人教版四年级下册数学知识点总结[免费专享]

合集下载

【上海市】上海市最全人教版小学四年级数学下册知识点总结

【上海市】上海市最全人教版小学四年级数学下册知识点总结

最新最全面人教版小学数学四年级下册知识点总结第一章、四则运算1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.(无意义)第二章、观察物体(二)1、正确辨认从上面、前面、左面观察到物体的形状。

2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5、从不同的位置观察,才能更全面地认识一个物体。

第三章、运算定律及简便运算一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。

人教版四年级下册数学第一单元知识点归纳

人教版四年级下册数学第一单元知识点归纳

人教版四年级下册数学第一单元知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!人教版四年级下册数学第一单元知识点归纳人教版四年级下册数学第一单元知识点归纳总结数学其实和语文英语一样,也是要记、要背、要练的。

人教版四年级数学知识点总结

人教版四年级数学知识点总结

人教版四年级数学知识点总结人教版四年级数学知识点总结11.大数的认识亿以内的数的认识:十万:10个一万;一百万:10个十万;一千万:10个一百万;一亿:10个一千万;2.数级数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

3.数级分类(1)四位分级法即以四位数为一个数级的分级方法。

我国读数的习惯,就是按这种方法读的。

如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……这些级分别叫做个级,万级,亿级……(2)三位分级法即以三位数为一个数级的分级方法。

这西方的分级方法,这种分级方法也是国际通行的`分级方法。

如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

4.数位数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

这就说明计数单位和数位的概念是不同的。

5.数的产生阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。

到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。

后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。

以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。

由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。

本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。

阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

四年级下册人教版知识点数学

四年级下册人教版知识点数学

四年级下册人教版知识点数学一、数的认识数的概念——数的大小和排列二、加减法加法的概念和运算方法减法的概念和运算方法加减混合运算及其应用三、乘除法乘法的概念和运算方法乘法口诀表及其应用整十整百数的乘法运算除法的概念和运算方法除整十整百数及其应用四、分数分数的概念分数的大小比较及其表示分数加减法及应用五、小数小数的概念小数与分数的关系小数的基本运算六、有关长度和面积长度的认识长度的单位——米、分米、厘米面积的认识面积的单位——平方米、平方分米、平方厘米七、有关时间和温度时间的认识时间的单位——秒、分、时温度的认识摄氏度与华氏度的换算以上就是四年级下册人教版数学知识点的总结。

通常来说,在这一学期里,学生们需要掌握基本的数学概念、加减法、乘除法、分数、小数、有关长度和面积以及有关时间和温度的知识点。

其中,加减法为数学基础,乘除法为数学进阶,而分数和小数则为数学拓展。

对于数的认识,学生们需要了解数的大小和排列,这是数学学习的基础。

在加减法的学习中,需要掌握加法的概念和运算方法、减法的概念和运算方法以及加减混合运算及其应用。

而在乘除法的学习中,需要掌握乘法的概念和运算方法、乘法口诀表及其应用、整十整百数的乘法运算、除法的概念和运算方法以及除整十整百数及其应用。

此外,学生们需要了解分数和小数的基本知识。

在分数的学习中,需要掌握分数的概念、分数的大小比较及其表示、分数加减法及应用。

在小数的学习中,需要掌握小数的概念、小数与分数的关系、小数的基本运算。

有关长度和面积的学习中,需要了解长度的认识、长度的单位——米、分米、厘米、面积的认识、面积的单位——平方米、平方分米、平方厘米。

在有关时间和温度的学习中,需要了解时间的认识、时间的单位——秒、分、时、温度的认识、摄氏度与华氏度的换算等内容。

总之,四年级下册的数学学习内容涵盖了数学的基本概念及其应用,是数学知识体系的基础。

通过对这些知识点的掌握和运用,可以为日后更深入的数学学习奠定良好的基础。

人教版四年级数学下册第一、二单元知识点总结

人教版四年级数学下册第一、二单元知识点总结

第一单元四则运算一、加、减法的意义与各部分间的关系1、加法的意义:把两个数合并成一个数的运算,叫做加法。

相加的两个数叫做加数,加得的数叫做与。

2、加法各部分间的关系:与=加数+加数加数=与-另一个加数3、减法的意义:已知两个数的与与其中一个加数,求另一个加数的运算,叫做减法。

在减法中,已知的与叫做被减数,减号后面的数叫做减数,等号后面的数叫做差。

4、减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差5、加法与减法的关系:减法就是加法的逆运算。

二、乘、除法的意义与各部分间的关系1、乘法的意义:求几个相同加数的与的简便运算,叫做乘法。

相乘的两个数叫做因数,乘得的数叫做积。

2、乘法各部分间的关系:积=因数X因数因数=积÷另一个因数3、除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

