气力输送原理总结

合集下载

煤炭气力输送原理

煤炭气力输送原理

煤炭气力输送原理煤炭气力输送原理煤炭气力输送是一种常用的灰尘少、采掘成本低的煤炭输送方式。

其基本原理是利用气体将颗粒物料从输送管道中推送至目的地,以替代传统的机械输送方式。

该方式具有输送能力大、节能环保的特点,在煤炭工业中得到了广泛应用。

1. 输送管道设计煤炭气力输送的关键在于输送管道的设计。

首先,管道的直径应根据输送物料的类型、密度、颗粒大小等因素进行合理设计,以确保颗粒物料能够在管道中流动。

其次,管道的材质应能够耐受高速气流和颗粒物料的冲刷,常用的材质包括耐磨性能好的合金钢、高强度的玻璃钢等。

此外,输送管道应保持一定的斜度,以避免颗粒物料在管道中积聚,也利于管道内的废气排放。

2. 空气动力学原理煤炭气力输送的原理基于空气动力学,其主要特点是利用气流在管道中推送颗粒物料。

在输送过程中,空气流量、速度、压力等参数的变化会影响颗粒物料的输送效果。

因此,要准确掌握空气动力学原理,以便在设计和操作中根据不同的需求进行调整。

空气动力学原理还可以用于管道堵塞等问题的解决。

3. 输送气体的选择在煤炭气力输送中,气体的选择是非常重要的。

一般来说,输送气体应具有很强的冲击力和推动力,能够有效地将颗粒物料从管道中推送出去。

常用的气体包括压缩空气、氮气和碳气等。

此外,需要根据输送物料的特点进行调整,以确保输送效果最佳。

4. 运输过程中的注意事项煤炭气力输送的运输过程中需要注意以下几点。

首先,要进行频繁的检查和维护,确保设备的正常运转。

其次,要防止管道堵塞和颗粒物料的溢出。

如果出现这种情况,应停止输送,清理管道并重新启动。

最后,要遵守相关的安全规定,确保操作人员的人身安全。

总之,煤炭气力输送作为一种新型的煤炭输送方式,具有很高的经济效益和环保效益,逐渐被广泛应用。

在运输过程中,需要合理设计输送管道、掌握空气动力学原理、选择合适的输送气体,并且注意运输过程中的各种安全问题。

只要科学严谨地操作,煤炭气力输送将成为煤炭工业不可或缺的一部分。

第五章_气力输送

第五章_气力输送

压缩空气
底部的压缩空气使物料流态化
上部的压缩空气将混合物压送到输料管
iv) 容器式供料器 )
特点:高压,密封性好,体积大,周期性工作,远距 离,大容量,消耗小,混合比高,成本高. 适用:粉状物料
二,输料管
连接在吸嘴和分离器之间,根据形状分为直管, 软管,弯管,铰接弯管,伸缩管.
1.直管 直管
无缝钢管,法兰连接
3.输料弯管:钢管或薄钢板焊剂 输料弯管: 输料弯管
①曲率半径为管道直径的6~10倍. ②外侧壁面易磨损,作成可拆换式结构,或 采用加厚,加耐磨衬垫等措施. ③压力损失 Pb
Pb = ξb
ρbVb2
2
(1 + ukb )
4.铰接输料弯管 输料管与分离器连接处 铰接输料弯管→输料管与分离器连接处 铰接输料弯管
倒圆锥体,反射屏) ②扩散式旋风除尘器 (倒圆锥体,反射屏)
结构特点:圆筒体下面采用倒圆锥体,其 下部固定一反射屏,反射屏与倒锥体之间 形成环形的间隙,反射屏中心有透气孔, 它可防止已被分离出来的灰尘再次飞扬和 被重新带走. 工作原理:粉尘在离心力作用下被甩向器 壁下滑,经反射屏四周的缝隙落入灰斗; 大部分气体则由反射屏上部旋转而上;少 量气体随粉尘一起进入受尘斗,经反射屏 透气孔上升至除尘器中心排气管.
2.带式过虑器 带式过虑器
①虑袋:棉,毛,化纤织物,工业条纶绒布; 耐磨,强度高,容尘量大. ②清灰方法:手工振动(0.35~0.5m/min), 机械振动(1.0~1.5m/min),气流反向吹洗(3~ 4m/min). ③总过滤面积F: = Q F 60v
五,卸料器(卸灰器) 卸料器(卸灰器)
3.状态 状态
气流速度足够大,均匀分布 气流速度足够大,均匀分布——悬浮流 悬浮流 气流速度逐渐减小: ①分布不均匀,管底较密——底密流 底密流 ②沿轴向出现疏密相间的流动,部分在管底滑 动——疏密流 疏密流(悬浮输送的极限) 疏密流 ③多数丧失悬浮能力,物料沉积,聚集,吹走过 程交替——停滞流 停滞流—— 不稳定输送 停滞流 ④表层颗粒不规则移动,堆积层做沙丘形运动— —部分流 ——悬浮气力输送气体动能输送 部分流 ⑤堆积物料充赛管道. ——栓状流.——气体 栓状流. 栓状流 压力推动输送

