初三数学圆测试题1

合集下载

(必考题)初中数学九年级数学下册第三单元《圆》测试题(包含答案解析)(1)

(必考题)初中数学九年级数学下册第三单元《圆》测试题(包含答案解析)(1)

一、选择题1.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .62.如图,AB 是⊙O 的直径,C 是⊙O 上一点,BD 平分∠ABC 交⊙O 于点D ,交AC 于点E ,已知DE =2,DB =6,则阴影部分的面积为( )A .2π-33B .4π-63C .4π-33D .π-23 3.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A .3B .5C .23D .25 4.在ABC ∆中,6,8,10AB BC AC ===,则这个三角形的外接圆和内切圆半径分别是( )A .5,1B .4,3C .5,2D .5,45.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 6.如图,O 是ABC 的外接圆,BC 的中垂线与AC 相交于D 点,若60A ∠=︒,70B ∠=︒,则AD 的度数为( )A .80︒B .70︒C .20︒D .307.如图,P 是⊙O 外一点,射线PA 、PB 分别切⊙O 于点A 、点B ,CD 切⊙O 于点E ,分别交PA 、PB 于点D 、点C ,若PB =4,则△PCD 的周长( )A .4B .6C .8D .108.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒ 9.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D ∠的度数等于( )A .57︒B .60︒C .66︒D .67︒10.下列说法正确的是( )A .有一组邻边相等的平行四边形是菱形B .平分弦的直径垂直于弦C .两条边对应成比例且有一个内角相等的两个三角形相似D .对角线相等的四边形是矩形11.如图,圆内接正方形的边长为2,以其各边为直径作半圆,则图中阴影部分的面积为( )A .4B .24π-C .2πD .2π+ 12.如图,AB 为O 的切线,点A 为切点,OB 交O 于点C ,点D 在O 上,连接,,AD CD OA ,若20ABO ︒∠=,则ADC ∠的度数为( )A .20︒B .25︒C .30︒D .35︒二、填空题13.如图,六边形ABCDEF 是半径为2的⊙O 的内接正六边形,则劣弧CD 的长为_____.14.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,设半径为1的圆的面积与其内接正n 边形的面积差为n ∆.如图①,图②,若用圆的内接正八边形和内接正十二边形逼近半径为1的圆,则182ΔΔ-=___________.15.如图,已知AB 为O 直径,若CD 是O 内接正n 边形的一边,AD 是O 内接正()4n +边形的一边,BD AC =,则n =_____.16.如图,O 是ABC 的内切圆,切点分别为D 、E 、F ,80A ∠=︒,点P 为O 上任意一点(不与E 、F 重合),则EPF ∠=______.17.如图,C ∠是O 的圆周角,45C ∠=︒,则AOB ∠的度数为____.18.如图,ABC 内接于O ,70B ∠=︒,50OCB ∠=︒,点P 是O 上一个动点(不与图中已知点重合),若ACP △时等腰三角形,则ACP ∠的度数为___.19.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,70A ∠=,50C ∠=,那么tan AEB ∠=___________.20.在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论: ①APE AME ∆≅∆;②PM PN AC +=;③222PE PF PO +=;④POF BNF ∆∆∽;⑤点O 在M 、N 两点的连线上,其中正确的是____________.三、解答题21.如图,在直角坐标系中,点(0,8)A ,点B 是x 轴负半轴上的动点,以 OA 为直径作圆交AB 于点D .(1)求证:AOD ABO ∠=∠.(2)当30ABO ∠=︒时,求点D 到y 轴的距离.(3)求OD AB的最大值. 22.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为40千米时,受影响区域的半径为260千米,B 市位于点P 的北偏东75︒方向上,距离P 点480千米.问:本次台风是否会影响B 市.若这次台风会影响B 市,求B 市受台风影响的时间.23.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠P =44°.(1)如图①,若点C 为优弧AB 上一点,求∠ACB 的度数;(2)如图②,在(1)的条件下,若点D 为劣弧AC 上一点,求∠PAD +∠C 的度数. 24.在下列网格图中,每个小正方形的边长均为1个单位.Rt ABC 中,∠C =90°,AC =3,BC =4(1)试在图中作出ABC 绕A 顺时针方向旋转90°后的图形11AB C △;(2)求1BB 的长.25.