质谱谱图解析
(完整版)质谱分析图谱解析

※ 计算机处理
3.3 有机质谱中的反应及其机理
M+ e
50-70 eV
+. M
+
2e
-. M
+
小于1%
+.
A +. + 中性分子或碎片
M
B + + R
A +.
B+
M+·→ A+·, B+, C +·, D+ ……
y = 154 32 12×8=26 不合理 设w=1 则 y = 154 321612×8=10
分子式为C8H10OS
查Beynon表法
C H N O m/z M+1 M+2 理论计算值,会出现不符合N律和不符合DBE的一般规律。
高分辨质谱法
精确质量,与分辨率有关 ※ 试误法
精确质量的尾数=0.007825y+0.003074z-0.005085w
DBE: Double Bond Equivalents UN: Unsaturated Number
计算式为:
=C+1-H/2
C—C原子数
H—H原子数
i) 分子中含有卤素原子(X)时,它的作用等价于氢原子;
ii) 二价原子数目不直接进入计算式;
iii) 化合物中若含有一个三价N原子,它相应的化合物比链状烷烃多3个H.
H2C OC2H5
例:① 烯:
R HH
C
CH2
H2C C
C R'
H2
② 酯:
质谱谱图解析

有机化合物的质谱图千变万化,有些
化合物仅仅是取代基的位置不同,其质 谱图几有很大的差异,因此,解析未知 物质谱图很难有统一的格式,要灵活运 用可能取得的结构信息和知识
二、实例
例1
1. 最高峰A峰m/z 126(偶数),与碎片峰m/z 95(奇数)相差31u, 是失去合理中性物,据此判断m/z 126为分子离子峰
3. 分子量为偶数,显著的碎片峰都为奇数,因此未知物不含N
4. 由m/z 206 的丰度14.4%推断,m/z 离子含13个C
5. m/z 207的丰度1.2%暗示未知物分子含1-2个O,若只含一个O则H数 不合理,因此m/z 205合理的化学式为C13H17O2
6. m/z 205离子加一个甲基即为分子离子,因此未知物分子的化学式应 为C14H20O2,环加双键值为5
7. 化合物(2)能产生如右碎片: 化 合 物 ( 2 ) 能 产 生 较 强 m/z72 而在未知物的谱图中,m/z 72 峰的丰度很低,此外,化合物 (2)不易产生m/z 58的显著峰
8. 化合物(3)能产生以下碎片离子
由化合物(3)的结构,能够很好地解释未知物谱图中各个峰的生成途 径,因此,化合物(3)为未知物谱图最可能的答案
(6) 通过上述各方面的研究,提出化合物的结构单元。再根 据化合物的分子量、分子式、样品来源、物理化学性质等, 提出一种或几种最可能的结构。必要时,可根据红外和核 磁数据得出最后结果。
(7)验证所得结果。验证的方法有:将所得结构式按质谱断裂 规律分解,看所得离子和所给未知物谱图是否一致;查该 化合物的标准质谱图,看是否与未知谱图相同;寻找标样, 做标样的质谱图,与未知物谱图比较等各种方法。
质谱谱图解读

质谱谱图解读
质谱谱图是质谱分析中必不可少的一部分,它通过对物质分子的质子化产生的离子进行质谱分析,从而得到物质的分子结构和组成。
在质谱谱图中,离子的相对丰度与离子质量的比例关系展现出来,通过对质谱谱图的解读,可以了解物质的分子结构、分子量、碎片结构等信息。
质谱谱图的解读有许多方面,下面将从质谱峰的特征、分子裂解规律、碎片离子的推导等角度进行详细说明。
1. 质谱谱图中的质谱峰特征
在质谱谱图中,每个质谱峰代表了不同的离子,其位置代表了离子的质量,峰的高度代表了离子的相对丰度。
通过分析质谱峰的位置和高度,可以初步判断物质的分子量和分子结构。
质谱峰通常会有裂解峰和基本峰两种形式,裂解峰是由于分子在电离过程中发生碎裂产生的,而基本峰则是未经碎裂的离子。
2. 分子裂解规律
在质谱分析中,分子通常会发生一系列的碎裂反应,产生不同质量的离子,这些离子会分别出现在质谱谱图中。
