《正比例函数(第1课时)》教案 人教数学八年级下册
人教版数学八年级下册19.2.1《正比例函数》教学设计

人教版数学八年级下册19.2.1《正比例函数》教学设计一. 教材分析人教版数学八年级下册19.2.1《正比例函数》是学生在学习了初中数学基础知识后,进一步深入研究函数性质的重要内容。
本节课的主要内容是正比例函数的定义、图像和性质。
教材通过丰富的例题和练习题,帮助学生理解和掌握正比例函数的概念,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识基础。
但是,对于正比例函数的定义和性质,以及如何运用正比例函数解决实际问题,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。
三. 教学目标1.理解正比例函数的定义,掌握正比例函数的性质。
2.能够根据正比例函数的性质,解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.正比例函数的定义和性质。
2.如何运用正比例函数解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正比例函数的定义和性质。
2.利用多媒体辅助教学,展示正比例函数的图像,帮助学生直观地理解正比例函数的性质。
3.通过实例分析,让学生学会如何运用正比例函数解决实际问题。
4.小组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.多媒体教学设备。
2.正比例函数的相关教学素材,如PPT、例题、练习题等。
3.学生分组合作的准备。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的实例,如速度与时间的关系,引导学生思考这些实例背后的数学规律。
2.呈现(10分钟)介绍正比例函数的定义,引导学生通过观察实例,总结正比例函数的性质。
3.操练(10分钟)分组讨论,让学生通过合作解决问题,进一步理解和掌握正比例函数的性质。
4.巩固(10分钟)针对学生掌握的情况,进行针对性讲解,巩固学生对正比例函数性质的理解。
5.拓展(10分钟)利用正比例函数的性质,解决实际问题。
人教版数学八年级下册正比例函数说课稿(推荐3篇)

人教版数学八年级下册正比例函数说课稿(推荐3篇)人教版数学八年级下册正比例函数说课稿【第1篇】一、说教材1、教材分析:本节课是人教版八年级数学《第十四章一次函数》的第一课时。
函数是初中数学学习的重要内容,而正比例函数是最简单的函数。
通过学习正比例函数,培养学生利用函数解决生活中的实际问题,培养学生函数的数学思想,培养学生体会“数学来源于生活,同时也为生活服务”的数学意识;通过画正比例函数图象,培养学生的动手画图能力,数形结合的数学思想,通过函数图象研究正比例函数的性质,这些都是初中函数学习是主要目标,也是数学教学的重要目标。
2、学情分析:学生在前面学完平面直角坐标系、变量和常量、函数的概念、列函数关系式、函数的图象后,教材安排了正比例函数,本节课是对前面知识的一个小结与概括,也是前面知识的延伸与拓展,同时也是后面学习一次函数、二次函数、反比例函数的基础。
教科书通过生活实例引出正比例函数的意义,然后借助平面直角坐标系得到正比例函数图象,最后通过图象研究正比例函数的性质。
3、教学目标:根据新课程标准与课本对本节课的要求和八年级学生的认知特点,制定以下教学目标:4、知识技能:1.初步理解正比例函数的概念及其图象的特征;2.能够画出正比例函数的图象;3.能够判断两个变量是否构成正比例函数关系。
5、数学思考:1.通过“燕鸥飞行路程问题”的研究,体会建立函数模型的思想;2.通过正比例函数图象的学习和探究,感知数形结合思想。
6、解决问题:1.能按要求运用“列表法”和“两点法”作正比例函数的图象;2.会利用正比例函数解决简单的数学问题。
7、情感态度:1.结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯;2.通过正比例函数概念的引入,使学生进一步认识数学是由于人们需要而产生的,现实世界密切相关,同时渗透热爱自然和生活的教育。
8、、重点难点:重点:利用正比例函数解决生活实际问题,理解正比例函数的概念。
难点:利用正比例函数解决生活实际问题。
《正比例函数》一次函数(第1课时正比例函数的概念)

例题
用于解释正比例函数的实际应 用和解题方法。
习题
用于帮助学生巩固所学知识和 提高解题能力。
教学媒体
投影仪
用于展示PPT、图片等教学资料。
白板
用于书写重要知识点和解题过程。
教学软件
例如Z+教学软件,提供在线学习资源和互动教学功能。
06
CATALOGUE
教学评价与反馈
学生评价
课堂参与度
学生是否积极参与课堂活动,如回答问题、小组讨论等。
03
CATALOGUE
教学方法与手段
教学方法
激活学生的前知
通过提问和回顾相关知识,激活 学生对正比例关系的认知。
示范与讲解
通过实例和图表的示范,解释Fra bibliotek比 例函数的定义和性质。
小组讨论与合作
组织学生进行小组讨论,鼓励他们 分享对正比例函数的理解和探索发 现。
教学手段
多媒体教学
使用PPT、几何画板等工具,展 示正比例函数的图像和性质。
正比例函数的定义
通过实例和图像,讲解正比例函数的定义,并强调正比例函数是一 种特殊的线性函数。
正比例函数的表达式
介绍正比例函数的表达式,并解释其中各个符号的含义。
正比例函数的图像与性质
01
02
03
图像的绘制
讲解如何绘制正比例函数 的图像,并强调图像的形 状和特点。
性质的解释
通过图像,解释正比例函 数的一些基本性质,如单 调性、经过的象限等。
《正比例函数》一次函数
(第1课时正比例函数的概
念)
汇报人:
2023-12-06
CATALOGUE
目 录
• 教学目标与重点 • 教学内容与步骤 • 教学方法与手段 • 教学步骤与活动 • 教学资源与媒体 • 教学评价与反馈
人教版八年级数学下册第十九章《正比例函数(1)》公开课课件1

(2)认真观察自变量和常量运用什么运算符号连接 起来的?这些常量可以取哪些值?
