剂按照一定比例混合,形成均匀的浆料。

2.模具设计:根据所需的多孔陶瓷形状和尺寸,设计相应的模具。

3.挤出成型:将浆料装入挤出机中,通过挤压将浆料挤出模具中,形成具有一定孔隙率的坯体。

4.坯体切割:将挤出成型后的坯体切割成所需的形状和尺寸。

三、烧结成型烧结成型是多孔陶瓷制备的最后一步,其主要目的是使坯体在高温下烧结成型,形成具有一定孔隙率和力学性能的多孔陶瓷。

具体步骤如下:1.预热:将切割好的坯体放入烧结炉中进行预热,使其温度逐渐升高。

2.烧结:将预热好的坯体在高温下进行烧结,使其形成致密的结构和一定孔隙率。

3.冷却:将烧结好的多孔陶瓷坯体从烧结炉中取出,进行自然冷却,待其温度降至室温后即可使用。

总之,多孔陶瓷挤出成型工艺是一种制备多孔陶瓷的有效方法,其具有制备工艺简单、成本低、成品质量高等优点,被广泛应用于过滤、吸附、隔热等领域。

纤维素纳米晶 多孔陶瓷

纤维素纳米晶 多孔陶瓷

纤维素纳米晶多孔陶瓷
纤维素纳米晶多孔陶瓷是一种新型的材料,它由纤维素纳米晶颗粒和多孔陶瓷基质组成。

纤维素纳米晶是一种由纤维素分子聚集形成的纳米颗粒,具有高度结晶度和纳米级的尺寸。

它具有很高的力学强度、热稳定性和抗化学腐蚀性能,同时还具有较大的比表面积和丰富的表面官能团,使得它可以用于吸附、分离和催化等应用。

多孔陶瓷是一种具有多个微孔和介孔的陶瓷材料。

这些微孔和介孔可以提供较大的比表面积和孔隙度,从而提高材料的吸附容量和分离效率。

纤维素纳米晶多孔陶瓷的制备通常通过将纤维素纳米晶颗粒与陶瓷基质混合,并经过成型和烧结等工艺步骤来完成。

这种复合材料结合了纤维素纳米晶和多孔陶瓷的优点,具有较高的力学性能、吸附性能和分离性能。

纤维素纳米晶多孔陶瓷在环境保护、能源存储和生物医学等领域有广泛的应用前景,例如用于废水处理、气体分离、催化反应和药物递送等。

多孔陶瓷材料的硬度和断裂韧度研究

多孔陶瓷材料的硬度和断裂韧度研究

多孔陶瓷材料的硬度和断裂韧度研究引言:多孔陶瓷材料以其独特的物理性质和结构特点,引起了广泛的研究兴趣。

其中,硬度和断裂韧度作为评估材料力学性能的重要指标,对于研究多孔陶瓷材料的性能具有重要意义。

本文将探讨多孔陶瓷材料的硬度和断裂韧度研究,并从材料本身的结构和制备方法等方面进行分析和讨论。

第一部分:硬度的研究多孔陶瓷材料的硬度是表征其抗压强度和抗刮痕性能的重要指标。

随着孔隙度的增大,多孔陶瓷材料的硬度逐渐降低。

这是因为孔隙的存在会导致应力集中,减弱了材料的力学性能。

研究表明,多孔陶瓷材料的硬度与孔隙度之间存在一定的正相关关系,即孔隙度越大,材料的硬度越低。

因此,在制备多孔陶瓷材料时,需要合理控制孔隙度,以提高材料的硬度和力学性能。

第二部分:断裂韧度的研究多孔陶瓷材料的断裂韧度是评估其抗裂性能的重要指标。

研究发现,多孔陶瓷材料的断裂韧度与孔隙度和孔隙分布有密切关系。

当孔隙度较低且均匀分布时,多孔陶瓷材料的断裂韧度较高。

然而,孔隙度过大或不均匀分布时,会导致应力集中和裂纹扩展,损害材料的断裂韧度。

因此,在制备多孔陶瓷材料时,需要综合考虑孔隙度和孔隙分布的影响,以提高材料的断裂韧度。

第三部分:影响硬度和断裂韧度的因素多孔陶瓷材料的硬度和断裂韧度受到多种因素的影响,主要包括材料的成分、孔隙度、孔隙分布和制备方法等。

不同成分的陶瓷材料具有不同的硬度和断裂韧度,其中质量较轻的陶瓷材料常具有较低的硬度和较高的断裂韧度。

此外,孔隙度和孔隙分布对多孔陶瓷材料的力学性能起着重要作用。

合理控制孔隙度和孔隙分布,可显著提高材料的硬度和断裂韧度。

制备方法也是影响材料性能的关键因素,其中压制和烧结工艺是常用的制备方法之一,可增强材料的致密度和力学性能。

第四部分:材料应用和进一步研究多孔陶瓷材料以其特殊的物理性质和结构特点,广泛应用于过滤、吸附、隔热等领域。

如陶瓷膜材料可应用于水处理和气体分离等领域,多孔陶瓷材料可应用于高温隔热领域。

多孔陶瓷材料的热传导性能研究

多孔陶瓷材料的热传导性能研究

多孔陶瓷材料的热传导性能研究多孔陶瓷材料是一种具有特殊结构和性质的材料,在许多领域中得到广泛应用。

其中,热传导性能是多孔陶瓷材料最重要的性质之一。

本文将探讨多孔陶瓷材料的热传导性能研究,从分子尺度到工程应用,深入分析其影响因素及应用前景。