压送式气力输送装置的工作原理

压送式气力输送装置的工作原理

压送式气力输送装置的工作原理说到气力输送装置,那真是一项科技小奇迹,它就像是给颗粒物“打了一针兴奋剂”,让它们轻松飞跃到目的地。

好比说,咱们常常看见的小麦、粉末、颗粒啥的,不再是一堆堆地堆在地上,而是像坐上了飞行器,一路飞驰。

今天,我们就来聊聊这个神奇装置的工作原理。

1. 什么是压送式气力输送装置?首先,咱们得弄明白什么是“压送式气力输送装置”。

别被这名字吓到,它其实就是一种用气体把颗粒物输送到远处的装置。

简单来说,就是用风把东西“送”到你想要的地方。

就像你用吸尘器吸尘,气流把灰尘吸进去,再把它送到一个指定的位置。

压送式气力输送装置的工作原理差不多,就是这样一个“风车”把小颗粒往前推。

2. 压送式气力输送装置的工作原理2.1 吸气与排气的妙用这装置的工作原理其实也没什么复杂的。

主要有两个关键步骤——吸气和排气。

首先,装置内会有一个强大的风机或者鼓风机,它负责把空气吸进来。

这就像你用吸管吸饮料一样,把气体吸入管道。

接着,这些空气会被压缩成高压气流,就像你在气球里充气一样,把空气压得很紧。

接下来,这些高压气流会被送到输送管道里,形成一个强大的气流。

2.2 颗粒物的“飞行”现在,气流已经准备好了,它们像一支箭一样,射入管道中。

这时候,管道里的颗粒物就像是被风吹动的小树叶一样,随气流一起飞驰前进。

气流的力量把这些颗粒物推送到管道的另一端,就像在打气球一样,颗粒物也在里面蹦蹦跳跳,被风送到目标地点。

而整个过程呢,就像是一场气流和颗粒物之间的华丽舞蹈,毫无阻碍地滑翔到目的地。

3. 实际应用和优势3.1 应用场景多种多样压送式气力输送装置的应用非常广泛,不仅仅是在工业生产中大显身手。

想象一下,从工厂到你的餐桌,粉末状的调料、食品原料都是经过这样的装置输送到生产线上的。

甚至在一些建筑工地上,这种装置也能看到它的身影,帮助将水泥、沙子等材料快速输送到指定位置。

可以说,它就像是现代工业中的“无声快递员”,默默无闻地干着活。

粉体气力输送原理

粉体气力输送原理

粉体气力输送原理
粉体气力输送是利用气流将粉体物料从一个地方输送到另一个地方的一种输送方式。

其原理是通过气流的作用,使粉体物料悬浮在气流中,并通过气流的推动将粉体物料从输送管道中运输。

具体原理如下:
1. 气体输送:粉体物料和气体(通常为压缩空气)一起进入输送管道,在管道中形成气固两相流动。

气体的速度和压力变化产生的气流动能使得粉体物料悬浮在气流中。

2. 流态特性:气体的流态特性对粉体的输送起着重要的作用。

当气流速度较小时,粉体呈现自由流动状态;当气流速度增大到一定程度时,粉体会呈现流态变化,形成与气流同向的带状流或密堆流;当气流速度进一步增大时,粉体会形成气固两相流动,呈现悬浮状态。

