中考数学考点探究主题第一轮考点系统复习第4章三角形课件新人教版

合集下载

中考数学一轮复习第二部分空间与图形第四章三角形第15讲三角形的基本概念和性质课件

中考数学一轮复习第二部分空间与图形第四章三角形第15讲三角形的基本概念和性质课件
A.40°
D)
B.50° C.55° D.60°
5.(2020柳州模拟)如图,在△ABC中,BD是∠ABC的角平分线,已
知∠ABC=80°,则∠DBC=
40°
.
6.(2020长沙模拟)如图,BD是△ABC的中线,AB=8,BC=6,
△ABD和△BCD的周长的差是 2
.
7.(2020广州)在△ABC中,点D,E分别是△ABC的边AB,AC的中
点,连接DE.若∠C=68°,则∠AED=(
A.22°
B.68° C.96° D.112°
B)
考点梳理
考点复习
1.三角形的边角关系
(1)边与边的关系:三角形任何两边之和大于第三
边;任何两边之差小于第三边.
(2)角与角的关系:
①三角形内角和定理:三角形的内角和等于 180°;
②三角形的外角和等于 360°;
C.7 cm,2 cm,3 cm
D.6 cm,7 cm,8 cm
3.(2020揭阳模拟)如图,在△ABC中,∠A=60°,∠B=40°,则
∠C=( B )
A.100°
B.80° C.60° D.40°
4.(2020湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,
∠B=50°,则∠A=(
角平分线,AF 是高.填空:
①BE=
CE
1
=2
BC ;
1
②∠BAD= ∠CAD =2 ∠CAB ;
③∠AFB= ∠AFC =90°;
④△ =2 S△ACE =2 S△ABE .
(4)三角形的中位线:
①定义:
连接三角形两边中点的线段.
②性质:
三角形的中位线平行于第三边

中考数学总复习 第一部分 教材同步复习 第四章 三角形 第17讲 等腰三角形与直角三角形课件

中考数学总复习 第一部分 教材同步复习 第四章 三角形 第17讲 等腰三角形与直角三角形课件
125/9/2021
2.(2016·江西 12 题 3 分)如图是一张长方形纸片 ABCD,已知 AB=8,AD=7, E 为 AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点 P 落在长 方形 ABCD 的某一条边上,则等腰三角形 AEP 的底边长是_5___2_或__4__5_或___5__________.
1224/9/2021
如答图 2 所示, 当∠B′ED=90°时,点 C 与点 E 重合.
∵AB′=10,AC=6,∴B′E=4. 设 BD=DB′=x,则 DE=CD=8-x. 在 Rt△B′DE 中,DB′2=DE2+B′E2,即 x2=(8-x)2 +42.解得 x=5,∴BD=5. 综合所述,BD 的长为 2 或 5.
第一部分 教材同步复习
第四章 三角形
第17讲 等腰三角形与直角三角形
12/9/2021
Байду номын сангаас
知识要点 · 归纳
知识点一 等腰三角形的性质与判定
概念
有两条边相等的三角形叫做等腰三角形
(1)两底角相等,即∠B=∠C; (2)两腰相等,即 AB=AC; 性质 (3)是轴对称图形,有一条对称轴,即 AD; (4)“三线合一”(即顶角的①__平_分__线___、底边上的中线和底边上的高互 相重合)
• (2)若图形中含折叠,考虑用折叠的性质,然后在直角三角形中,设 未知量,列方程求解.
• (3)若所求为线段和(或可转化为线段和的形式),考虑用证全等转 化到直角三角形中求解.
1227/9/2021
12/9/2021
122/9/2021
重难点2 直角三角形的多解题 重点 例3 (2018·宜春模拟)如图,Rt△ABC 纸片中,∠C=90°,AC=6,BC=8, 点 D 在边 BC 上,以 AD 为折痕将△ABD 折叠得到△AB′D,AB′与边 BC 交于点 E.若△DEB′为直角三角形,则 BD 的长是__2_或__5___.