首先,热传导性能是多孔陶瓷材料的关键性能之一。

多孔陶瓷材料是由微米级颗粒形成的孔隙结构组成,孔隙结构对热传导性能起到了重要的影响。

孔隙的存在会导致热传导路径的中断和散射,因此多孔陶瓷材料的热传导性能通常比固体陶瓷材料低很多。

研究多孔陶瓷材料的热传导性能,有助于深入了解其内在机制,提高材料的性能和应用。

其次,在研究多孔陶瓷材料的热传导性能时,需要考虑多种因素的影响。

第一,孔隙结构对于热传导性能的影响是至关重要的。

孔隙的大小、形状、分布等都会影响热传导路径的长度和散射程度,从而影响材料的热传导性能。

第二,材料的成分也会对热传导性能产生影响。

不同的成分会影响材料的晶格振动、能量传递等,从而改变热传导性能。

第三,温度也是影响多孔陶瓷材料热传导性能的重要因素。

随着温度的升高,热传导过程中的湮灭散射会变得更加重要,从而影响热传导性能。

在多孔陶瓷材料的热传导性能研究中,近年来涌现出了许多新的研究方法和技术。

例如,基于纳米技术的多孔陶瓷材料制备具有特定孔隙结构和分布的样品,进而研究其热传导性能。

此外,计算模拟方法也被广泛应用于多孔陶瓷材料的热传导性能研究中,通过模拟材料的结构和热传导机制,揭示了许多新的现象和规律。

这些新的研究方法和技术的出现,为深入研究多孔陶瓷材料的热传导性能提供了新的思路和手段。

最后,多孔陶瓷材料的热传导性能研究具有重要的工程应用前景。

首先,在能源和环境领域,多孔陶瓷材料可以作为隔热材料用于节能和保温。

其次,多孔陶瓷材料在催化剂、储能、传感器等领域中的应用也与热传导性能息息相关。

因此,深入研究多孔陶瓷材料的热传导性能,对于提高材料的性能和应用具有重要意义。

总之,多孔陶瓷材料的热传导性能研究具有重要的科学意义和工程应用前景。

浅谈多孔陶瓷

浅谈多孔陶瓷

浅谈多孔陶瓷08 化本黄振蕾080900029摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学关键词:多孔陶瓷制备应用发展0. 引言多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。

多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。

多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料和传感器材料等方面得到广泛的应用[ 2]。

因此, 多孔陶瓷材料及其制备技术受到广泛关注。

1 多孔陶瓷材料的制备方法1. 1 挤压成型法挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。

一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。

其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。

目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。

美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。

我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。

例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型的多孔陶瓷。

其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T烧成T制品。

(完整word版)多孔材料(综述)

(完整word版)多孔材料(综述)

多孔陶瓷材料的制备及其应用丁正平摘要:多孔材料由于其孔结构所具有的性能,在工业和社会生产中作用显著,本文第一章简述了多孔材料的分类、与传统材料的差别、制备的一般方法、评价体系以及应用。

多孔材料主要分为两大类多孔陶瓷和多孔金属材料。

多孔陶瓷由于既具有陶瓷的一般性质又具有独特的多孔结构,因而既具有一般陶瓷的性质,比如:耐热性能、稳定的化学性能、一定的强度;同时具有孔结构的渗透性能、吸声性能等等,因而在很多方面具有应用。