3. 气流的传递:气力输送中,气流通过压缩机、输送管道和输送装置等元件的传递和输送。

通过控制气流速度和压力,使得气流能够稳定地推动粉体物料的输送。

4. 控制系统:气力输送过程中需要对气流速度、压力和物料浓度等参数进行控制。

可以通过调节压缩机的气流量和压力、调节管道的直径和长度,以及使用截流器、混合器等装置来实现对气力输送的控制。

总之,粉体气力输送利用气流的推动作用将粉体物料从一个地
方输送到另一个地方,通过对气流和物料流动特性的控制,实现粉体物料的稳定输送。

气力输送泵工作原理

气力输送泵工作原理

气力输送泵工作原理《气力输送泵工作原理》气力输送泵是一种利用气体动力将固体颗粒物料从一个地方输送到另一个地方的设备。

它采用高速气流产生的气力将物料推动和悬浮在管道中,从而实现输送的目的。

气力输送泵主要由气源、管道系统和物料供应系统三部分组成。

气源通常是由压缩空气或其他气体源提供的。

管道系统则是用于将气体和物料输送到目标地点的管道网络。

物料供应系统则是负责物料的供给和悬浮。

工作原理上,气力输送泵依靠高速气流的能量将物料推送到目标位置。

首先,气源将压缩空气通过管道输送到气力输送泵的进气口。

在气力输送泵内部,进气口与物料供应系统相连。

当气流经过进气口时,会在物料供应系统的作用下将物料混合进气流中。

通过气流的速度和流量,气力输送泵将物料推送到管道系统中。

在管道中,气流的动能将物料悬浮,并推动物料在管道中流动。

由于气流的高速和流量的控制,物料能够以较高的速度和效率被输送到目标位置。

气力输送泵的工作原理具有几个优点。

首先,它可以在长距离输送固体颗粒物料时提供更高的速度和效率。

其次,由于物料是通过气流悬浮在管道中输送,因此能够避免物料的结块或堵塞问题。

此外,气力输送泵适用于各种物料的输送,包括颗粒、粉末和颗粒状物料等。

然而,气力输送泵也存在一些限制。

由于气体的体积变化以及气流的阻力,气力输送泵在长距离输送时需要消耗大量的能量。

此外,气力输送泵对管道的材质和设计也有一定要求,以确保物料能够顺利地被输送。

综上所述,《气力输送泵工作原理》介绍了气力输送泵的基本工作原理和特点。

它通过高速气流的推动将固体颗粒物料从一个地方输送到另一个地方。

尽管存在一些限制,气力输送泵在固体物料输送方面仍然具有重要的应用价值。

《气力输送技术》课件

《气力输送技术》课件

结构形式
根据分离原理和物料特性,选择 合适的分离器结构形式,如旋风 分离器、袋式过滤器等。
排放方式
将分离出来的物料排放到指定的 料仓或输送带,实现物料的收集 和输送。
除尘设备
除尘原理
利用过滤、惯性、离心等原理,去除气体中的粉尘和杂质,保护 环境和设备。
除尘方式
根据粉尘的性质和工艺要求,选择合适的除尘方式,如袋式除尘器 、静电除尘器等。
气力输送技术的分类
吸送式气力输送技术
压送式气力输送技术
利用负压气体将物料从低压端吸入管道, 并输送到高压端。适用于短距离、小规模 、低密度的物料输送。
利用正压气体将物料从高压端压入管道, 并输送到低压端。适用于长距离、大规模 、高密度的物料输送。
混合式气力输送技术
流态化式气力输送技术
结合了吸送和压送的特点,利用正负压气 体将物料在管道中输送。适用于各种距离 和规模的物料输送。
医药行业
在医药行业中,气力输送技术 用于药品原料、中间体的输送 ,符合GMP要求。
物流行业
在物流行业中,气力输送技术 用于仓库内的物料搬运和配送

03 气力输送系统的组成与设计
CHAPTER
气源设备
空气压缩机
提供气力输送系统所需的气体动力,通常为压缩空气。
储气罐
储存压缩空气,稳定气压波动,保证气力输送系统的连续运行。
《气力输送技术》ppt课件
目录
CONTENTS
• 气力输送技术概述 • 气力输送技术的特点与优势 • 气力输送系统的组成与设计 • 气力输送技术的发展趋势与研究方向 • 气力输送技术的实际应用案例
01 气力输送技术概述
CHAPTER
气力输送技术的定义