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD △△;(2)若8BD =,1tan 2B =,求⊙O 的半径. 26.如图,已知AB 是O 的直径,BC AB ⊥,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论.【详解】解:∵BD 是圆O 的直径,且BD=10∴OB=5连接OA ,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.2.A解析:A【分析】证明△DAE ~△DBA ,求得DA 3=,由AB 是⊙O 的直径,利用勾股定理求得⊙O 的直径,求得∠ABD=30︒,∠COD=60︒,再利用OCD OCD S S S=-阴影扇形即可求解.【详解】连接OC 、OD 、AD ,∵BD 平分∠ABC ,∴AD CD =,∴∠DAC=∠DBA ,∴△DAE ~△DBA , ∴DA DE DB DA =,即26DA DA=, ∴212DA =,∴DA 23=,∵AB 是⊙O 的直径,∴∠ADB=90︒,∴222AD BD AB +=,∴AB=43∴⊙O 的半径为3∵DA=OA=OD 23=,∴△DOA 是等边三角形,∴∠COD=∠AOD=60︒,∴OCD OCD S S S =-阴影扇形(2602312323603602π⨯=-⨯︒233π=-故选:A .【点睛】本题考查了相似三角形的判定与性质、等边三角形的判定与性质、勾股定理、扇形与等边三角形的面积等知识点,熟练掌握相关性质及定理是解题的关键.3.A解析:A【分析】连接AD ,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE 是直角三角形,用勾股定理求AE 即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE=2222213AD DE-=-=,故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.C解析:C【分析】首先根据勾股定理逆定理判断△ABC是直角三角形,得其斜边是10,即可求得外接圆半径和内切圆半径.【详解】∵AC=6,BC=8,AC=10,2226810+=,∴222AC BC AC+=,∴△ABC是直角三角形,且斜边是AC=10,∴其外接圆的半径为5,三角形的内切圆半径=681022+-=,故选:C.【点睛】本题考查了三角形的外接圆和内切圆,勾股定理的逆定理;解题的关键是灵活运用勾股定理的逆定理判断△ABC是以AC为斜边的直角三角形.第II 卷(非选择题)请点击修改第II 卷的文字说明5.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.6.C解析:C【分析】首先连接OB ,OC ,AO ,设DO 交BC 于点E ,由∠B =70°,∠A =60°,又由△ABC 的边BC 的垂直平分线与△ABC 的外接圆相交于点D ,根据圆周角定理,即可求得∠AOB 与∠BOE 的度数,继而求得答案.【详解】解:如图,连接OB ,OC ,AO ,设DO 交BC 于点E ,∵OD 是△ABC 的边BC 的垂直平分线,∴∠BOE =12∠BOC , ∵∠BAC =12∠BOC , ∴∠BOE =∠BAC ,∵∠A =60°,∠B =70°,∴50∠=°ACB ,∴∠BOE =∠BAC =60°,∴∠BOD =180°−∠BOE =180°−60°=120°,∵∠AOB =2∠ACB =100°,∴AB 的度数为:100°,∴AD 的度数为:120°−100°=20°.故选:C .【点睛】此题考查了圆周角定理以及线段垂直平分线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.C解析:C【分析】由切线长定理可求得PA =PB ,BC =CE ,AD =ED ,则可求得答案.【详解】解:∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =4,BC =EC ,AD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PC+BC+PD+AD =PB+PA =4+4=8,即△PCD 的周长为8,故选:C .【点睛】本题考查了切线长定理以及三角形的周长,熟练掌握切线长定理是解题的关键; 8.B解析:B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36, ∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒, ∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】 本题主要考查了圆周角定理,准确计算是解题的关键.10.A解析:A【分析】根据菱形的判定定理、垂径定理的推论、相似三角形的判定定理、矩形的判定定理依次对选项进行判断即可.