本文综述了多孔陶瓷的几种制备方法、性能表征、以及几个方面的应用。

关键词:多孔陶瓷制备应用目录1.多孔材料 (1)1.1多孔材料的概念 (1)1.2多孔材料的分类 (1)1.3多孔材料的性能特点 (2)1.4一般多孔材料的制备方法 (3)1.5成品的评价系统 (3)1.6多孔材料的应用 (3)2.多孔陶瓷 (4)2.1概述 (4)2.2性能特点 (4)2.3多孔陶瓷制备方法 (4)2.4性能及表征 (10)2.5 多孔陶瓷的应用 (14)2.6 前景与展望 (16)参考文献 (18)1多孔材料1.1 多孔材料的概念多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。

这些支柱或者平板通常被称为固定相,起到支撑整个材料的作用,材料的力学性能主要取决于固定相的性能,孔洞中填充的物质称之为流动相,根据填充物物理状态的不同,又可以细分为气相和液相,气相的较为常见,整个多孔材料就是由固定向和流动相组成。

典型的孔结构有:一种是由大量多边形孔在平面上聚集形成的二维结构;由于其形状类似于蜂房的六边形结构而被称为“蜂窝”材料;更为普遍的是由大量多面体形状的孔洞在空间聚集形成的三维结构, 通常称之为“泡沫”材料。

根据功能材料的要求,多孔材料的具备以下两个要素:一是材料中必须包含大量的空隙;二是材料必须被用来满足某种或者某些设计要求已达到所期待的某种性能指标,多孔材料中的空隙相识设计者和使用者所希望得到的功能相,为材料的性能提供优化作用[1]。

多孔陶瓷的制备与应用

多孔陶瓷的制备与应用
),* )"*
综述与述评 综述与述评 综述与述评
种由低密度的多孔氮化硅外加 % 层高密度的氮化硅 天线罩材料,其介电常数为 #. / 0 , ,介电损耗小于 而且具有足够的机械强度, 耐雨蚀、 沙蚀性能 ! 1 %- 2 ! , 良好, 可耐 %3--4 的高温。 此外,多孔陶瓷还可用作防火材料,气体燃烧器 的烧嘴, 高温膜反应器, 混合气体分离器, 柴油机的活 塞, 制造业中的散气隔板, 流态化隔板和电解液隔板, 水质处理,生物制药的超滤提纯,生物发酵器和反应 器以及石油行业的废油纯化和渣油脱沥青等。
%! &
*++% 年第 $ 期 , 总第 !+’ 期 -
现 现 代 技 术 陶 瓷 现代 代技 技术 术陶 陶瓷 瓷
该工艺制得的多孔陶瓷孔径分布范围极为狭窄,其孔 径大小可通过溶液组成和热处理过程的调节来控制 % ( & , 但该工艺的缺点是制品形状受到一定的限制。 !" ’ 固态烧结法 该工艺又称骨料堆积法 % , & 。它是在骨料中加入相 同组分的微细颗粒,利用微细颗粒易于烧结的特点, 在一定温度下将骨料 - 大颗粒 . 连接起来。由于每一粒 骨料仅在几个点上与其它颗粒发生连接,因而形成大 量三维贯通孔道。所以, 骨料颗粒越大, 形成的多孔陶 瓷平均孔径就越大;骨料颗粒尺寸分布范围越窄,所 得到的多孔体微孔的分布也越均匀;骨料颗粒尺寸越
热导率低、 介电常数低、 体积密度小、 比表面积高以及 具有独特物理和化学性能的表面结构等优点,加之陶 瓷材料本身特有的耐高温、化学稳定性好、强度高等 特点,给它的应用开拓了广阔的前景。目前其应用主 要集中在以下几方面。 !" # 用作过滤器 主要集中在 # 方面: $ % & 作为高温高压含尘气流 过滤器。在这方面, 多孔陶瓷过滤器与旋风吸尘器、 洗 涤过滤器以及电除尘器相比,其吸尘效率高,使用寿 命长。$ # & 作为熔融金属过滤器。 例如: 在铸造业中, 泡 沫陶瓷过滤器常用于除掉非金属夹杂物。在这方面的 $ ’ & 高温下不与所 应用中, 多孔陶瓷需满足 ! 个条件: 过滤的金属起反应; $ ( & 过滤器要有良好的抗热震性 及足够的强度 相顺利通过。 !" ! 用作催化剂载体 $ % & 用作化工催化剂载体。化 主要集中在 # 方面: 工生产中需要充分利用催化剂,其催化剂载体必须有 很高的几何面积以及耐化学腐蚀性和耐热腐蚀性。而 多孔陶瓷由于其较高的比表面积,独有的耐高温性、 耐腐蚀性正好满足以上要求。常用的有微孔氧化铝陶 $ # & 用作细菌、 瓷和多孔堇青石陶瓷; 微生物载体。例 如:多孔的羟基磷灰石被应用于制造人造齿科材料、 人造骨等。 !" $ 用作建筑材料 由于多孔陶瓷具有轻质、 不易燃、 隔音隔热、 加工 性能及装饰性能好等特点,在建筑行业获得了广泛的 应用。具有闭口气孔的可作为内外墙、地板和天花板 贴面、 冷库的隔热层, 也可用作水上漂浮材料; 具有开 孔的可作为音乐厅、广播室的贴面吸音材料,利用其 粗糙表面还可作为磨具使用 。