(3)这4个函数表达式与问题1的函数表达式 y=300t有何共同特征?请你用语言加以描述.
活动三:形成概念
• 1.如果我们把这个常数记为k,你能用数学式子表达吗? y=kx
活动二:问题再现
(3)每个练习本的厚度为0.5cm, 一些练习本摞在一起的总厚度h (单位:cm)随练习本的本数n的 变化而变化.
h0.5n
(4)冷冻一个0°C的物体,使它每 分钟下降2°C,物体问题T(单位:°C) 随冷冻时间t(单位:min)的变化而变 化.
T2t
பைடு நூலகம்
活动二:问题再现
• 问题探究:在 l 2πr 、 m7.8V 、 h0.5n 和 T2t 中 :
在特定条件下自变量可能不单独就是x了, 要注意自变量的变化
活动六:理解概念
1.如果y=(k-1)x,是y关于x的正比例函数, 则k满足__________k_≠_1____. 2.如果y=kxk-1,是y关于x的正比例函数, 则k=_______2___.
3.如果y=3x+k-4,是y关于x的正比例函数,
活动一:情境创设
(2)京沪高铁列车的行程y(单位:km)与运行时间t(单 位:h)之间有何数量关系?
• y=300t(0≤t≤4.4)
活动一:情境创设
(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过 了距始发站1 100 km的南京站? • y=300×2.5=750(km), 这是列车尚未 到 达 距 始 发 站 1 100km的南京站.
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案[001]
![人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案[001]](https://img.taocdn.com/s3/m/3de6a999c850ad02df80411f.png)
19.2 一次函数19.2.1 正比例函数——正比例函数的图象与性质【知识与技能】1.能够画出正比例函数的图象.2.能够根据正比例函数的图象归纳正比例函数图象的性质.3.能够利用正比例函数解决简单的数学问题.【过程与方法】1.通过实例,体会建立数学模型的思想.2.通过正比例函数图象的学习与研究,感知数形结合思想.【情感态度】结合描点作图,培养学生认真、细心、严谨的学习态度.【教学重点】正比例函数的图象与性质.【教学难点】正比例函数的图象与性质一、复习回顾正比例函数的概念(练习回顾)已知y-3与x成正比例,当x=2时,y=7,求y与x之间的函数解析式. 解:设y-3=kx,∵当x=2时,y=7,代入得7-3=2k,∴k=2,即y-3=2x,则y=2x+3二、思考探究,获取新知例1.画出下列正比例函数的图象(1)y=2x,y=1/3x;(2)y=-1.5x,y=-4引导学生用描点法将这四个正比例函数的图象画在同一个平面直角坐标系中,鼓励学生探索图象特征,引导学生归纳的结果围绕以下几个方面:(1)图象都是经过原点的直线.(2)函数y=2x和y=1/3x的图象从左向右递增,经过一、三象限.(3)函数y=-1.5x和y=-4x的图象从左向右递减,经过二、四象限.教师总结正比例函数的图象与性质:一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,当k>0时,直线过第一、三象限,y随x的增大而增大;当k<0时,直线过第二、四象限,y 随x的增大而减小.例1已知正比例函数的图象过点(2m,3m),m≠0,求这个正比例函数的解析式.解:设正比例函数的解析式为:y=kx.把(2m,3m)代入得3m=k·2m,解得k=3 2 .∴解析式为y=32 x.【教学说明】正比例函数中只含有一个待定系数,只需知道一点坐标即可求得其解析式.例2 已知(x1,y1)、(x2,y2)是直线y=-2x上的两点,若x1>x2,则y1,y2的大小关系是( ).A.y1<y2B. y1>y2C. y1= y2D.不能比较【分析】因为y=-2x中-2<0,即直线y=-2x的函数值是随x的增大而减小的,所以当x1>x2时,y1<y2,故选A.【教学说明】通常我们在x的某一范围内取x1<x2,若点(x1,y1),(x2,y2)为函数图象上的两点,当y1<y2时,该函数在这个范围内y随x的增大而增大;当y1>y2时,该函数在这个范围内y随x增大而减小.三、运用新知,深化理解1.已知正比例函数y=(k+3)x.