【详解】A :根据菱形的判定定理可知,有一组邻边相等的平行四边形是菱形,故此选项符合题意;B :根据垂径定理可知,平分弦的直径不一定垂直于弦,但垂直于弦的直径一定平分这条弦,故此选项不符合题意;C :根据三角形相似的判定定理可知,两条边对应成比例且夹角相等的两个三角形相似,故此选项不符合题意;D :对角线相等且平分的四边形是矩形,故此选项不符合题意;故选:A .【点睛】本题考查矩形、菱形、相似三角形的判定定理及垂径定理的推论,掌握各判定定理是解题的关键.11.A解析:A【分析】设正方形的中心为O,连接OA,OB首先求出其长度,再根据阴影部分面积等于四个直径为2的半圆面积之和加上一个边长为2的正方形面积,然后减去一个半径为2的圆的面积求解即可.【详解】解:设正方形的中心为O,连接OA,OB,由题意可得OA=OB,∠AOB=90°,AB=2∴在Rt△AOB中,OA=OB=2∴2221=42424 22ABS AB OAππππ⎛⎫⨯⨯+-⨯=+-=⎪⎝⎭阴影故选:A【点睛】本题考查正多边形和圆,勾股定理,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.D解析:D【分析】根据切线的性质得∠OAB=90°,利用互余计算出∠AOB的度数,然后根据圆周角定理得到∠ACD=35°,.【详解】解:∵AB为⊙O的切线,点A为切点,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°-20°=70°,∵∠AOB=2∠ADC=70°,∴∠ADC=12×70°=35°.故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.二、填空题13.【分析】连接OCOD求出圆心角∠COD的度数再利用弧长公式解答即可;【详解】解:连接OCOD∵六边形ABCDEF为正六边形∴∠COD=360°×=60°∵OD=2弧DC的长为故答案为:【点睛】本题考解析:2 3π【分析】连接OC、OD,求出圆心角∠COD的度数,再利用弧长公式解答即可;【详解】解:连接OC、OD,∵六边形ABCDEF为正六边形,∴∠COD=360°×16=60°,∵OD=2,弧DC的长为6022 1803.故答案为:23π.【点睛】本题考查了正多边形和圆,弧长公式,解题关键是连接半径,根据正多边形的性质求出圆心角度数,熟练运用弧长公式.14.【分析】由题意△8-△12=(S圆-S八边形)-(S圆-S十二边形)=S十二边形-S八边形由此计算即可【详解】解:如图由题意△8-△12=(S圆-S八边形)-(S圆-S十二边形)=S十二边形-S八边解析:322-【分析】由题意△8-△12=(S圆-S八边形)-(S圆-S十二边形)=S十二边形-S八边形,由此计算即可.【详解】解:如图,由题意,△8-△12=(S圆-S八边形)-(S圆-S十二边形)=S十二边形-S八边形=12×12×1×1×sin30°-8×12×1×1×sin45°2.故答案为:2.【点睛】本题考查正多边形和圆,解题的关键是理解题意,灵活运用所学知识解决问题. 15.【分析】连接ODOCBC 根据题意首先证明∠AOD=∠BOC 再根据题意分别用含n 的式子表示出∠AOD 和∠COD 建立关于n 的方程求解即可【详解】如图连接ODOCBC ∵AB 为直径∴∠ADB=∠BCA=90解析:4【分析】连接OD ,OC ,BC ,根据题意首先证明∠AOD=∠BOC ,再根据题意,分别用含n 的式子表示出∠AOD 和∠COD ,建立关于n 的方程求解即可.【详解】如图,连接OD ,OC ,BC ,∵AB 为直径,∴∠ADB=∠BCA=90°,又∵BD AC =,∴Rt △ABD ≌Rt △BAC (HL ),∴AD=BC ,∠AOD=∠BOC ,∵CD 是O 内接正n 边形的一边, ∴360COD n ︒∠=, 同理:AD 是O 内接正()4n +边形的一边, ∴3604AOD BOC n ︒∠=∠=+, 由180AOD BOC COD ∠+∠+∠=︒, 得:36036021804n n︒︒⨯+=︒+, 解得:4n =,或2n =-(不符合题意,舍去) 经检验,4n =是原分式方程的解,故答案为:4.【点睛】本题主要考查了正多边形与圆,理解正多边形与圆的关系是解题关键.16.50°或130°【分析】有两种情况:①当P在优弧EF上时连接OEOF求出∠EOF根据圆周角定理求出即可;②当P在劣弧EF上时根据圆内接四边形的性质得到∠EP1F+∠EP2F=180°代入求出即可【详解析:50°或130°【分析】有两种情况:①当P在优弧EF上时,连接OE、OF,求出∠EOF,根据圆周角定理求出即可;②当P在劣弧EF上时,根据圆内接四边形的性质得到∠EP1F+∠EP2F=180°,代入求出即可.【详解】解:有两种情况:①当P在优弧EF上时,连接OE、OF,∵圆O是△ABC的内切圆,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,∵∠A=80°,∴∠EOF=360°-∠AEO-∠AFO-∠A=100°,∠EOF=50°,∴∠EP1F =12②当P在劣弧EF上时,∠FP2E =180°-50°=130°,故答案为:50°或130°..