添加造孔剂法制备多孔陶瓷及其强度与孔径控制

添加造孔剂法制备多孔陶瓷及其强度与孔径控制

添加造孔剂法制备多孔陶瓷及其强度与孔径控制一、本文概述多孔陶瓷作为一种具有独特结构和性能的新型无机非金属材料,在过滤、分离、吸附、催化、载体、隔热、降噪、生物医疗等众多领域表现出广阔的应用前景。

其中,孔径大小及其分布、孔的数量、形状和连通性等孔结构参数对多孔陶瓷的性能起着决定性的作用。

因此,如何制备具有理想孔结构的多孔陶瓷材料成为了研究的关键。

添加造孔剂法作为一种制备多孔陶瓷的常用方法,通过引入造孔剂在陶瓷基体中形成孔洞,从而实现对多孔陶瓷孔结构的调控。

本文旨在探讨添加造孔剂法制备多孔陶瓷的工艺流程、影响多孔陶瓷强度和孔径的关键因素,以及如何通过调整制备参数实现对多孔陶瓷强度和孔径的有效控制,为多孔陶瓷的制备和应用提供理论指导和技术支持。

二、添加造孔剂法制备多孔陶瓷的原理添加造孔剂法制备多孔陶瓷是一种常见且有效的制备工艺,其基本原理是在陶瓷原料中加入一定数量的造孔剂,这些造孔剂在陶瓷烧结过程中会燃烧或分解,从而留下大量孔洞,形成多孔结构。

造孔剂的选择和添加量是影响多孔陶瓷孔结构和性能的关键因素。

造孔剂的种类应具有良好的热稳定性,能够在陶瓷烧结温度范围内不发生化学反应或分解,以保证孔洞的均匀性和稳定性。

常用的造孔剂包括炭黑、石墨、有机物等。

造孔剂的添加量决定了多孔陶瓷的孔隙率和孔径大小。

添加量过多,会导致陶瓷体积收缩过大,强度降低;添加量过少,则孔洞数量不足,影响多孔陶瓷的性能。

因此,合理控制造孔剂的添加量是制备多孔陶瓷的关键。

在制备过程中,造孔剂与陶瓷原料混合均匀后,通过成型和烧结工艺形成多孔陶瓷。

成型过程中,造孔剂颗粒随机分布在陶瓷基体中,形成初步的孔结构。

在烧结过程中,造孔剂燃烧或分解,形成大量孔洞,同时陶瓷基体发生致密化,形成最终的多孔陶瓷。

通过调整烧结温度和保温时间等工艺参数,可以进一步控制多孔陶瓷的孔结构和性能。

烧结温度过高或保温时间过长,可能导致孔洞坍塌,降低多孔陶瓷的孔隙率和比表面积;烧结温度过低或保温时间过短,则可能导致陶瓷基体致密化不足,影响多孔陶瓷的强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章综述1.1 多孔陶瓷的概述多孔陶瓷是一种经高温烧成、体内具有大量彼此相通或闭合气孔结构的陶瓷材料,是具有低密度、高渗透率、抗腐蚀、耐高温及良好隔热性能等优点的新型功能材料。