已知的积叫做被除数,已知的因数叫做除数,求得的另一个因数叫做商。

4、除法各部分间的关系:①、在没有余数的除法中:商=被除数÷除数除数=被除数÷商被除数=商X除数②、在有余数的除法中:被除数=商X除数+余数商=(被除数-余数)÷除数除数=(被除数-余数)÷商三、有关0的运算①、一个数加上或减去0还得原数②、任何数减去自身都得0③、0除以任何非0的数还得0④、任何数乘0都得0⑤、0不能作除数四、四则混合运算的运算顺序1、在没有括号的算式里,只有乘除法或只有加减法,要按从左到右的顺序计算,有乘除法与加减法的,要先算乘除法,后算加减法。

2、有小括号的算式里,要先算小括号里面的,再算小括号外面的。

3、一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。

第二单元观察物体1、从不同位置观察由小正方体拼摆的物体,辨认观察到的物体的形状的方法:在哪一位置观察物体,就从哪一面数出小正方形的数量,并确定摆出的形状。

人教版小学数学四年级下册知识点总结

人教版小学数学四年级下册知识点总结

人教版小学数学四年级下册知识点总结人教版小学数学四年级下册知识点总结【人教版】小学数学四年级下册知识点总结1、位置与方向(1)确定物体位置的两个条件:方向和距离。

(2)在平面图上表明物体位置的方法:先确定方向,再以选定的长度单位为基准来确定距离,最后画出物体的具体位置,标出名称。

确定方向时选择与物体所在反响离得较近(夹角较小)的方位;距离必须以选定的单位长度为基准。

(3)如何描述物体的位置,与观测点有关,观测点不同,物体位置的描述就不同。

(4)描述路线图的方法:按行驶路线,确定观测点及行走的方向和路程。

例题:1、学校在小明家北偏__的方向上,距离是__米。

2、书店在小明家_偏__的方向上,距离是__米。

3、邮局在小明家_偏__的方向上,距离是__米。

4、游泳馆在小明家_偏__的方向上,距离是__米。

2、整数加法(1)把两个数合并成一个数的运算叫做加法。

(2)在加法里,相加的数叫做加数,加得的数叫做和。

加数是部分数,和是总数。

(3)加数+加数=和,一个加数=和-另一个加数3、整数减法(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。

被减数是总数,减数和差分别是部分数。

(3)加法和减法互为逆运算。

4、整数乘法(1)求几个相同加数的和的简便运算叫做乘法。

(2)在乘法里,相同的加数和相同加数的个数都叫做因数。

相同加数的和叫做积。

(3)在乘法里,0和任何数相乘都得0。

(4)1和任何数相乘都的任何数。

(5)一个因数×一个因数=积;一个因数=积÷另一个因数5、整数除法(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

(3)乘法和除法互为逆运算。

(4)在除法里,0不能做除数。

因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

人教版小学四年级数学下册知识点归纳总结(同名12845)

人教版小学四年级数学下册知识点归纳总结(同名12845)人教版小学数学四年级下册知识点总结四则运算4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.(无意义)运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

( a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。

如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c= a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c②类型三:a×99+a a×b-a= a×(99+1) = a×(b-1)③类型四:a×99 a×102= a×(100-1)= a×(100+2)= a×100-a×1 = a×100+a×2简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。

【广州市】四年级数学下册知识点总结

最新最全面人教版小学数学四年级下册知识点总结四则运算1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.(无意义)运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

(a×b )×c= a×(b×c )乘法的这两个定律往往结合起来一起使用。

如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

人教版小学四年级数学下册知识点总结

小学数学四年级下册知识点总结四则运算1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.(无意义)运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是交换律和结合律3、减法的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)或a-b-c=a-c-b二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

( a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。

如:125×78×8=78×(125×8)先交换后结合3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

人教版四年级数学下册第一、二单元知识点总结

人教版四年级数学下册第一、二单元知识点总结(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一单元四则运算一、加、减法的意义和各部分间的关系1、加法的意义:把两个数合并成一个数的运算,叫做加法。

相加的两个数叫做加数,加得的数叫做和。

2、加法各部分间的关系:和=加数+加数加数=和-另一个加数3、减法的意义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法。