【点睛】本题考查了垂线的定义,多边形的内角和定理,三角形的内切圆与内心,圆周角定理等知识点的理解和掌握,能综合运用性质进行推理是解题的关键.17.【分析】根据圆周角定理计算即可;【详解】∵∴;故答案是【点睛】本题主要考查了圆周角定理准确分析计算是解题的关键解析:90【分析】根据圆周角定理计算即可;【详解】∵45C ∠=︒,∴290AOB C ∠=∠=︒;故答案是90︒. 【点睛】本题主要考查了圆周角定理,准确分析计算是解题的关键.18.或或【分析】根据题意分三种情况讨论即可得∠ACP 的度数【详解】解:如图连接OAOB ∵∠OCB=50°∴∠OBC=50°∴∠BOC=180°-50°-50°=80°∵∠B=70°∴∠OBA=∠OAB=解析:35︒或40︒或55︒【分析】根据题意分三种情况讨论即可得∠ACP 的度数.【详解】解:如图,连接OA ,OB ,∵∠OCB=50°,∴∠OBC=50°,∴∠BOC=180°-50°-50°=80°.∵∠B=70°,∴∠OBA=∠OAB=20°,∴∠AOB=140°,∴∠AOC=360°-80°-140°=140°,∴∠OAC=∠OCA=20°,∴∠ACB=50°+20°=70°,∴AB=AC .当AP′=AC 时,此时点P′与点B 重合,不符合题意;当AP=PC 时,∵∠B=70°,∴∠APC=180°-70°=110°,∴∠ACP=∠CAP=12(180°-110°)=35°;当AP′=P′C时,∠P′AC=∠P′CA=12(180°-70)=55°;当AC=P′C时,∠ACP′=180°-70°-70°=40°.故答案为:35°或40°或55°.【点评】本题考查了三角形的外接圆与外心、圆周角定理、等腰三角形的性质,解决本题的关键是综合运用以上知识进行分类讨论.19.【分析】求出∠AEB的度数再求三角函数值即可【详解】解:∵∠B=∠C=50°∠A=70°∴∠AEB=180°-∠A-∠B=60°故答案为:【点睛】本题考查了圆周角的性质三角形内角和特殊角的三角函数值【分析】求出∠AEB的度数,再求三角函数值即可.【详解】解:∵∠B=∠C=50°,∠A=70°,∴∠AEB=180°-∠A-∠B=60°,tan tan60AEB∠=︒=,【点睛】本题考查了圆周角的性质,三角形内角和,特殊角的三角函数值,解题关键是灵活运用圆中角的关系,把已知条件集中在一个三角形中求角.20.①②③⑤【分析】根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°然后利用角边角证明△APE和△AME全等由此判断①;根据全等三角形对应边相等可得PE=EM=PM同理FP=FN=NP解析:①②③⑤【分析】根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°,然后利用“角边角”证明△APE和△AME全等,由此判断①;根据全等三角形对应边相等可得PE=EM=12PM,同理,FP=FN=12NP,证出四边形PEOF是矩形,得出PF=OE,证得△APE为等腰直角三角形,得出AE=PE,PE+PF=OA,即可得到PM+PN=AC,由此判断②;根据矩形的性质可得PF=OE,再利用勾股定理即可得到PE2+PF2=PO2;由此判断③;判断出△POF不一定等腰直角三角形,△BNF是等腰直角三角形,从而确定出两三角形不一定相似;⑤证出△APM和△BPN以及△APE、△BPF都是等腰直角三角形,从而判断④由垂直平分线的性质求得点O是直角三角形PMN的外接圆圆心,从而结合圆周角定理判断⑤.【详解】解:①∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,∵PM⊥AC,∴∠AEP=∠AEM=90°,在△APE和△AME中,BAC DAC AE AEAEP AEM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APE≌△AME(ASA),故①正确;②∵△APE≌△AME,∴PE=EM=12PM,同理,FP=FN=12 NP,∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形.∴PF=OE,∵在△APE中,∠AEP=90°,∠PAE=45°,∴△APE为等腰直角三角形,∴AE=PE,∴PE+PF=OA,又∵PE=EM=12PM,FP=FN=12NP,OA=12AC,∴PM+PN=AC,故②正确;③∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确;④∵△APE≌△AME,∴AP=AM△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故④错误;∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM=OP ,ON=OP ,∴OM=OP=ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN=90°,∴MN 是直径,∴M ,O ,N 共线,故⑤正确.故答案为:①②③⑤【点睛】此题主要考查了正方形的性质、矩形的判定、勾股定理的综合应用、等腰直角三角形的判定与性质、相似三角形的判定与性质等知识;熟记各性质并准确识图是解决问题的关键.