分子的裂解规律受到化学键的稳定性和裂解路径的影响,通常情况下,键的强度越大,裂解能量越高,其裂解产物的质谱谱峰越强。
3. 碎片离子的推导
在质谱图中,常见的碎片离子包括基本离子、碳正离子和碳负离子等,这些离子的质谱谱峰位置和强度都有一定的规律性。
通过推导和比对这些碎片离子,可以得到有关物质的分子结构信息,为后续的分析提供重要参考。
通过对质谱谱图的解读,我们可以更加准确地了解物质的分子结构和特性,为化学分析和鉴定提供重要帮助。
希望上述内容对您有所帮助,如有任何疑问,请随时与我们联系。
感谢阅读。
质谱谱图解读

质谱谱图解读质谱谱图是质谱仪测量过程中的一个结果,它可以提供目标化合物的质量及其相对丰度,帮助分析师根据特定的质谱特征来确定化合物的结构和组成。
在本文中,我们将深入探讨质谱谱图的解读方法,以帮助读者更好地理解和应用这一重要的分析工具。
1. 质谱图的基本构成质谱谱图由两个主要的轴组成:质量轴和信号强度轴。
质谱仪通过离子化处理将样品中的化合物转化为带电离子,然后按照质量-电荷比(m/z)对离子进行分离和检测。
质谱图上的峰表示不同质荷比的离子相对丰度,而峰的位置则对应着化合物的质量。
2. 质谱峰的解析质谱图中的每个峰都代表着一个特定的离子,其相对强度可以用于确定化合物的相对丰度。
对于单个峰的解析,我们需要考虑以下几个方面:2.1 基峰(Base Peak):基峰是质谱图中信号最强的峰,其相对强度被标为100%。
其他峰的相对强度是以基峰为参照来测量和表示的。
2.2 分子离峰(Molecular Ion Peak):分子离峰是由分子化合物的整个分子离子(M)形成的,其质量等于化合物的分子量。
这个峰通常是质谱图中质量最高的峰,可以用来确定化合物的分子式。
2.3 碎裂峰(Fragmentation Peak):碎裂峰是由分子离峰经过一系列的分裂反应生成的。
这些峰的存在可以提供关于化合物的结构信息,帮助确定分子中的官能团以及它们的相对位置。
3. 质谱峰的解释解读质谱谱图可以通过以下几个步骤进行:3.1 确定基峰和分子离峰:首先,找到质谱图中的基峰和分子离峰。
基峰的相对强度为100%,分子离峰的质量对应着化合物的分子量。
3.2 观察碎裂峰:仔细观察质谱图中的碎裂峰,并比较其质量和相对强度。
通过分析碎裂峰的出现模式和质量差异,可以推断化合物中的官能团和原子组成。
3.3 结合其他谱图:质谱谱图常常与其他谱图(如红外光谱、紫外光谱等)一起使用,来进一步解读化合物的结构和性质。
4. 实例分析为了更好地理解和应用质谱谱图解读的方法,我们以某药物分析为例进行实例分析。
质谱分析图谱解析

离子质量:离子的质量是质 谱分析的关键参数,可以通
过质谱图直接读取
分子式:根据离子质量和相 对丰度,结合化学知识,可
以确定分子的分子式
解析图谱中的离子峰
确定离子峰的位置:根据图谱中的峰位和峰高,确定离子峰的位置。 计算离子峰的相对丰度:根据离子峰的峰高和峰面积,计算离子峰的相对丰度。 确定离子峰的质荷比:根据离子峰的位置和质量,确定离子峰的质荷比。
实例分析:选取 一个具体的有机 化合物,分析其 质谱分析图谱, 解释图谱中各峰 的含义和相互关 系
解析技巧:介绍 解析有机化合物 质谱分析图谱的 技巧和方法
结论:总结有机 化合物质谱分析 图谱解析的结果 和意义
Байду номын сангаас
解析实例二:生物大分子的质谱分析图谱
生物大分子:蛋白质、核酸、多糖等 质谱分析:测定生物大分子分子量、结构和组成 图谱解析:通过图谱分析生物大分子的结构和功能 实例:蛋白质的质谱分析图谱解析,如胰岛素、血红蛋白等
解析结果的解释和表达
解析结果需要结合实验目的和预期结果进行解释 解析结果需要与文献报道的结果进行比较和分析 解析结果需要以图表的形式清晰、准确地展示 解析结果需要以简洁明了的语言进行描述和表达
Prt Six
质谱分析图谱解析 的发展趋势和展望
质谱分析技术的进展