在减法中,已知的和叫做被减数,减号后面的数叫做减数,等号后面的数叫做差。

4、减法各部分间的关系:差=被减数-减数减数=被减数-差2被减数=减数+差5、加法与减法的关系:减法是加法的逆运算。

二、乘、除法的意义和各部分间的关系1、乘法的意义:求几个相同加数的和的简便运算,叫做乘法。

相乘的两个数叫做因数,乘得的数叫做积。

2、乘法各部分间的关系:积=因数X因数因数=积÷另一个因数3、除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

已知的积叫做被除数,已知的因数叫做除数,求得的另一个因数叫做商。

34、除法各部分间的关系:①、在没有余数的除法中:商=被除数÷除数除数=被除数÷商被除数=商X除数②、在有余数的除法中:被除数=商X除数+余数商=(被除数-余数)÷除数除数=(被除数-余数)÷商三、有关0的运算①、一个数加上或减去0还得原数②、任何数减去自身都得0③、0除以任何非0的数还得04④、任何数乘0都得0⑤、0不能作除数四、四则混合运算的运算顺序1、在没有括号的算式里,只有乘除法或只有加减法,要按从左到右的顺序计算,有乘除法和加减法的,要先算乘除法,后算加减法。

2、有小括号的算式里,要先算小括号里面的,再算小括号外面的。

3、一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级下册数学知识点 第一单元 四则运算:加法、减法、乘法和除法统称四则运算。 1、加减法的意义和各部分间的关系。 (1)把两个数合并成一个数的运算,叫做加法。 加法各部分间的关系:和=加数+加数 加数=和-另一个数 (2)已知两个数的和与其中一个加数,求另一个数的运 算,叫做减法。 减法各部分间的关系:差=被减数-减数 减数=被减数-差 被减数=差+减数 (3)加法和减法是互逆运算。

: 2、乘除法的意义和各部分间的关系。

(1)求几个相同加数的和的简便运算,叫做乘法。 乘法各部分间的关系:积=因数×因数 因数=积÷另一个因数 (2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。 除法各部分间的关系:商=被除数÷除数 除数=被除数÷商 被除数=商×除数 (3)乘法和除法是互逆运算。 3、关于“0”的运算 (1)“0”不能做除数; 字母表示:a÷0错误

* (2)一个数加上0还得原数; 字母表示:a+0= a

(3)一个数减去0还得原数; 字母表示:a-0= a (4)被减数等于减数,差是0; 字母表示:a-a = 0 (5)一个数和0相乘,仍得0; 字母表示:a×0= 0 (6)0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0 (7)被减数等于减数,差是0。A-A=0 被除数等于除数,商是1.A÷A=1(a不为0) 4、四则运算顺序 (1)在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

: (2)在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

(3)一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。 第三单元 运算定律及简便运算: 一、加减法运算定律: 1、加法交换律:a+b=b+a 2、加法结合律:(a+b)+c=a+(b+c) 3、连减的性质: a - b - c= a - (b+c) 。 二、乘除法运算定律:

: 1、乘法交换律:。a×b=b×a

2、乘法结合律:( a×b )× c = a× (b×c ) 3、乘法分配律: (1)两个数的和与一个数相乘:(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c (2)两个数的差与一个数相乘:(a - b) ×c= a×c - b×c。 4、除法的性质:a ÷b ÷ c= a ÷(b×c) 。 5、乘法分配律的应用: ①类型一:(a+b)×c= a×c+b×c (a-b)×c= a×c-b×c ' ②类型二:a×c+b×c=(a+b)×c a×c-b×c=(a-b)×c

③类型三:a×99+a = a×(99+1) a×b-a= a×(b-1)

④类型四:a×99 a×102 = a×(100-1) = a×(100+2) = a×100-a×1 = a×100+a×2 6、商不变性质:a ÷b = (a ×c) ÷(b×c) ,a ÷b = (a ÷c) ÷(b÷c)。 三、简便计算

# 1.连减的简便计算:

①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74) ②减去几个数的和就等于连续减去这几个数。如126-(26+74)=126-26-74 2.加减混合的简便计算: 第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减) 例如:123+38-23=123-23+38 146-78+54=146+54-78 3.连除的简便计算: ①连续除以几个数就等于除以这几个数的积。如:120÷3÷4=120÷(3×4)

、 ②除以几个数的积就等于连续除以这几个数。如:455÷(7×13)=455÷7÷13

4.乘、除混合的简便计算: 第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13 5、含有加法交换律与结合律的简便计算: 7、含有乘法交换律与结合律的简便计算: 65+28+35+72 25×125×4×8 =(65+35)+(28 +72) =(25×4)×(125×8) =100 +100 =100×1000 =200 =100000