三、解答题21.(1)见解析;(2)3)12 【分析】(1)根据圆周角定理可得∠ADO=90°,再根据余角的性质可证;(2)根据直角三角形的性质得到AD ,从而求出OD ,再利用面积法求出点D 横坐标的绝对值,可得结果;(3)过D 作DH ⊥AO ,垂足为H ,证明△DHO ∽△AOB ,得到8OD DH DH AB AO ==,求出OH 的最大值即可得到结果.【详解】解:(1)∵OA 为直径,∴∠ADO=90°,则∠AOD+∠OAD=90°,∵∠AOB=90°,∴∠ABO+∠OAD=90°,∴∠AOD=∠ABO ;(2)∵A (0,8),OA=8,∠ABO=30°,∴∠OAD=60°,∠AOD=30°,∴AD=12OA=4, ∴S △OAD =12AD·OD=12D OA x ⨯⨯,∴114822D x ⨯⨯=⨯⨯,∴D x =,即点D 到y 轴的距离为(3)过D 作DH ⊥AO ,垂足为H ,∵∠AOD=∠ABO ,∠AOB=∠DHO ,∴△DHO ∽△AOB , ∴8OD DH DH AB AO ==, ∴当DH 最大时,OD AB 最大, ∴当DH=12AO=4时,OD AB最大值为12.【点睛】本题考查了圆周角定理,直角三角形的性质,面积法,解题的关键是根据直径得到90°的角.22.本次台风会影响B 市,影响时间为5小时【分析】作BH ⊥PQ 于点H ,在Rt BHP 中,利用含30°角的直角三角形的性质求出BH 的长与260千米相比较即可.以B 为圆心,以260为半径作圆交PQ 于P 1、P 2两点,根据垂径定理即可求出P 1P 2的长,进而求出台风影响B 市的时间.【详解】如图,作BH ⊥PQ 于点H在Rt BHP 中,由条件知,PB =480,∠BPQ =75°﹣45°=30°,∴BH=14802⨯=240<260, ∴本次台风会影响B 市. 如图,以B 为圆心,以260为半径作圆交PQ 于P 1、P 2两点,若台风中心移动到P 1时,台风开始影响B 市,台风中心移动到P 2时,台风影响结束.根据BH=240,由条件得BP 1=BP 2=260,∴P 1P 2=222260240-,∴台风影响的时间t=20040=5(小时).故B市受台风影响的时间为5小时.【点睛】本题考查了含30°角的直角三角形的性质,勾股定理及垂径定理在实际生活中的运用,解答此题的关键是构造出直角三角形及圆.23.(1)68°;(2)248°【分析】(1)根据切线的性质得到∠OAP=90°,∠OBP=90°,根据圆周角定理即可得到结论;(2)连接AB,根据切线长的性质得到PA=PB,得到∠PAB=∠PBA=68°,再根据圆内接四边形定理可求.【详解】解:(1)∵PA、PB是⊙O的切线,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣44°=136°,∴∠ACB=12∠AOB=68°;(2)连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=44°,∴∠PAB=∠PBA=12(180°﹣44°)=68°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+68°=248°.【点睛】本题考查了切线长定理、切线的性质和圆周角定理,解题关键是熟练运用圆的有关知识,恰当的连接辅助线,建立角与角之间的联系.24.(1)见解析;(2)52π.【分析】(1)根据△ABC 绕A 顺时针方向旋转90°,即可得到△AB 1C 1;(2)根据弧长计算公式,即可得出点B 运动路径的长.【详解】解:(1)如图所示,△AB 1C 1即为所求;(2)Rt ABC 中,∠C =90°,AC =3,BC =4 ∴2222AB AC BC 345=++=又∠BAB 1=90°,∴点B 的运动路径的长为:90551802ππ⨯=. 【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 25.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠=,∵ OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==, ∵1tan 2B =, ∴1tan 2AC B AB == , ∴12DA DC DB DA ==, 则2AD CD = , 即182AD AD BD == , 得AD=4, ∴ 122CD AD == , ∴ BC=BD-CD=8-2=6,∴半径3r =;【点睛】 本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;26.(1)见解析;(2)22AE =【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =. ∵2DE BC =, ∴2ED CD =.∵//AD OC , ∴DE AE CE OE=. ∵O 的半径为2, ∴2221AE AE =++, ∴22AE =【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。