工程气力输送系统解决方案

工程气力输送系统解决方案

工程气力输送系统解决方案一、总论工程气力输送系统是一种利用气体流动的动力进行颗粒物料输送的技术。

它具有输送速度快、输送距离远、输送过程无尘污、无污染、可输送高温、多种材料等优点。

气力输送除了有一定的推动能力之外,还具有气体流动特性和固体颗粒物料之间的作用力,使得固体颗粒物料在压缩空气的推动作用下,形成了一种类似流体的输送形式,从而达到了快速输送和不易破碎的目的。

工程气力输送系统适用于各种颗粒物料的输送,包括碳化硅、铝灰、耐火泥、各种耐火材料、矿渣、水泥、石灰、水泥熟料、粉煤灰、砂石等。

气力输送系统可以满足不同工艺条件的输送要求,也可以根据不同物料的性质和输送要求,设计相应的气力输送系统。

本文将从工程气力输送系统的原理、结构设计、技术要求、系统应用等几个方面对工程气力输送系统的解决方案进行介绍。

二、工程气力输送系统的原理工程气力输送系统是通过压缩空气作为动力源进行颗粒物料的输送。

压缩空气在气力输送管道内形成一定的流速和动能,当固体颗粒物料混入气流中时,会受到气流的推动和作用力,形成一种类似流体的输送形式。

气体流速和压差大小直接影响着颗粒物料的输送速度和效果,因此,工程气力输送系统的原理可以归纳为以下几个方面:1. 气流动能作为推动力:通过压缩空气形成的气流动能,可以推动颗粒物料在输送管道内形成一定的流速,从而实现颗粒物料的输送。

2. 气流和固体颗粒的作用力:气流对颗粒物料产生的作用力,除了推动作用之外,还有一部分作用力是气体流动特性和颗粒物料之间的摩阻力和推力。

这种作用力是实现颗粒物料输送的重要条件。

3. 气流和固体颗粒的充填率:气流对颗粒物料的推动作用和填充度直接影响着颗粒物料输送的速度和效果。

4. 输送管道的流速和压差:气流在输送管道内的流速和压差大小,直接影响着颗粒物料的输送速度和效果。

三、工程气力输送系统的结构设计工程气力输送系统包括气力输送设备、输送管道、气动输送阀、阻力器、输送过程监控设备等几个主要部分。

气力输送原理与应用

气力输送原理与应用

气力输送原理、特点、应用范围、设备安装基础知识(整理)气力输送是物料—主要是粉料(颗粒料一般不大于10mm)输送的一种重要方式。

气力输送又称气流输送,利用气流的能量,在密闭管道内沿气流方向输送颗粒状物料,是流态化技术的一种具体应用。

气力输送装置的结构简单,操作方便,可作水平的、垂直的或倾斜方向的输送,在输送过程中还可同时进行物料的加热、冷却、干燥和气流分级等物理操作或某些化学操作,应用范围非常广泛。

一气力输送简介简介气力输送又称气流输送,利用气流的能量,在密闭管道内沿气流方向输送颗粒状物料,是流态化技术的一种具体应用。

气力输送装置结构简单,操作方便,可作水平的、垂直的或倾斜方向的输送,在输送过程中还可同时进行物料的加热、冷却、干燥和气流分级等物理操作或某些化学操作。

与机械输送相比,此法能量消耗较大,颗粒易受破损,设备也易受磨蚀。

含水量多、有粘附性或在高速运动时易产生静电的物料,不宜于进行气力输送。

气力输送的主要特点是输送量大,输送距离长,输送速度较高;能在一处装料,然后在多处卸料。

根据颗粒在输送管道中的密集程度,气力输送分为以下三:①稀气力输送相输送:固体含量低于1-10kg/m3,操作气速较高(约18~30m/s),输送距离基本上在300m 以内。