< 6、乘法分配律简算例子:

(1)分解式 (2)合并式 (3)特殊1 25×(40+ 4) 135×12—135×2 99×256+256 =25×40+ 25×4 =135×(12—2) =99×256+256×1 =1000+ 100 =135×10 =256×(99+1) =1100 =1350 =256×100 =25600 (4)特殊2 (5)特殊3 (6)特殊4 45×102 99×26 35×8+35×6—4×35

- =45×(100+2) =(100—1)×26 =35×(8+6—4)

=45×100+45×2 =100×26—1×26 =35×10 =4500+ 90 =2600—26 =350 =4590 =2574 7、其它简便运算例子: 256—58+ 44 250÷8×4 =256+ 44—58 =250×4÷8 =300—58 =1000÷8 } 8、有关简算的拓展:

102×38-38×2 125×25×32 125×88 ++- 37×96+37×3+37 + 38×99+99 第四单元 小数的意义和性质: 1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。 2、分母是10、100、1000……的分数可以用小数来表示。 3、小数是十进制分数的另一种表现形式。 4、小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……

( 5、每相邻两个计数单位间的进率是10。

6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。 7、 小数的数位顺序表

整数部分 小数点 小数部分

数位 ¥ … 万位 千位 百位 十位 个位 · 十分位 》 百分位 千分位 万分位 … 计数单位 … 万 千 - 百 十 一(个) 十分之一 百分之一 千分之一 万分之一 【 …

(1)的计数单位是0.001。(最低位的计数单位是整个数的计数单位) (2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),8个千分之一(0.001)。 (3)中有(6378)个千分之一(0.001)。 (4)中的4表示4个十分之一(0.1)[4在十分位] 8、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。 9、小数的大小比较:(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。 10、小数点的移动

/ 小数点向右移:移动一位,小数就扩大到原数的10倍;

移动两位,小数就扩大到原数的100倍; 移动三位,小数就扩大到原数的10 00倍;…… 小数点向左移:移动一位,小数就缩小10倍,即小数就缩小到原数的十分之一 ; 移动两位,小数就缩小100倍,即小数就缩小到原数的百分之一 ; 移动三位,小数就缩小1000倍,即小数就缩小到原数的千分之一 ;…… 11、生活中常用的单位: 质量: 1吨=1000千克; 1千克=1000克

… 长度: 1千米=1000米 1米=10分米 1分米=10厘米

1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积: 1平方千米=100公顷 1公顷=10000平方米 1平方米= 100平方分米 1平方分米=100平方厘米 人民币: 1元=10角 1角=10分 1元=100分 单位换算: (1)大(高级)单位转化成小(低)级单位=======乘以进率,小数点向右移动。 (2)小(低级)单位转化成大(高级)单位=======除以进率,小数点向左移动。

· 12、小数的近似数(用“四舍五入”的方法):

(1)改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。 (2)在表示近似数时,小数末尾的“0”不能去掉。 第五单元 三角形 1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。 2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。 3、三角形的特性:稳定性。如:自行车的三角架,电线杆上的三角架。 4、边的特性:任意两边之和大于第三边。

( 5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

6、三角形的分类: 按照角大小来分:锐角三角形,直角三角形,钝角三角形。 按照边长短来分:三边不等的△,等腰△,等边△或正△。 等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念) 7、三个角都是锐角的三角形叫做锐角三角形。 8、有一个角是直角的三角形叫做直角三角形。 9、有一个角是钝角的三角形叫做钝角三角形。

> 10、每个三角形都至少有两个锐角;每个三角形都最多有1个直角;每个三角形都最多有1个钝

角。 11、两条边相等的三角形叫做等腰三角形。 12、三条边都相等的三角形叫等边三角形,也叫正三角形。 13、等边三角形是特殊的等腰三角形 14、三角形的内角和等于180°。四边形的内角和是360° 多边形内角和=(边数-2) ×180° 第六单元 小数的加减法: 1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。整数的小数点在个位右下角。 2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。 3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)

第七单元 图形的运动 1、轴对称的意义:把一个图形沿着某一条直线对折,如果折痕的两边的部分能够完全重合,那么就说这个图形是轴对称图形,这条直线就是对称轴。 2、轴对称的性质:对应点到对称轴的距离相等。 3、轴对称的特征:沿对称轴对折、对应点、对应线段、对应角都重合。 4、轴对称的图形:等腰三角形和等腰梯形1、长方形2、等边三角形3、正方形4、圆形有无数条对称轴。

相关文档
最新文档