人教版中考数学考点系统复习 第四章 三角形 人教版1 第六节 锐角三角函数与解直角三角形的实际应用

人教版中考数学考点系统复习 第四章 三角形 人教版1 第六节 锐角三角函数与解直角三角形的实际应用

(1)求两位市民甲、乙之间的距离CD;
解:∵斜坡CF的坡比i=1∶3,DG=30 m, DG 1
∴GC=3, ∴GC=3DG=90 m, 在Rt△DGC中, DC= DG2+GC2=30 10 m. 答:两位市民甲、乙之间的距离CD为30 10 m.
(2)求此时飞机的高度AB.(结果保留根号) 过点D作DH⊥AB,垂足为点H,则DG=BH=30 m,DH=BG,设BC=x m, 在Rt△ABC中,∠ACB=45°, ∴AB=BC=x m,∴AH=AB-BH=(x-30) m, 在Rt△ADH中,∠ADH=30°,
AH x-30 3 ∴tan 30°=DH=x+90= 3 ,∴x=60 3+90, 经检验,x=60 3+90是原分式方程的根, ∴AB=(60 3+90) m.答:此时飞机的高度AB为(60 3+90) m.
的树影BC长为m,则大树AB的高为
(A )
A.mcos
α-sincos
α-tan
α
D.sinm α-cosm α
4.★(2022·随州第9题3分)如图,已知点B,D,C在同一直线的水平地
面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物
AB的顶端A的仰角为β,若CD=a,则建筑物AB的高度为
解:过点B作BC⊥AD,交DA的延长线于点C,设AC=x m,∵AD=50 m, ∴CD=AC+AD=(x+50) m,在Rt△ABC中,∠CAB=60°, ∴BC=AC·tan 60°= 3x m, 在Rt△BCD中,∠BDC=45°, ∴tan 45°=BCCD=1,∴BC=CD, ∴ 3x=x+50,∴x=25 3+25, ∴AC=(25 3+25) m,∴AB=2AC=50 3+50≈137(m), 答:古亭与古柳之间的距离AB的长约为137 m.

2022中考数学第一轮考点系统复习第四章三角形第19讲解直角三角形及其应用讲本课件

2022中考数学第一轮考点系统复习第四章三角形第19讲解直角三角形及其应用讲本课件

AB=AC=10,BC=12,则tan∠OBD的值是( )A
1 A.
B.2
C. 6
D.
6
2
3
4
命题点2 解直角三角形的应用
5.(2021·十堰)如图,小明利用一个锐角是30°的三角板测操场旗杆EC的高度
,已知他与旗杆之间的水平距离BC为15 m,AB为1.5 m(即小明的眼睛与地
面的距离),那么旗杆EC的高度是( D)
2 3
2 3.
CD 2 3 (2 3)(2 3)
类比这种方法,计算tan22.5°的值为( B )
A. 2+1 C. 2
B. 2-1
1 D. 2
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月12日星期六下午2时3分37秒14:03:3722.3.12 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给
那些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午2时3分22.3.1214:03March 12, 2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月12日星期六2时3分37秒14:03:3712 March 2022
谢谢观赏
You made my day!
在Rt△BCE中,BE=CE·tan∠BCE=6×tan60°= 6 3(m) .
在Rt△AFD中,∠AFD=45°,∴AD=DF=(3 3 +6)m, ∴AB=AD+DE-BE=3 3+6+2 3-6 3=6- 3 ≈4.3(m).
答:宣传牌的高度AB约为4.3m.
命题点1 直角三角形的边角关系
△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为( D )

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法2 全等三角形的常见模型

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法2 全等三角形的常见模型
∠B=∠DEF,BE=CF.下面给出四个条件:①AC=DF;②AB=DE;③AC∥DF;④
∠A=∠D.请你从中任选一个条件,使△ABC≌△DEF,并写出证明过程.
解:答案不唯一,如选择条件②.证明如下:
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF.
= ,
在△ABC和△DEF中,ቐ∠ = ∠,
证:△BDC≌△CEB.
证明:∵AB=AC,∴∠DBC=∠ECB.
∵AD=AE,∴AB-AD=AC-AE,即DB=EC.
= ,
在△DBC和△ECB中,ቐ∠ = ∠,∴△BDC≌△CEB(SAS).
= ,
证明
3.如图,AD⊥AE,AB⊥AC,∠B=∠C,AB=AC.求证:△ABD≌△ACE.
= ,
∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN.
∵ ∠ MDP + ∠ DMP + ∠ MPD= ∠ CAM + ∠ AMC +
∠ACM=180°,∠MDP=∠CAM,∠DMP=∠AMC,
∴∠APD=∠ACM=模型类别
一线三等
已知条件
图示
相关结论
腰三角形
已知条件
CA=CB,CD=CE,
∠ACB=∠DCE
图示
相关结论
△BCD≌△ACE
4.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,DE分别交BC,AC
于点F,G.
(1)求证:∠C=∠E.
(2)若∠CAE=24°,求∠EFC的度数.
(1)证明:∵∠BAD=∠CAE,
2025年湖南中考数学一轮复习考点研析
第一部分 考点研析
第四章 三角形
技法2 全等三角形的常见模型