质谱技术的发展历程:从最初的质谱仪到现在的高分辨率质谱仪
质谱分析图谱解析在科学研究中的应用前景
质谱分析图谱解析在生命科学领域的 应用
质谱分析图谱解析在环境科学领域的 应用
质谱分析图谱解析在材料科学领域的 应用
质谱分析图谱解析在食品科学领域的 应用
质谱图怎么分析

质谱图怎么分析质谱图是一种重要的分析技术,广泛应用于物质结构分析、化学定量分析等领域。
本文将通过详细介绍质谱图的原理和分析方法,以及几个常见的应用案例,来深入探讨质谱图的分析过程。
一、质谱图的原理质谱图是通过分析样品中的离子,利用其质量与电荷比的特征,来获取样品的化学信息。
其原理可以概括为以下几个步骤:1.样品的蒸发与电离:样品首先被蒸发,形成气态或带电态的离子。
这可以通过热蒸发、电子轰击或激光蒸发等方法实现。
2.离子的分离与加速:离子经过一个激发或过滤装置,根据其质量与电荷比进行分离,并通过电场加速。
3.离子的检测与记录:离子经过检测器,转化为可观测的电信号,并记录下来。
4.质谱图的解析:根据离子的质量与电荷比,将记录的信号表示为质谱图,进而分析样品的成分和结构。
二、质谱图的分析方法质谱图分析主要依靠质谱仪的仪器参数与样品特征的匹配,常用的分析方法包括以下几种:1.质量谱库比对法:将质谱图与质量谱库中的标准质谱图进行比对,通过相似度计算来识别样品成分。
2.质量谱碎片规律法:通过分析样品离子的裂解规律,推测样品的化学结构以及反应机制。
3.谱峰的分析法:通过对质谱图中峰的位置、形状、相对强度等特征进行定性和定量分析。
4.同位素峰的分析法:利用同位素的相对丰度比例,来推测样品中元素的含量和化学环境。
三、质谱图的应用案例1.药物研发:质谱图常用于药物分子的结构确认与质量控制,根据药物分子的质谱图可以准确地确定化合物的结构和分子量,以及确认附加物的存在。
2.环境分析:质谱图在环境中有机物的污染分析中有着广泛的应用,可以检测大气、水体、土壤等样品中的有害物质和残留物。
3.食品安全:质谱图可用于食品中农药、兽药、食品添加剂等的残留检测,保障食品质量和人体健康。
4.煤矿安全:质谱图能够分析煤矿中的可燃气体成分,为煤矿安全生产提供技术支持和预警。
5.生物医学研究:质谱图能够分析生物样品中的代谢产物、蛋白质、核酸等分子,为生物医学研究提供重要数据。
质谱定性分析及图谱解析

实验步骤与操作
1. 样品准备
选择合适的溶剂将待测样品溶解,并调整至适当的浓度 。
2. 质谱仪调试
打开质谱仪,调整仪器参数,如离子源电压、质量分析 器参数等,以确保仪器处于最佳工作状态。
3. 样品进样
将准备好的样品通过进样系统注入到离子源中。
4. 质谱图获取
启动数据采集系统,记录质谱图。根据需要,可以选择 不同的扫描范围和扫描速度。
峰检测与识别
利用算法对预处理后的数据进行峰检测,识别出质谱图中 的各个峰,并记录其质荷比(m/z)和强度信息。
峰对齐与校正
对多个样本的质谱数据进行峰对齐操作,确保相同物质在 不同样本中的峰能够对应起来。同时,进行峰校正,消除 由于仪器误差等因素引起的峰偏移。
峰匹配与注释
将检测到的峰与已知的化合物数据库进行匹配,对峰进行 注释,明确各个峰所代表的化合物。
重金属污染物检测
通过质谱技术可以准确地检测环境中的重金属污染 物,如铅、汞、镉等,为环境治理提供依据。
大气颗粒物分析
质谱技术可用于分析大气颗粒物的化学组成 和来源,为大气污染防控提供科学支持。
食品安全检测中的应用
农药残留检测
质谱技术可用于检测食品中的农药残留,保障食品的 安全性和消费者的健康。
食品添加剂检测
质谱定性分析及图谱解析
汇报人:文小库
2024-01-20
CONTENTS
• 质谱技术概述 • 质谱定性分析方法 • 图谱解析方法 • 质谱定性分析实验设计 • 质谱定性分析数据处理与结果
展示 • 质谱定性分析应用实例
01
质谱技术概述
质谱技术原理
离子化过程
将待测样品转化为气态离 子,常见的方法有电子轰
仪器分析-质谱图解析.