多孔陶瓷的种类繁多,几乎目前研制生产的所有陶瓷材料均可通过适当的工艺制成陶瓷多孔体。

根据成孔方法和孔隙结构的不同,多孔陶瓷可分为三类:粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷。

根据所选材质不同,可分为刚玉质、石英质、堇青石质、莫来石质、碳化硅质、硅藻土质、氧化锆质及氧化硅质等。

多孔陶瓷材料一般具有以下特性:化学稳定性好,可制成使用于各种腐蚀环境的多孔陶瓷;具有良好的机械强度和刚度,在气压、液压或其他应力载荷下,多孔陶瓷的孔道形状和尺寸不会发生变化;耐热性好,用耐高温陶瓷制成的多孔陶瓷可过滤熔融钢水和高温气体;具有高度开口、内连的气孔;几何表面积与体积比高;孔道分布较均匀,气孔尺寸可控,在0.05~600µm范围内可以制出所选定孔道尺寸的多孔陶瓷制品。

多孔陶瓷的优良性能,使其已被广泛应用于冶金、化工、环保、能源、生物等领域。

如利用多孔陶瓷比表面积高的特性,可制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可制成各种吸音材料、减震材料等;利用多孔陶瓷的低密度、低热传导性,可制成各种保温材料、轻质结构材料等;利用多孔陶瓷的均匀透过性,可制成各种过滤器、分离装置、流体分布元件、混合元件、渗出元件、节流元件等。

因此,多孔材料引起了材料科学工作者的极大兴趣并在世界范围内掀起了研究热潮。

1.2 多孔陶瓷的制备方法多孔陶瓷是由美国于1978年首先研制成功的。

他们利用氧化铝、高岭土等陶瓷材料制成多孔陶瓷用于铝合金铸造中的过滤,可以显著提高铸件质量,降低废品率,并在1980年4月美国铸造年会上发表了他们的研究成果。

此后,英、俄、德、日等国竞相开展了对多孔陶瓷的研究,已研制出多种材质、适合不同用途的多孔陶瓷,技术装备和生产工艺日益先进,产品已系列化和标准化,形成为一个新兴产业。

我国从20世纪80年代初开始研制多孔陶瓷。

多孔陶瓷首要特征是其多孔特性,制备的关键和难点是形成多孔结构。

根据使用目的和对材料性能的要求不同,近年逐渐开发出许多不同的制备技术。

其中应用比较成功,研究比较活跃的有:添加造孔剂工艺,颗粒堆积成型工艺,发泡工艺,有机泡沫浸渍工艺,溶胶凝胶工艺等传统制备工艺及孔梯度制备方法、离子交换法等新制备工艺。

1.2.1挤压成型工艺本工艺的特点是靠设计好的多孔金属模具来成孔。

将制备好的泥浆通过一种具有蜂窝网格结构的模具基础成型,经过烧结就可以得到最典型的多孔陶瓷即现用于汽车尾气净化的蜂窝状陶瓷。

此外,也可以在多孔金属模具中利用泥浆浇注工艺获得多孔陶瓷。

该类工艺的特点在于可以根据需要对孔形状和孔大小进行精确设计,对于蜂窝陶瓷最常见的网格形状为三角形、正方形。

其缺点是不能形成复杂的孔道结构和孔尺寸较小的材料。

其典型工艺流程为:粉体原料+水+有机添加剂→研磨→陈腐→挤压成型→干燥→烧结1.2.2颗粒堆积工艺在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温状况下产生液相,使骨料(大颗粒)连接起来。