(1)k为何值时,函数的图象经过一、三象限.(2)k为何值时,y随x的增大而减小.(3)k为何值时,函数图象经过点(1,1).2.已知(x1,y1)、(x2、y2)是直线y = x上的两点,若x1>x2,则y1,y2的大小关系是().A.y1<y2B.y1>y2C.y1=y2D.不能比较3.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点横坐标为-2,求△POA的面积(O为坐标原点).【教学说明】以上各题由学生自主探究,有疑问的教师加以指导,最后评析.四、师生互动,课堂小结问题1.正比例函数的图象是什么?它有什么特征?2.如何简便地画出正比例函数的图象?3.本节课的学习经历了怎样的过程?你有何感悟?1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.因从本课时开始,学生将逐渐认识并理解各类具体的函数图象,一般的基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征,结合学生已有的知识与经验和后面的学习内容与要求,本课时重在引领学生认识正比例函数的概念、图象的画法和应用性质的基本步骤,为后续学习指明方向和打下坚实的基础,利于研究更复杂的具体函数.教学中引导学生观“形”识“信息”,逐步形成读图能力,以及解题能力.。
人教版数学八年级下册19.2.1《正比例函数教案

人教版数学八年级下册19.2.1《正比例函数教案一. 教材分析人教版数学八年级下册19.2.1节讲述了正比例函数的概念、性质及其在实际问题中的应用。
本节内容是学生学习函数的基础,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
教材通过具体的例子引入正比例函数,使学生能够直观地理解概念,并通过大量的练习题让学生熟练掌握正比例函数的性质和运用。
二. 学情分析学生在八年级上学期已经学习了代数基础知识,对变量、常量、方程等概念有了一定的理解。
但正比例函数作为一种特殊的函数,学生可能对其概念和性质认识不足,需要通过本节课的学习来进一步掌握。
此外,学生可能对于实际问题中如何运用正比例函数解决有一定困难,需要通过实例分析和练习来提高。
三. 教学目标1.了解正比例函数的概念,掌握正比例函数的性质。
2.能够运用正比例函数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正比例函数的概念和性质。
2.正比例函数在实际问题中的应用。
五. 教学方法采用讲授法、案例分析法、练习法、小组讨论法等教学方法。
通过具体的例子引入正比例函数,让学生在实际问题中感受正比例函数的应用,通过练习题让学生巩固所学知识,通过小组讨论培养学生的团队协作能力和逻辑思维能力。
六. 教学准备1.准备相关的例子和练习题,用于课堂讲解和练习。
2.准备多媒体教学设备,用于展示例子和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题引入正比例函数的概念,如“一辆汽车以60公里/小时的速度行驶,行驶1小时后,行驶的路程是多少?”让学生思考并回答,引出正比例函数的概念。
2.呈现(10分钟)讲解正比例函数的定义和性质,通过多媒体展示相关的图片和实例,让学生直观地理解正比例函数的概念。
同时,给出正比例函数的一般形式y=kx(k为常数,k≠0),并讲解其性质。
3.操练(10分钟)让学生进行一些有关正比例函数的练习题,巩固所学知识。
《正比例函数》人教版八年级数学教案

《正比例函数》人教版八年级数学教案正比例函数是本章的重点内容,是学生在初中阶段第一次接触的函数,这部分内容的学习是在学生已经学习了变量和函数的概念及图像的基础之上进行的。
下面由我为大家整理了关于《正比例函数》人教版八年级数学教案,供大家参考。
《正比例函数》人教版八年级数学教案1教学目标:1、认识目标(1)通过对不同背景下函数模型的比较,接受正比例函数的概念。
(2)在用描点法画正比例函数图象的过程中发现正比例函数的性质。
2、能力目标(1)利用发现的性质简便地画出正比例函数的图象,培养学生的动手能力。
(2)通过结合函数图象揭示性质的教学,培养学生观察、比较、抽象、概括能力。
3、情感、态度与价值观(1)通过正比例函数概念的形成过程,培养学生的探索精神和创新意识。
(2)在画正比例函数图象的活动中获得成功的体验,培养学生积极思考和动手学习的良好习惯,激发学习数学的热情。