现成熟设备料封泵来说,输送操作简单无机械转动部件,输送压力低,无维修、免维护!②密相输送:固体含量10-30kg/m3或固气比大于25的输送过程。

操作气速较低,用较高的气压压送。

现成熟设备仓泵,输送距离达到500m 以上,适合较远距离输送,但此设备阀门较多,气动、电动设备多。

输送压力高,所有管道需用耐磨材料。

间歇充气罐式密相输送。

是将颗粒分批加入压力罐,然后通气吹松,待罐内达一定压力后,打开放料阀,将颗粒物料吹入输送管中输送。

脉冲式输送(图4)是将一股压缩空气通入下罐,将物料吹松;另一股频率为20~40min-1脉冲压缩空气流吹入输料管入口,在管道内形成交替排列的小段料柱和小段气柱,借空气压力推动前进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气力输送原理总结————————————————————————————————作者:————————————————————————————————日期:气力输送原理第一节气力输送的基本原理一、沉降速度与悬浮速度散粒物料在气流中运动时,沉降速度和悬浮速度是它的最基本性质。

当直径为d的球形物体从静止状态在空气中自由下落时,由于受到重力的作用,下落速度将愈来愈快,同时,物体受空气的阻力亦逐渐增大。

当物体的自重G以及物体在空气中受到的浮力P和阻力R,按下列关系达到平衡时,即; G—P=R =πd3 /6 (ν物-ν气)则物体将因惯性作用而以等速γ沉向下沉降,这一速度就叫做沉降速度。

在上式中: ( ) R=CS- ν气/2g·ν沉2 =C·πd2 /4·γ气/2g ·ν沉2式中: γ物、γ气——物体和空气的比重g——重力加速度S——物体在运动方向的投影面积,亦叫迎风面积C——物体以沉降速度运动时的阻力系数物体的沉降速度为:γ沉= [4gd/3C·(γ物-γ气)/ γ气]1/2 =3.62[d (γ物-γ气) /γ气·C]1/2设沉降速度为ν沉的物体,放在垂直向上的速度为ν的均匀气流中,则物体运动的绝对速度ν物将为:γ物=γ-γ沉此时,如果ν=ν沉,则物体的绝对速度ν物=0,即物体在气流中停在原处,既不上升,也不下降。

通常将这时的气流速度称为物体的悬浮速度ν悬。

物体的悬浮速度在数值上与沉降速度相等,即ν悬=ν沉。

由此可见,当物体处在大于其悬浮速度的气流中时,则物体将被气流带动。

在垂直管道中,气流动力同物料重力处在同一直线上。

要使物料能与气流同向运动,则气流的速度必须大于物料的悬浮速度。

所以,悬浮速度是实现气力输送时确定气流速度的依据。

但是,物料在管道中的运动十分复杂,受着多方面因素的影响;同时,被输送物料的形状通常是极不规则的,所以,各种物料的实际悬浮速度需要通过实验来确定。

在水平管道内,由于气流的动力方向同物料颗粒的重力方向垂直,因而共悬浮和运动状态更为复杂。

在选择气流速度时,通常仍以垂直管道内的悬浮速度为依据。

部分谷类物料的悬浮速度见表表部分谷类物料悬浮速度参考值名称 v悬(米/秒)名称 v悬(米/秒)名称 v悬(米/秒)小麦 9~11 糙米 9~12 油菜仔 8面粉 2~3 大糠(谷壳) 2~3.5 大豆 9~11麸皮 1~3 米糠 1~2 大麦 9~11 一皮物料 6~7 稗子 4~7 高梁 9.8~11.8 大麦心 4.3~5 并肩石 11 荞麦 7.5~8.7 中麦心 4~4.5 玉米 10~14 燕麦 8~9 细麦心 2~4 花生 11~15 豌豆 15~17.5 稻谷 8~10 棉籽 9~10在实际的气力输送管道中,由于物料相互之间和同管壁之间的摩擦、碰撞以及管道内气流的不均匀等多种原因,实际所需的气流速度远比物料的悬浮速度为大。

二、管流中物料颗粒的运动状态(一)物料颗粒在垂直管道中的运动状态在垂直输料管道中,物料颗粒的重力方向与空气动力的方向处于同一垂直直线上,但方向相反,只要气流的速度大于物料颗粒的悬浮速度,物料颗粒就会随气流向上运动。

但在紊流气流中,因有与流向相垂直的分量存在,管道内的气流速度又是不均匀的,物料颗粒的形状通常也不规则,且物料相互间或与管壁间相互碰撞产生旋转,致使物料颗粒的运动呈不规则的曲线上升状态。