中考数学第一轮复习 三角形

中考数学第一轮复习 三角形
正整数,则这样的三角形个数为( B ) A.2 B.3 C.5 D.13
类型之二 三角形的重要线段的应用 命题角度: 1.三角形的中线、角平分线、高 2.三角形的中位线
[2011·成都] 如图 19-1,在△ABC 中,D、E 分别是边 AC、 BC 的中点,若 DE=4,则 AB=___8_____.
1.三条边对应相等的两个三角形全等(简记为________)S.SS 2.两个角和它们的夹边对应相等的两个三角形全等(简记为________). ASA3.两个角和其中一个角的对边对应相等的两个三角形全等(简记为
________).
4.两条边和它们的夹角对应相等的两个三角形全等(简记为________).
命题角度: 1.等腰三角形的性质 2.等腰三角形“三线合一”的性质 3.等腰三角形两腰上的高(中线)、两底角的平分线的性质
[2011·株洲] 如图 21-1,△ABC 中,AB=AC,∠A=36°, AC 的垂直平分线交 AB 于 E,D 为垂足,连接 EC.
__5_0_°____.
图 19-2
全等三角形
考点1 全等图形及全等三角形
1.能够完全_____重__合_的两个图形称为全等形,全等图形的形状和 ______大__小都相同.
2.能够完全______重_合_的两个三角形叫全等三角形. [注意] 完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等
大于
[总结] 任意三角形中,最多有三个锐角,最少有两个锐角,最多有一个钝
角,最多有一个直角.
互余
类型之一 三角形三边的关系
命题角度: 1.利用三角形三边的关系判断三条线段能否组成三角形 2.利用三角形三边的关系求字母的取值范围 3.三角形的稳定性

中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线


4.下列命题中是真命题的是①① ③.(选填序号) ①两点之间,线段最短; ③ ②相等的角是对顶角; ③同角(或等角)的余角相等; ④两个锐角的和是钝角; ⑤同旁内角相等,两直线平行.
5.(RJ 七上 P128 练习 T3 改编)如图,点 C 为线段 AB 上一点,点 D 是线
段 AC 的中点,点 E 是线段 CB 的中点.若 AC=5 cm, BC=4 cm,则 AD=
补角为11202°0 ; (2)若EF°=3,则点E到OC的距离为 3 ;
(3)线段EG,EF,EH,EO中长度最短的是EEFF ; (4)若点F是GH的中点,EG=3,则EH=3 3 .
3.如图,已知 a∥b,∠1=∠2=50°,∠4=70°,则∠3=7700°°,∠5
=5500°°,∠6=112200°,a 与 c 的位置关系是 aa∥∥cc. °
∥b, 则∠1的大小为 A.45°
( C)
B.60°
C.75°
D.105°
7.★(2021·湘西州第17题4分)如图,将一条对边互相平行的纸带进行 两次折叠,折痕分别为AB,CD,若CD∥BE,∠1=20°,则∠2的度数是 4040°°.
命题点 3:命题与定理(2022 年考查 2 次,2021 年考查 4 次,2020 年
(B )
=80°,则∠2的度数为
( C)
A.20°
B.80°
C.100°
D.120°
5.(2022·郴州第7题3分)如图,直线a∥b,且直线a,b被直线c,d所
截,则下列条件中不能判定直线c∥d的是
( C)
A.∠3=∠4
B.∠1+∠5=180°
C.∠1=∠2
D.∠1=∠4
6.(2021·岳阳第5题3分)将一副直角三角板按如图方式摆放,若直线a