教学重点:正确理解正比例函数的概念。
教学难点:体验研究函数的一般思路与方法。
教学方法:1、教法:本节教材实例取自生活实际,通过引导学生对身边事物的观察,让学生认识到大量活生生的正比例函数模型就在我们身边,从而让他们感受到数学贴近于现实生活,通过创设问题情景,精心设问,适时适度运用激励性语言,采用引导讨论法,让学生主动、愉快的参与到学习的全过程中来。
2、学法:倡导学生参与,师生互动,充分调动学生思考与探究的积极性,使学生成为学习的主体,让学生在学习过程中体验“观察、思考、探索、归纳”整个思维过程。
教学手段:运用多媒体,实现现代化教学手段,重现生活中事物变化过程,将教材中的静态画面转变为动态画面,从视觉、听觉吸引学生观察、体验,从而进一步思考、探究,得出结论,以提高课堂教学效率。
教学过程:一、创设情境,设疑激思1、实物情境:春天到了,燕子又飞回来了。
请同学们观察图片(多媒体展示燕欧飞行图片),1966年,鸟类研究者在芬兰给一只燕欧(候鸟)套上标志杆;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它。
人教版数学八年级下册《19.2.1 正比例函数》教学设计

人教版数学八年级下册《19.2.1 正比例函数》教学设计一. 教材分析人教版数学八年级下册《19.2.1 正比例函数》是学生在学习了初中数学基础知识后,进一步深入研究函数的性质和应用。
本节内容主要包括正比例函数的定义、图象和性质,以及正比例函数在实际生活中的应用。
通过本节的学习,使学生能够理解正比例函数的概念,掌握正比例函数的图象和性质,并能运用正比例函数解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了初中数学的基本知识,对函数有一定的了解。
但学生对正比例函数的概念和性质的认识还不够深入,需要通过本节课的学习来进一步理解和掌握。
同时,学生对于正比例函数在实际生活中的应用还不够熟悉,需要通过实例来引导学生理解和运用。
三. 教学目标1.理解正比例函数的概念,掌握正比例函数的图象和性质。
2.能够运用正比例函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.正比例函数的概念和性质。
2.正比例函数在实际生活中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究正比例函数的性质和应用。
2.利用数形结合法,通过图象来直观展示正比例函数的性质。
3.采用实例教学法,让学生通过实际问题来理解和运用正比例函数。
六. 教学准备1.教学PPT,包括正比例函数的定义、图象和性质等内容。
2.实例题库,用于巩固和拓展学生的知识。
3.板书设计,包括正比例函数的定义、图象和性质等重要内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入正比例函数的概念,例如:一辆汽车以每小时60公里的速度行驶,行驶3小时后,行驶的路程是多少?引导学生思考速度、时间和路程之间的关系,从而引出正比例函数的概念。
2.呈现(10分钟)利用PPT呈现正比例函数的定义、图象和性质。
引导学生通过观察图象来理解正比例函数的性质,如过原点、斜率为正等。
同时,给出正比例函数的数学表达式y=kx(k为常数,k≠0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.1 正比例函数
第1课时
一、教学目标
【知识与技能】
认识正比例函数的意义,掌握正比例函数解析式特点.
【过程与方法】
能利用正比例函数知识解决相关实际问题.
【情感态度与价值观】
通过对实际问题的解决,亲身感受数学来源于生活,体会在学习中与同学合作交流获得成功的喜悦,增强学习的自信心.
二、课型
新授课
三、课时
第1课时共2课时
四、教学重难点
【教学重点】
理解正比例函数意义及解析式特点.
【教学难点】
正比例函数的解析式的求法.
五、课前准备
教师:课件、三角尺、直尺等.
学生:三角尺、铅笔、直尺、练习本.
六、教学过程
(一)导入新课(出示课件2)
2006年7月12日,某运动员在一次田经大奖赛110米栏的决赛中,以12.88秒的成绩打破了尘封13年的世界纪录。
教师问:假定该运动员在这次110米栏决赛中奔跑速度是8.54米/秒,那么他奔跑的路程y(单位:米)与奔跑时间x(单位:秒)之间有什么关系?