A. 圆的直径是半径的2倍B. 圆的周长是直径的π倍C. 圆的面积是半径的平方乘以πD. 圆的周长是半径的2π倍答案:D2. 圆的面积公式为()。

A. S = πrB. S = πr²C. S = πdD. S = πd²答案:B3. 圆的周长公式为()。

A. C = 2πrB. C = 2πdC. C = πrD. C = πd答案:A4. 圆心角为60°的扇形面积是()。

A. πr²/6B. πr²/3C. πr²/2D. πr²答案:A5. 一个圆的半径为3cm,其面积为()。

A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:C6. 圆的直径增加1倍,其面积增加()。

A. 1倍B. 2倍C. 4倍D. 8倍答案:C7. 圆的半径增加1倍,其周长增加()。

A. 1倍B. 2倍C. 3倍D. 4倍答案:B8. 一个圆的周长为12.56cm,其直径为()。

A. 2cmB. 4cmC. 6cmD. 8cm答案:B9. 圆的半径为4cm,其直径为()。

A. 2cmB. 4cmC. 8cmD. 16cm答案:C10. 圆的半径为2cm,其周长为()。

A. 4π cmB. 8π cmC. 12π cmD. 16π cm答案:B二、填空题(每题3分,共30分)1. 圆的周长公式为______。

答案:C = 2πr2. 圆的面积公式为______。

答案:S = πr²3. 圆的直径是半径的______倍。

答案:24. 圆的周长是直径的______倍。

答案:π5. 圆的面积是半径的平方乘以______。

答案:π6. 圆心角为90°的扇形面积是圆面积的______。

答案:1/47. 圆心角为180°的扇形面积是圆面积的______。

初三圆的测试题及答案

初三圆的测试题及答案

初三圆的测试题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含2. 圆的周长公式是()。

A. C = πrB. C = 2πrC. C = 4πrD. C = 8πr3. 圆的面积公式是()。

A. S = πr^2B. S = 2πrC. S = 4πr^2D. S = 8πr4. 已知圆的半径为4,求圆的直径是()。

A. 8B. 12C. 16D. 205. 一个圆的半径增加2,面积增加了()。

A. 4πB. 8πC. 12πD. 16π二、填空题6. 圆心角的度数是360°的圆心角所对的弧是______弧。

7. 已知扇形的半径为6,圆心角为60°,求扇形的面积是______。

8. 已知两圆的半径分别为r1和r2,两圆的圆心距为d,若d = r1 + r2,则两圆的位置关系是______。

9. 已知圆的半径为3,求圆的内接正六边形的边长是______。

10. 已知圆的半径为5,求圆的内接正三角形的边长是______。

三、计算题11. 已知圆的半径为7,求圆的周长和面积。

周长为______,面积为______。

12. 已知圆的半径为10,圆上一点P到圆心的距离为9,求点P所对的圆心角的度数。

四、解答题13. 已知圆的半径为8,圆内接正六边形的边长为a,求圆的周长和正六边形的面积。

14. 已知圆的半径为15,求圆内接正十二边形的边长。

答案:1. C2. B3. A4. A5. B6. 优弧7. 18π8. 外切9. 610. 1011. 周长为44π,面积为49π12. 圆心角的度数为60°13. 圆的周长为16π,正六边形的面积为144π - 72√314. 正十二边形的边长为15(√3 - 1)结束语:本测试题涵盖了圆的基本性质、周长和面积的计算、内接多边形的边长等知识点,旨在帮助学生巩固圆的相关知识,提高解题能力。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

(word完整版)初三数学《圆》第一单元测试题

(word完整版)初三数学《圆》第一单元测试题

《圆》第一单元测试题姓名 _________填空题(每小题4分,48分)1在半径为2的圆中,弦长等于 2^3的弦的弦心距为 __________________ 2、 如图1,点A 、B 、C 、D 都在O O 上,若/ A = 65 °则/ D = _________________3. ___________________________________________________________ 若三角形的三边长是 3、4、5,则其外接圆的半径是 ________________________________________________________ ;4.O 0中,弦MN 把O 0分成两条弧,它们的度数比为 4: 5,如果T 为MN 中点,则/ TMO= _________________ _ 则弦MN 所对的圆周角为 ______________________5. △ ABC 的三个顶点在O 0上,且AB=AC=2, / BAC=120 o,则O O 的半径= ___________ , BC= ___________6. ____________________________________________ P 为O O 内一点,OP=3cm , O 0半径为5cm ,则经过P 点的最短弦长为 ______________________________ ;?最长弦长为 _________7. 如图2,A,B,C 三点在O O 上,且AB 是O O 的直径,半径OD 丄AC,垂足为F,若/ A=30 o,OF=3, 则 OA= _________ , AC= ______ _____ , BC= _______________ . 9、 如图3 , AB如图4,已知圆心角Z AOB=124。

,则圆周角Z ACB =D⑶10. 如图5,为直径是52cm 圆柱形油槽,装入油后,油深CD 为16cm,那么油面宽度AB=11. 如图6, O O 中弦AB 丄AC,D,E 分别是AB,AC 的中点. ⑴若AB=AC,则四边形OEAD 是 ___________ ⑵若 OD=3,半径 r 5,则 AB= _________ c m, AC= ____________cm12. 如图7, O O 的直径 AB 和弦CD 相交于点 E ,已知AE=8cm EB=4cm Z CEA=30 ,贝U CD 的长为二、选择题: (每小题 4分,20分)1. 如图8, 如果AB 为O O 的直径, CD 丄AB ,垂足为E ,那么下列结论中,?错误的是( ).F BA . CE=DEB . ?C BDC . Z BAC= / BAD D . AC>AD2、已知O O的半径是5cm,弦AB// CDAB= 6cm, CD= 8cm,贝U AB 与CD的距离是( (A) 1 cm (B) 7 cm ( C) 1 cm 或7 cm (D)无法判断3.已知O O的半径为2cm,弦AB长为2 - 3cm,则这条弦的中点到弦所对劣弧的中点的距离为4.如图9,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C和D两点,AB=10cm,CD=6cm,则AC长为()A 0.5cmB 1cmC 1.5cmD 2 cm5.如图10, 在平面直角坐标系中, P 是经过0( 0, 0)、A(0,2)、0)的圆上的一个动点(P与A、).B不重合),则/ OPB=(o O中,弦C 45 o或135 oB(9)1.已知:如图,在O分)AB=CD. 求证:/ AOC= / BOD D/ B=50o,/ C=20o,求/ BOC的大小。