中考数学一轮复习 第四单元 三角形 第18讲 等腰三角形课件


2021/12/9
第十九页,共二十三页。
变式 等腰三角形ABC中,∠A=80°,求∠B的度数. (1)请你解答(jiědá)以上的变式题; (2)解答(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如 果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的
2021/12/9
第十八页,共二十三页。
(2018·绍兴(shào xīnɡ))数学课上,张老师举了下面的例题:
例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°) 例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)
张老师启发同学们进行变式,小敏编了如下一题:
综上所述,当0<x<90且x≠60时,∠B有三个不同的度数.
2021/12/9
第二十二页,共二十三页。
内容 总结 (nèiróng)
第18讲 等腰三角形。以学生熟悉的一副三角板为背景结合中点和垂线求线段的长度,看似简单实 则不易(bù yì),是考查能力的一道好题.。①当点C在线段OB上时,如图1,。②当点C在线段OB的延长线上时,如图2,。错误鉴定
或5
25
2

试真题·练易
命题(mìng tí)点 等腰三角形的性质
1.(2016·山西,15,3分)如图,已知点C为线段(xiànduàn)AB的中点,CD⊥AB且CD=AB=4,连 接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD 于点H,则HG的长为3- .5
A.2 cm2 B.3 cm2 C.4 cm2 D.5 cm2
2021/12/9
第十一页,共二十三页。

中考数学考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线


1.(2021·安徽)两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,
∠E=45°,∠C=30°,AB 与 DF 交于点 M.若 BC∥EF,则∠BMD 的大小

( C)
A.60° B.67.5° C.75° D.82.5°
2.(2021·聊城)如图,AB∥CD∥EF,若∠ABC=130°,∠BCE=55°,
第四章 三角形 第一节 几何初步及相交
线与平行线
1.(1)计算:18°30′=1818.5.5°; (2)用度、分、秒表示:18.36°=18°182°1′21′336″6 ; (3)48°36′的余角是 414°1°2244′′,″补角是 13131°1°224′′.
2.如图,直线 AB 与直线 CD 相交于点 O,E 是∠AOD 内一点,已知 OE⊥AB, ∠BOD=45°,则∠COE 的度数是 13 1355°°.
命题点:利用平行线的性质求角度(近 6 年考查 4 次) 1.(2020·宁夏第 4 题 3 分)如图摆放的一副学生用直角三角板,∠F= 30°,∠C=45°,AB 与 DE 相交于点 G,当 EF∥BC 时,∠EGB 的度数是
( D) A.135° B.120° C.115° D.105°
2.(2018·宁夏第 7 题 3 分)将一个矩形纸片按如图所示折叠,若∠1=
DE=4.54.5 cm,图中线段共有 1 100 条.
cm
cm
5.乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题: 如图,已知 AB∥CD,∠BAE=92°,∠DCE=121°,则∠AEC 的度数是 2 29°9°.
【考情分析】宁夏近六年主要以选择题、填空题的形式考查平行线的性 质,多与其他知识结合考查,难度较小,分值一般 3 分.

2022中考数学第一部分知识梳理第四单元三角形第19讲全等三角形课件20220623210

②∠2=∠1+∠C.
理由:∵∠2=∠1+∠E,又∵∠C=∠E,∴∠2=∠1+∠C.
(2)相切.∵点P为半圆O的切点,∴OP⊥CP.
∵OP=1,OC=2,∴∠PCO=30°.∴∠EOD=∠PCO+∠OPC=30°+90°=120°.
∴扇形 =
××

=

.

返回子目录
2. (2019·河北,23)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,
∵∠ACB=90°,∴∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,
∴∠EAC=∠BCD.
在△AEC和△CDB中,
∠EAC=∠DCB,
∠AEC=∠BDC,

∴△AEC≌△CDB(AAS),
AC=BC,
∴CE=BD,AE=CD.∵ED=CE+CD,∴ED=AE+BD.
返回子目录
(2)ED=BD-AE,
①若A1B1=A2B2,A1C1=A2C2,B1C1=B2C2,则△A1B1C1 ≌△A2B2C2;②若∠A1=∠A2,
A1C1=A2C2,B1C1=B2C2,则△A1B1C1≌△A2B2C2.
对于上述的两个结论,下列说法正确的是(
A.①,②都错误
B.①,②都正确
C.①正确,②错误
D.①错误,②正确
A1B1=A2B2,
∠ B 1 = ∠ B 2,
B1C1=B2C2
是否全等

判定定理


ASA


SSS
AAS

SAS
返回子目录
续表
类型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档