学生回答:y=8.54x (0≤x≤12.88)
类似于y=8.54x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?进入今天学习的课题:正比例函数.
(二)探索新知
1.出示课件4-5,探究正比例函数的概念
教师问:写出下列问题中的函数关系式:
(1)圆的周长l随半径r的大小变化而变化;
学生1答:l=2πr
(2)铁的密度为7.8g/cm3 ,铁块的质量m(单位:g)随它的体积v(单位:cm3)大小变化而变化;
学生2答: m=7.8v
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度 h 随这些练习本的本数n的变化而变化;
学生3答: h=0.5n
(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单
位:℃)随冷冻时间t(单位:分)的变化而变化.
学生4答:T=-2t
教师问:观察下面这些函数有什么共同点?
(1)l=2πr;(2)m=7.8v;(3)h=0.5n;(4)T=-2t
师生一起解答:这些函数都是常数与自变量的乘积的形式.
总结点拨:(出示课件6)
定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.
教师强调: 正比例函数y=kx(k≠0)的结构特征
①k≠0
②x的次数是1
出示课件7,学生自主练习后口答,教师订正.
考点1:利用正比例函数的概念求字母的值
已知y=(k+1)x+k-1是正比例函数,求k的值.(出示课件8)师生共同讨论解答如下:
解:根据题意得:k+1≠0且k-1=0,
解得:k=1.
师生共同归纳:
函数解析式可转化为y=kx(k是常数,k ≠0)的形式.
出示课件9,学生自主练习后口答,教师订正.
考点2:利用待定系数法求正比例函数的解析式
若正比例函数的自变量x等于-4时,函数y的值等于2.
(1)求正比例函数的解析式;
(2)求当x=6时,函数y的值.(出示课件10)
学生独立思考后,师生共同解答.
解:(1)设正比例函数解析式是 y=kx,(设)
把 x =-4, y =2 代入上式,得2 = -4k,(代)
,(求)
解得k=-1
2
x;(写)
∴所求的正比例函数解析式是y=-1
2
(2)当 x=6 时, y = -3.
出示课件11,学生自主练习后口答,教师订正.
2.出示课件12-15,探究利用正比例函数解决实际问题
教师问:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:
(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?
学生答:1318÷300≈4.4(小时).
教师问:(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有什么数量关系?
学生答:因为路程=速度×时间,所以可以列出y=300t
(0≤t≤4.4).
教师问:(3)从北京南站出发2.5小时后,是否已过了距始发站
1100千米的南京南站?
学生答:y=300×2.5=750(千米), 这时列车尚未到达距始发站1100千米的南京南站.
考点1:利用正比例函数解答实际问题
2016年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约128天后,人们在2.56万千米外的澳大利亚发现了它.
(1)这只百余克重的小鸟大约平均每天飞行多少千米?
(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?
(3)这只燕鸥飞行一个半月(一个月按30天计算)的行程大约是多少千米?(出示课件16)
学生独立思考后,师生共同解答.
教师依次展示学生的解答过程:
学生1解: (1)这只燕鸥大约平均每天飞行的路程为
25600÷128=200(千米)
答:这只百余克重的小鸟大约平均每天飞行200千米.
学生2解:(2)假设这只燕鸥每天飞行的路程为200km,那么它的行程y(单位:千米)就是飞行时间x(单位:天)的函数,函数解析式为y =200x (0≤x≤128).
学生3解:(3)这只燕鸥飞行一个半月的行程,即:x=45,所以y=200×45=9000(千米)
答:这只燕鸥飞行一个半月的行程大约是9000千米.
出示课件18,学生自主练习,教师给出答案.
教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.
(三)课堂练习(出示课件19-24)
练习课件第19-24页题目,约用时20分钟.
(四)课堂小结(出示课件25)
(五)课前预习
预习下节课(19.2.1第2课时)的相关内容.
知道正比例函数的性质和图象.
七、课后作业
1、教材第87页练习第1,2题.
2、七彩课堂第123-124页第1、9题.
八、板书设计
正比例函数
第1课时
1.正比例函数的概念
考点1 考点2
2.利用正比例函数解决实际问题
考点1
3.例题讲解
九、教学反思
成功之处:本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.
不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,部分学生就显得很吃力.
补救措施:教学设计时可以进行分层设计,一组基础题让部分学生完成,另一组难的让基础好的学生完成.。