圆单元测试题及答案初三

圆单元测试题及答案初三

圆单元测试题及答案初三一、选择题(每题3分,共30分)1. 圆的周长公式为:A. C=2πrB. C=πdC. C=2πdD. C=πr²答案:A2. 圆的面积公式为:A. A=πr²B. A=2πrC. A=πd²D. A=πd答案:A3. 圆的半径扩大2倍,面积扩大:A. 2倍B. 4倍C. 6倍D. 8倍答案:B4. 圆的直径扩大3倍,周长扩大:A. 3倍B. 6倍C. 9倍D. 12倍5. 圆的半径扩大到原来的4倍,周长扩大:A. 4倍B. 8倍C. 16倍D. 32倍答案:A6. 圆心角为90°的扇形面积是整个圆面积的:A. 1/4B. 1/3C. 1/2D. 2/3答案:A7. 一个圆的半径为5cm,那么这个圆的直径是:A. 2.5cmB. 5cmC. 10cmD. 15cm答案:C8. 一个圆的周长为12.56cm,那么这个圆的半径是:A. 2cmB. 3cmC. 4cmD. 5cm答案:B9. 一个圆的直径为10cm,那么这个圆的周长是:B. 31.4dmC. 31.4mD. 31.4km答案:A10. 一个圆的半径为3cm,那么这个圆的面积是:A. 28.26cm²B. 28.26dm²C. 28.26m²D. 28.26km²答案:A二、填空题(每题2分,共20分)11. 如果一个圆的半径为r,那么它的直径是__2r__。

12. 一个圆的周长为6.28cm,那么它的半径是__1cm__。

13. 一个圆的面积为12.56cm²,那么它的半径是__2cm__。

14. 圆的周长和直径的比值,叫做圆周率,用字母__π__表示。

15. 一个圆的周长为31.4cm,那么它的直径是__10cm__。

16. 圆的面积公式为__A=πr²__。

17. 一个圆的半径为4cm,那么它的周长是__25.12cm__。

初三圆的测试题及答案

初三圆的测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为5,直径为()。

A. 10B. 15C. 20D. 25答案:A2. 圆的周长公式为()。

A. C = πdB. C = 2πrC. C = πrD. C = 2πd答案:B3. 圆的面积公式为()。

A. A = πr²B. A = 2πrC. A = πd²D. A = 2πd答案:A4. 一个圆的半径增加1倍,其面积增加()倍。

A. 1B. 2C. 3D. 4答案:D5. 一个圆的直径为8,其半径为()。

A. 4B. 8C. 16D. 32答案:A6. 一个圆的半径为3,其周长为()。

A. 6πB. 9πC. 12πD. 15π答案:C7. 一个圆的半径为4,其面积为()。

A. 16πB. 32πC. 64πD. 100π答案:B8. 一个圆的直径为10,其周长为()。

A. 10πB. 20πC. 30πD. 40π答案:B9. 一个圆的半径为5,其直径为()。

A. 10B. 15C. 20D. 25答案:A10. 一个圆的周长为12π,其半径为()。

A. 2B. 3C. 4D. 6答案:C二、填空题(每题3分,共30分)1. 圆的半径为6,其直径为______。

答案:122. 圆的周长为18π,其半径为______。

答案:93. 圆的面积为9π,其半径为______。

答案:34. 圆的周长为16π,其直径为______。

答案:85. 圆的半径为8,其面积为______。

答案:64π6. 圆的直径为12,其周长为______。

答案:12π7. 圆的周长为20π,其半径为______。

答案:108. 圆的直径为15,其半径为______。

答案:7.59. 圆的面积为16π,其半径为______。

答案:410. 圆的半径为5,其直径为______。

答案:10三、解答题(每题10分,共40分)1. 已知圆的半径为7,求其周长和面积。

数学九年级圆的测试题

数学九年级圆的测试题 一、选择题(每题2分,共20分) 1. 圆的半径为3,圆心到圆上任意一点的距离称为圆的半径,这种说法正确吗? A. 正确 B. 错误

2. 已知圆的半径为5,圆心到圆上一点的距离为3,那么这点到圆心所对的圆周角的度数是多少? A. 30° B. 45° C. 60° D. 90°

3. 点P在圆O的外部,PA和PB是点P到圆O的两条切线,PA=PB,那么PA的长度是圆的半径的几倍? A. 1 B. 2 C. 3 D. 4

4. 已知圆的直径为10,求圆的周长。 A. 15.7 B. 31.4 C. 62.8 D. 94.2

5. 圆心角所对的弧长是圆周长的几分之一? A. 1 B. 2 C. 3 D. 4

二、填空题(每题2分,共20分) 6. 圆的半径为r,圆的周长公式为________。 7. 若圆的周长为44cm,则圆的半径为________cm。 8. 圆的直径为14,那么这个圆的面积是________。 9. 已知点A在圆O上,OA的长度为5,点B在圆O上,OB=6,则AB所对的圆心角的度数是________。 10. 圆的切线与半径垂直,切点到圆心的距离等于________。