孔径的大小与骨料粒径成正比,骨料粒径越大,形成的多孔陶瓷平均孔径就越大,呈线性关系。

骨料颗粒尺寸越均匀,产生的气孔分布也越均匀。

另外添加剂的含量和种类以及烧成温度对微孔体的分布和孔径大小有直接的影响。

徐振平等通过控制球状二次粒子原料的粒径,采用烧结法制备了孔径分布很窄的多孔陶瓷,提出了一种控制孔径分布的有效办法。

孙宏伟等则通过控制粉料粒径、添加剂种类和含量,用固态烧结法制得了平均孔径为0.45m、孔径分布狭窄、孔隙率为50%Al2O3陶瓷膜管。

1.2.3添加造孔剂工艺该工艺是通过在陶瓷坯料中添加占据一定空间的造孔剂,经过烧结后,造孔剂离开基体留下孔洞而形成多孔陶瓷。

在普通陶瓷工艺中,调整烧结温度和时间可以控制烧结制品的孔隙度和强度,但对于多孔陶瓷,烧结温度太高会使部分气孔封闭或消失,烧结温度太低则制品强度低。

采用添加造孔剂的方法则可避免这种缺点,使烧结制品既具有高的孔隙度又有较好的强度。

该工艺可通过优化造孔剂形状、粒径和制备工艺来精确设计制品的孔结构,但其缺点是难以获得高气孔率制品。

与普通的陶瓷工艺相比,这种工艺的关键在于造孔剂种类和用量的选择。

造孔剂的种类有无机和有机两类,通常使用的造孔剂有炭粉、锯末屑、煤粉萘、淀粉、聚乙烯醇(PV A)、聚甲基丙烯酸甲酯(PMIMA)、聚乙烯醇缩丁醛(PVB)、聚苯乙烯颗粒等。

一些熔点较高,但可溶于水、酸或碱溶液的无机盐或其它化合物如Na2SO4、CaSO4、NaCl、CaCl2等也可作为造孔剂。

该类造孔剂的特点是在基体陶瓷烧结温度下不排除,待基体烧结后,用水、酸或碱溶液浸出造孔剂而成为多孔陶瓷。

这类造孔剂特别适用于玻璃质较多的多孔陶瓷或多孔玻璃的制备。

1.2.4 有机泡沫浸渍工艺有机泡沫浸渍工艺是schwartzwalder等人于1963年发明的,该工艺是用有机泡沫浸渍陶瓷料浆、溶胶一凝胶和胶体溶液,干燥后烧掉有机泡沫,从而获得孔径范围为5伽m一lmm的开孔三维网状多孔陶瓷的一种方法。

适应这种要求的有机泡沫材料一般是经过特定工艺制作的聚合海绵,材质通常为聚氯乙烯、聚苯乙烯、纤维素等。

在实际应用中一般选用软质聚氨酷泡沫材料,因其软化温度低,能在挥发排除中避免热应力破坏,保证了制品的强度。

将具有一定三维拓扑结构的多孔聚合物浸泡在预先磨制、混好的陶瓷颗粒浆料中,经反复多次浸渍,排除多余浆料,使浆料均匀附着在前驱体网状结构中的网丝上,再烧蚀掉聚合物,留下形貌与聚合物相对应的多孔陶瓷预制体。

这种网络结构陶瓷具有高孔隙率(70%一90%)、大比表面积、小热膨胀系数、高化学稳定性和尺寸稳定性、耐高温、耐化学腐蚀及良好的强度和过滤吸附性能。

图2-1有机泡沫浸渍上艺的流程图1.2.5 发泡工艺发泡工艺是在陶瓷组分中添加有机或无机化学物质,在处理期间形成挥发性气体,产生泡沫,经干燥和烧成制成网眼型和泡沫型两种多孔陶瓷。

与泡沫浸渍工艺相比,该法更易控制制品的形状、成分和密度,并可制备出各种孔径和不同形状的多孔陶瓷,特别适合于闭孔陶瓷制品的生产。

用来做发泡剂的化学物质有:碳化钙、氢氧化钙、铝粉硫酸铝和双氧水作发泡剂;由亲水性聚氨脂塑料和陶瓷泥浆同时发泡制备多孔陶瓷;用硫化物和硫酸盐混合作发泡剂等。

发泡工艺与传统陶瓷工艺相比,多了一个干燥前发泡过程;与泡沫塑料浸渍泥浆高温处理法相比,发泡法可以更容易地制得一定形状、组成和密度的多孔陶瓷,而且还可以制备出小孔径的闭口气孔,而这是用泡沫塑料浸渍泥浆高温处理法做不到的,但其缺点在于难以控制的工艺条件和要求较高的原料。

1.2.6溶胶—凝胶工艺溶胶—凝胶工艺主要用来制备微孔陶瓷材料,特别是微孔陶瓷薄膜,也可以制备孔径在纳米级、气孔分布均匀的多孔陶瓷膜。

这种方法基本过程是:将金属醇盐溶于低级醇中,缓慢地滴入水进行水解反应,得到相应金属氧化物的溶胶,调节溶胶的pH值,纳米尺度的金属氧化物微粒就会发生聚集,形成凝胶,将凝胶干燥、热处理,就可以得到多孔陶瓷。