在垂直输料管中,物料颗粒在管道内的分布基本是均匀的。

(二)物料颗粒在水平管道中的运动状态在水平输料管道中,物料颗粒的重力方向与空气动力的方向相垂直,空气动力对物料的悬浮不起直接作用,但物料颗粒仍然能被悬浮输送,这是因为在气流水平动力的作用下,产生了以下几种悬浮力来对抗重力,如图所示,从而使物料被悬浮。

1.垂直方向上的分速度产生的作用力(图1)。

2.处在管底的物料颗粒,其上下部因速度不同形成的静压差而产生的作用力。

(图2)。

3.物料颗粒周围的环流与管内气流共同作用形成的升力(图3)。

贴近管底的物料,在气流的推动下向前滚动,由于流体具有粘性,颗粒周围的空气便被带动,形成环流。

颗粒上部的环流与气流的速度方向相同,叠加后速度增大;颗粒下部的环流与气流的速度方面相反,叠加后速度减小;这样,颗粒的上下部因速度不同而产生静压差,从而产生对颗粒的升力。

4.颗粒的形状不规则,受到的推力在垂直方向的分力(图4)。

5.颗粒相互间或与管壁碰撞受到的反作用力在垂直方向的分力(图5)。

在上述悬浮力的共同作用下,物料在水平管道中悬浮并随气流被输送。

在水平输料管中,物料颗粒群受管道内气流速度大小的影响,呈现以下六种运动状。

1.悬浮流:管道内输送气流的速度较大时,物料基本上处于均匀分布状态,物料颗粒在气流中呈悬浮状态输送。

2.底密流:管道内输送气流的速度减小时,越接近管底处,物料的分布越密集,但没有出现停滞。

物料颗粒一面作不规则的旋转、碰撞,一面被向前输送。

3.疏密流:管道内输送气流的速度进一步减小时,物料在水平管道内呈疏密不均匀的流动状态,部分物料颗粒在管底滑动,但没有停滞。

4.停滞流:随着管道内输送气流的速度再次减小,大部分的物料颗粒失去被气流的悬浮,停滞在管道底部。

此时,管道的局部区段因物料积聚而使管内断面变小,气流速度在该区段增大,使停滞的物料重新被吹走,形成停滞、积聚、吹走相互交替的不稳定输送状态。

5.部分流:管道内输送气流的速度过小时,气流就失去对物料的悬浮能力,物料颗粒堆积在管底,气流在上部流动。

堆积的物料表面,有部分颗粒在气流的作用下作不规则的移动,同时堆积层也随着时间作沙丘移动似的流动。

6.柱塞流:当部分流也不能实现时,管道即被堵塞,物料呈柱状间隔充满管道。

由于物料柱前后的压缩空气存在压力差,物料就依靠静压差的推动而被输送。

第四章气力输送技术第二节气力输送装置的基本形式根据设备组合情况的不同,气力输送装置一般可分为吸气式、压气式和混合式三种基本形式。

一、吸气式气力输送装置上图所示为固定式码头吸粮机,它是吸气式气力输送。

装置的一种形式。

从图中可以看出,物料的输送都是在风机的吸气管道一侧进行。

当风机7开动后,在风机的吸气管道内造成一定的负压。

这时,在管道外面的空气,就被大气不断地压入管道。

与此同时,物料也被空气带动通过吸嘴1进入管道2,并被输送至卸料器3。

在卸料器中,物料和空气分离,然后从卸料器底部的关风器4排出。

空气则经除尘器5和6净化后进入风机,然后排**气。

或再经一道除尘器二次净化后再排**气。

这种输送方式的特点是;1.可以从几处同时吸取物料,输送到一处集中。

2.适宜于堆积面广,或装在低处深处物料的输送。

3.只要有空气吸入口,就能很容易地把管道伸入到一些狭窄的地方(如料斗下部),吸取物料进行输送。

4.在输送过程中,没有灰尘飞扬,供料口可以敞开,供料和输送可以连续进行。

5.由于输送气流的压力低于大气压力,水分容易蒸发,所以对水分多的物料比压气式容易输送。

二、压气式气力输送装置在压气式气力输送装置中,物料的输送都在压气管道一侧进行。

输料管内的空气压力大于周围的大气压力,因此也叫正压输送或压送。