3、m/z 57为M-17离子,m/z 29为M-45 离子,同时产生m/z 45(COOH)离子峰, 说明化合物可能含有羧基
4、m/z 29为乙基碎片离子峰,说明化合物可能含有乙基
H2 O H3C C C OH
m/z=74
H3C
H2 C
O C m/z=57
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原三 子价 数原子数
U四价原 - 子2数
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
相对丰度 (%)
100 80 60 40 20
m/z
43 O
71
断裂
H7C3 C
58
99
Rearrangement
β异裂
86
113
40
60
80
100 120
4壬酮的质谱图(M=142)
C5H1 1
1、酮类化合物分子离子 峰较强。
2、α裂解(优先失去大 基团)
烷系列:29+14 n
142(M+·) 3、γ-氢重排
未知化合物质谱图分析
CH2
某化合物C10H4
HH CH2
结构式:
1、计算不饱和度U=4, 2、分子离子峰m/z=134较大,结合不饱和度,说明该化合物含有苯环
3、m/z=91为(M-43)碎片离子峰,说明化合物可能失去C3H7+为烷基苯,m/z=65是 其进一步丢失乙炔分子产生的碎片离子峰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
41(C3H5+)
84(M ) Cyclohexane
M=84
10 20 30 40 50 60 70 80 90 100 110
1).由于环的存在,分子离子峰的强度相对增加。 2).常在环的支链处断开,给出CnH2n-l峰,也常伴随
氢原子的失去。因此该CnH2n-2峰较强。 3).环的碎化特征是失去C2H4(也可能失去C2H5)。
二、芳烃的质谱图
% OF BASE PEAK
91
100
90
CH2 CH2 CH2 CH3
80
70
92
60
50
40
30
134(M )
20 10
39 51 65 77
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
苯环能使分子离子稳定分子离子稳定,峰较强;
卓翁离子可进一步裂解生成环戊二烯(m/z = 65)及 环丙烯离子(m/z = 29)。
2.麦氏重排.(如有—H存在)—具有氢的烷基取代
苯,能发生麦氏重排裂解,产生m/z 92(C7H8+·)的 重排离子(奇电子离子峰),进一步裂解,产生m/z 78
,52或 66,40的峰。
3.开裂和氢的重排 取代苯也能发生α裂解,产生苯离子,进一步裂解 成环丙烯离子和环丁二烯离子。
m/z=43
5-Methylpentadecane
100
C3
169 141
90
% OF BASE PEAK
80 70 60
m/z=57 C4
CH3(CH2)3 CH (CH2)9CH3 CH3
50
C6 m/z=85
57 85
40
m/z=71
30
C5 m/z=99
20 10
C7
113 C8
C9
C10
C2H5+( M /e =29)→ C2H3+( M /e =27)+H2 ❖有M /e :28,42,56,70,……CnH2n系列峰(四圆环重排)
2. 支链烷烃
支链的断裂,易出 现在被取代的碳原 子上。
稳定性为:
特点: • M+·弱或不见。 • M-15 (·CH3), 带侧链CH3 . • M-R (·R) 优先失去大基团,此处离子峰的 RI 大。
% OF BASE PEAK
MethylCyቤተ መጻሕፍቲ ባይዱlohexane
100
90
M=98
80
70
60
55
50
40
41
30
20
29
10
0
0 10 20 30 40 50