三、解答题(每题10分,共30分) 11. 已知圆O的半径为7,点P在圆O上,PA是圆O的切线,PA的长度为6,求切线PA与半径OP所成的角的度数。

12. 一个圆的半径为8,圆心位于原点,求圆上任意一点到x轴的距离的最小值和最大值。

13. 在圆O中,弦AB的长度为10,圆心O到弦AB的垂直距离为4,求圆O的半径。

四、综合题(每题15分,共15分) 14. 已知圆O的半径为r,点P在圆O外,PA和PB是点P到圆O的两条切线,PA=PB=a,求圆O的面积。

五、附加题(每题5分,共5分) 15. 圆的内接四边形ABCD中,若∠A=60°,∠B=120°,求∠C和∠D的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
初三圆测试题(一)
一、填空题(每小题3分,共30分)
1、已知⊙O的半径为r,点P到点O的距离等于2 r,那么点P的位置一定在
2、在半径为5cm的⊙O中,弦AB长为8cm,那么弦AB的弦心距为 cm
3、在圆内接四边形ABCD中,则∠A∶∠B∶∠C=2∶3∶4,则∠D= 度
4、如图,AB是⊙O的直径,
∠CAB = 56°,则∠BCO= 度。
5、一个直角三角形的两直角边长分别为6cm和8cm,
则其外接圆的半径为 cm,内切圆的半径为 cm。
6、如图,已知圆周角∠ACB = 120°,
则圆心角∠AOB = 度
7、已知圆中两条弦相交,第一条弦被交点分成6cm和8cm两段,
第二条弦的长为16cm,则第二条弦被交点分成的两段的长为
8、一个点到圆上的最小距离为4 cm,最大距离为9cm,
则圆的半径为 cm
9、如图,BC是⊙O的直径,AC是⊙O的切线,
割线AB交⊙O于D,且AD:AB = 3:5,
AC=2 ,则tanB =
10、如图,AB是⊙O的是直径,CE切⊙O于点C,
CD⊥AB,D为垂足,AB = 12cm,∠B = 30°,
则∠ECB = 度,CD = cm
二、选择题(每小题3分,共30分)
1、下列命题错误的是( )
A、 经过三个点一定可以作圆
B、三角形的外心到三角形各顶点的距离相等
C、 同圆或等圆中,相等的圆心角所对的弧相等
D、经过切点且垂直于切线的直线必经过圆心
2、同圆的内接正方形和外切正方形的周长之比为( )
A、 ∶1 B、2∶1 C、1∶2 D、1∶
3、正三角形的外接圆半径是R,则它的边长是( )
A、0.5R B、 R C、 R D、 R

4、如图,O为圆心,A、B、C、D是圆上四点,
下面角度间等量关系不成立的是( )
A、∠1=∠2 B、∠3=2∠2
C、∠1+∠2=∠3 D、∠3=∠2
5、已知⊙O的直径为12cm,圆心到直线L的距离为6cm,
则直线L与⊙O的公共点的个数为( )
A、2 B、1 C、0 D、不确定
6、圆的外切梯形的中位线长10cm,则梯形的周长为( )
A、30cm B、35cm C、40cm D、45cm
7、如图,AB是⊙O的直径,CD切 ⊙O于点C,AD⊥CD,
D为垂足,如果CD = 3,AD = 4,那么AB = ( )
2

A、 B、
C、12 D、13
8、四边形ABCD内接于⊙O,且AB是⊙O的直径,
MN切⊙O于点C,若∠ABC = 56°,则∠BCM = ( )
A、34° B、56°
C、24° D、104°

9、如图,PAB、PDC是⊙O的割线,连结AD、BC,
若PD:PB= 1:4,AD = 2,则BC的长是( )
A、4 B、5
C、6 D、8

10、如图,AT是⊙O的切线,OD⊥BC于点D,
并且AT = 10cm,AC= 20cm,OD = 4cm,
则半径OC = ( )
A、8.5cm B、8cm
C、9.5cm D、9cm

三、(每小题6分,共18分)
1、如图,M在△ABC的AC边上,且MB = MA = MC ,AB是⊙O的直径,
求证:BC是⊙O的切线

2、已知:如图,在Rt△ABC中,∠ABC = 90°,半圆O切BC于点B,切AC于点D,
交AB于点E,BC= BE =2,求AE和AD的长
3

3、如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD =
13,PD = 4,求两圆组成的圆环的面积

四、(1题6分,2、3小题各8分,共22分)
1、如图,AB是⊙O的直径,BC是弦,延长BC到D,使CD = BC,CE切⊙O于点C,
交AD于E,求证:CE⊥AD

2、已知:如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交⊙O的切
线BF于点F,B为切点,求证:(1)BD平分∠CBF;(2)AB· BF = AF · CD

3、已知:如图,O是线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段
AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E,连结CD,
若AC = 2,且AC、AD是关于x 的方程x2 -kx+4 =0 的两个根
(1)证明:AE切⊙O于点D;(2)求线段EB的长;
(3)求tan ∠ADC的值
4

参考答案
一、填空题
1、圆外 2、3cm 3、90度 4、34度
5、5cm,2cm 6、120度 7、4cm,12cm 8、6.5cm或2.5cm

9、 10、60度,3cm
二、选择题
1、A 2、D 3、B 4、D 5、B 6、C 7、A 8、A
9、D 10、A
三、
1、 略

2、 AE=,AD=
3、 36π
四、
1、提示:连结OC
2、(1)略 (2)证三角形FBD与三角形FAB相似
3、(1)连结OD,OE

(2)EB=4

(3)

相关文档
最新文档