如图所示为压气式气力输送装置的一般形式。

当通风机1开动后,管道2内的压力便高于大气压力。

为了使料斗3中的物料能进入管道2中去,在这里装有供料器4。

物料进入管道后,即被气流输送至卸料器5中,使物料与空气分离,并由关风器6排出。

空气则经除尘器7净化后排**气。

目前,粮食加工厂中谷壳等副产品的输送,常采用此种形式。

这种输送方式的特点是:1.将输料管分叉并安装切换阀,即可改变输送路线或同时向几个地方输送。

2.因为输送空气的压力可以提高到风机额定的最高排气压力,所以即使输送条件有些变化,也能保持一定程度的适应性,适合于高浓度长距离输送。

3.整个装置内部处于正压状态,物料易从排料口排出。

卸料器和除尘器结构较简单,但供料器结构较复杂。

在输送过程中,灰尘容易飞扬。

三、混合式气力输送装置混合式气力输送装置是在风机的吸气管道和压气管道都进行物料的输送。

如图所示。

当风机3工作时,物料由吸嘴1随气流沿吸气管道2进入卸料器4。

在这里,物料与空气分离。

从卸料器分离出来的空气沿风管进入风机,井从压气管道6排出。

从卸料器分离出来的物料,经关凤器(供料器) 5排出后,也进入压气管道6,在这里与空气重新混合,然后沿混合式气力输送装置具有吸气式和压气式气力输送装置所具有的特点。

四、粮食加工厂气力输送的形式和特点在粮食加工厂车间内部,一般采用吸气式气力输送装置来完成物料的提升输送。

下图分别为风运面粉厂的工艺流程图。

从图中可以看出,这种风运装置通常都是由接料器、输料管、卸料器、除尘器、关风器和通风机等设备组成。

粮食加工厂采用气力输送,除了能起到输送作用外,还可以在输送过程中,对物料进行清理、冷却、分级和对作业机完成除尘、降温等工艺任务。

例如在大米厂或面粉厂的清理车间中采用气力输送,对粮粒起到一定的表面清理作用,并可除去部分瘪麦、瘪谷、麦皮、谷壳等轻杂质,以及绝大部分泥灰、砂;在米厂的砻碾部分,还可进一步分离谷壳和糠粞。

所有这些,就可以不用或少用风选设备,从而使工艺和设备得以简化。

由于碾磨物料的温度降低,湿气较少,而且比较松散,所以平筛的筛理效果可以提高。

据有关资料统计,采用风运后,平筛的负荷可提高25~30%,筛绢的使用寿命可延长20~25%。

另外,成品温度较低,便于保管。

采用气力输送,由于利用直径不大的输料管代替了体积庞大的斗式提升机,以及除尘设备的减少和其它工艺设备的简化,使厂房的跨度可以缩小,建筑面积可以减少。

在同样的条件下,车间显得宽敞明亮。

风运装置的设备比较简单,安装和维修方便,投资和折旧费用低,且操作安全、事故较少。

粮食加工厂的风运装置是在负压下工作,所以灰尘不易飞扬。

同时由于设备和溜管内的水汽凝结基本消除,灰尘不易积存,从而消除了滋长微生物和虫害的温床,使车间的劳动卫生条件大为改善。

气力输送的主要缺点是,它与机械输送比较,动力消耗较高。

因此,在设计时,必须考虑气流的综合利用。

其次在输送颗粒状物料时,如果处理不当,对设备的磨损较大,并易导致谷物的破碎。

另外,粮食加工厂的风运装置,通常是由若干根输料管组成的集中网路,因此在操作上,物料流量要求稳定、均匀。

五、气力输送装置的主要设备(一)、接料器和供料器接料器和供料器是使物料与空气混合并送入输料管的一种设备,是风运装置的咽喉。

接料器的结构是否合理,直接影响整个风运装置的输送量、工作的稳定性和电耗的高低。

所以,如何根据装置的不同工作条件,正确地设计和选用合理的接料器,是提高风运工作效果的重要环节。

对接料器结构的要求是:第一,物料和空气在接料器中应能充分混合,即要使空气从物料的下方引入,并使物料均匀地散落在气流中,这样,才能有效地发挥气流的悬浮和推动作用,防止掉料。

相关文档
最新文档