69
60 70
83 98(M )
80 90 100 110
CH3
m/z=98
m/z=83
4.烯烃
CH3
H3C CH C CH2 CH3
CH2 CH3 m/z=55 CH3
❖ β裂解是烯烃最普遍的裂解方式之一。生成通式为 CnH2n-1的稳定烯丙式正离子(常为基峰),该碎片 离子的质量数通式为41+14n(n=0,1,2,3等)。
分子离子峰中阳离子主要定域在π键上,较稳定丰 度较大,其相对强度随分子量的增加而减小。
有一系列CnH2n、CnH2n+1、CnH2n-1的碎片离子峰,通 式为41+14n;
methane M=16
m/z
特点:
•分子离子峰较弱; •直链烃具有一系列m/z相差14的CnH2n+1碎片离子 峰。基峰为C3H7+ (m/z 43) 或C4H9+ (m/z 57); •支链烷烃:在分支处优先裂解,形成稳定的仲 碳或叔碳阳离子。 •含8个以上碳的直链烷烃,其质谱很相似,区别 仅在于分子离子峰的质量不同。
M C12 M 15 C16
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210220230
3.环烷烃
% OF BASE PEAK
100 90 80 70 60 50 40 30
20 10 0
0
56(C4H8+)
有机波谱分析
2.4 各类有机化合物的质谱
一、碳氢化合物的质谱图 1. 直链烷烃
饱和烃类:对直链烷烃分子离子,先通 过半异裂失去一个烷基游离基,形成正 离子,后连续失去28个质量单位。 (CH2=CH2)
16 15
在质谱图上 ①获得CnH2n+1 (m/e,29,43,57…) ②比各碎片离子峰低两个质量单位处出现一 些链烯小峰,得CnH2n-1(失去一个分子H, m/e,27,41,55…) ③分子离子峰的强度随分子量增加而减小。
43
29 15
57 71
正癸烷
85 99 113 142 m/z
% OF BASE PEAK
100
m/z=43 C3 C4 m/z=57
90
80
n-Hexadecane
70
C5 m/z=71
60
CH3(CH2)14CH3
50 40 m/z=29 C2
30
20 10
0
0
10 20 30
40 50
MW 226
芳烃类化合物的裂解方式主要有5种
1.烷基取代苯易发生β裂解 (并经重排生成桌翁离子
tropylium ion)m/z 91,是烷基取代苯的重要特征。
Y可以是烷基或杂原子。
出现稳定的桌翁离子(通常是基峰m/z = 91)是苯环上
有烷基取代的标志。如。碳上有支链,则发生开裂时 ,将优先脱去大的取代基。
m/z=85 C6 99
C7
m/z=226
113 127 141 155 169 183 197 C8 C9 C10 C11 C12 C13 C14
M C16
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210220230
❖分子离子:C1(100%), C10(6%), C16(小), C45(0) ❖有M /e :29,43,57,71,……CnH2n+1 系列峰(σ—断裂) ❖有M /e :27,41,55,69,……CnH2n-1 系列峰
% OF BASE PEAK
H3C
100 90 80 70 60 50 40 30 20 10 0
CH C 41
55 27
H3C
CH3
CH3
CH C CH2
m/z=69
69 84(M )
0 10 20 30 40 50 60 70 80 90 100 110
❖ 分子离子峰较稳定,丰度较大;尤其是多烯的分子 离子峰虽能判别,但不强,随分子量增大分子离子 峰强度降低。烯烃主要有β裂解和McLafferty重排 两种裂解方式。
4.逆狄尔斯—阿尔德开裂及其它重排开裂