图2-2 溶胶—凝胶工艺流程图加水量、催化剂、溶液的pH值、化学添加剂、干燥制度以及烧成温度等都是影响溶胶一凝胶法制备多孔陶瓷材料性能的重要因素。

水在溶胶中主要发生水解反应,不同的用水量对凝胶时间影响很大;不同的催化剂,其作用机理也不同,因此在溶液中往往会产生不同结构和形态的水解产物;pH值对溶胶的形成、凝胶时间、凝胶性质以及控制醇盐水解和缩聚反应都会产生很大的影响;化学添加剂主要分为成核剂、阻核剂和干燥剂。

干燥制度对最终产品的影响也很大,由于凝胶内包裹着许多溶剂和水,干燥过程中制品会出现很大的体积收缩而导致制品开裂,并且干燥温度也影响着制品的气孔结构和大小;烧成温度影响着材料的气孔结构和性能,烧成的目的是消除凝胶中的气孔和有机体,使制品的各项性能指标满足实际需求。

尽管溶胶一凝胶法制备多孔陶瓷的原理比较清楚,但其具体工艺中的问题还很多,对外部条件要求极其严格,如溶胶的制备、浸渍、干燥等,所以制备满足要求的无裂纹的无机膜的溶胶一凝胶工艺还有待大量的研究和改进。

1.2.7冷冻干燥工艺冷冻干燥工艺的特点是将陶瓷浆料进行冷冻,使溶剂从液相变成固相,在干燥过程中通过降压使固相冰直接升华成气相而让溶剂排除,这样就留下了开口多孔结构,经烧结后可以得到多孔陶瓷。

在冷冻过程中,冰在溶剂的形成方向可以实现单向控制,因此可以获得气孔呈定向排列的多孔结构。

通过冷冻干燥制备工艺可以获得气孔率高于90%的多孔陶瓷制品, 而且气孔率可以在较大范围内实现控制。

水基浆料的使用形成了该工艺的一个最大优势就是环境友好,因为其孔结构的形成是通过冷冻干燥过程中冰的升华来完成的,其释放出来的是气态HZO,对环境不会造成任何污染。

该工艺制备多孔陶瓷可通过改变浆料的固含量来调整材料的气孔率。

1.2.8水热一热静压工艺水热一热静压工艺是在低于传统烧结温度下,通过水作为压力传递介质制备陶瓷的一种新方法。

使用这种方法也可以制备多孔陶瓷。

日本成功地应用了这种方法,将硅凝胶与质量分数为10%的水混合,置于高压釜中,压力为10一50MPa,温度为300℃,通过水蒸汽的挥发而制成多孔陶瓷,反应时间为10一18Omin。

在25MPa下处理60min,所制得的材料体积密度为0.88岁cm3,孔尺寸分布范围为30一50nm,其抗压强度高达70MPa。

通过调整压力、温度和反应时间等参数,可以得到所需的孔径、孔径分布、孔隙度以及比表面积。

1.3多孔陶瓷的性能分析1.3.1多孔陶瓷的力学性质将多孔陶瓷的力学行为进行数学分析并与它们的显微结构相联系起来是十分有益的。

这样的过程有利于预测材料性能,不仅对设计过程有帮助,也有利于发现控制形变过程的关键性参数。

完成这一理论分析的主要科学方法之一是分析一个单一的孔单元,并分析其形变行为。

为了建立多孔材料的力学行为模型,Gibson和Ashby将复杂的泡沫结构简化成。

通过简化的几何结构,对大多数的多孔材料的关键力学性质如弹性常数、拉伸、压缩强度和断裂韧性等均可推导出数学表达式。

表3-1多孔陶瓷的力学性能表达式表3-1给出的表达式表明,网眼多孔陶瓷的力学行为决定于单独孔筋的强度,因此定量测定大小对于研究这类材料的力学行为是非常重要的。

Brenzy等人用一种简单的方法测定了几种网眼陶瓷的孔筋强度。

这一方法是将一细丝拴于孔筋下,再连接于抗拉载荷上,使用每一孔筋的弯曲断裂的载荷来估计孔筋强度%。

这种测定方法对具有较大孔单元(>1唧)的材料比较实用,小于该尺寸的孔单元则难以实用。

研究表明,通过改善工艺过程,剔除显微缺陷如孔筋内的气孔、裂纹和夹杂物可以使孔筋强度得到明显提高。

相关文档
最新文档