光致变色材料及其应用前景

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光致变色材料及其应用前景

一、光致变色材料

光致变色指的是某些化合物在一定的波长和强度的光作用下分子结构会发生变化,从而导致其对光的吸收峰值

即颜色的相应改变,且这种改变一般是可逆的。人类发现

光致变色现象已有一百多年的历史。第一个成功的商业应

用始于20世纪60年代,美国的Corning工作室的两位材

料学家Amistead和Stooky首先发现了含卤化银(AgX)玻璃的可逆光致变色性能[4],随后人们对其机理和应用作了大量研究并开发出变色眼镜。但由于其较高的成本及复杂的

加工技术,不适于制作大面积光色玻璃,限制了其在建筑

领域的商业应用。此后AgX光致变色的应用重心转向了价

格便宜且质量较轻的聚合物基材料,而各种新型光致变色

材料的性能及其应用也开始了系统研究。

二、原理

不同类型的光致变色材料具有不同的变色机理,尤其是无机光致变色材料的变色机理与有机材料有明显的区

别。光致变色材料典型无机体系的光致变色效应伴随着可

逆的氧化-还原反应,如WO3为半导体材料,其变色机理可用1975年由Faughnan提出的双电荷注入/抽出模型解释,

即在紫外光照射下,价带中电子被激发到导带中,产生电子空穴对,随后光生电子被W(VI)捕获,生成W(V),同时光生空穴氧化薄膜内部或表面的还原物种,生成质子H+,注入薄膜内部,与被还原的氧化物结合生成蓝色的钨青铜HxWO3,该蓝色是由于W(V)价带中电子向W(VI)导带跃迁的结果。另一种变色机理是Schirmer等在1980年所提出的小极化子模型,他们认为,光谱吸收是由于不等价的2个钨原子之间的极化子跃迁所产生,即注入电子被局域在W(V)位置上,并对周围的晶格产生极化作用,形成小极化子。入射光子被这些极化子吸收,从一种状态变到另一种状态,可简略表示如下:WA(V)-O-WB(VI)→WA(VI)-O-WB(V) 由于上述变化不会引起材料晶体结构的破坏,因此典型无机材料的光致变色效应具有良好的可逆性和耐疲劳性能。有机体系的光致变色也往往伴随着许多与光化学反应有关的过程同时发生,从而导致分子结构的某种改变,其反应方式主要包括:价键异构、顺反异构、键断裂、聚合作用、氧化-还原、周环反应等。以偶氮化合物为例,其光致变色效应基于分子中偶氮基-N=N-的顺-反异构反应,通常偶氮化合物顺-反异构体有不同的吸收峰,虽两者一般差值不大,但摩尔消光系数往往相差很大,另外,偶氮化合物还有明显的光偏振效应,即光致变色效果与光的偏振态有关。生物光致变色材料如细菌视紫红质等的感光效应也属于这

一类反应机制。由于无机半导体光致变色材料的光生

电子空穴对有很强的氧化-还原性能,因此可以通过与有机染料复合来增强其光致变色效应。当WO3与某种无色的还

原态染料隐色体混合时,则在光照下染料隐色体的电子可

被激发并向前者的导带中注入电子,该光致氧化-还原反应的发生可在形成蓝色钨青铜HxWO3的同时,生成摩尔消光

系数很高的有色染料。这种有机-无机复合光致变色器件不仅可以大大提高体系的光敏度,扩充光致变色材料的种类

和颜色范围,而且有助于充分利用太阳光中极为丰富的可

见光谱能量来激发光致变色效应

三、分类

1、有机光致变色化合物有机光致变色材料种类繁多,

反应机理也不尽相同,主要包括:①键的异裂,如螺毗喃、螺唔嗓等;②键的均裂,如六苯基双咪哇等;③电子转移互

变异构,如水杨醛缩苯胺类化合物等;④顺反异构,如周蔡靛兰类染料、偶氮化合物等;⑤氧化还原反应,如稠环芳香化合物、哗嗓类等;⑥周环化反应,如俘精酸配类、二芳基乙烯类等。下面介绍几种主要的有机类光致变色化合物。

光致变色材料(l)螺毗喃类:螺毗喃是有机光致变色材料中研究和应用最早、最广泛的体系之一,在紫外光照射

下,无色螺毗喃结构中的C一O键断裂开环,分子局部发

生旋转且与叫噪形成一个共平面的部花青结构而显色,吸

收光谱相应红移。在可见光或热的作用下,开环体又能回复到螺环结构。C一O键的断裂时间处于皮秒级,变色速度极快。但是部花青在室温下存放几分钟至几小时就会自动转化为无色的螺环结构,另外,在叮逆过程中会发生光化学副反应,从而影响可逆转化的循环次数,这些不足限制r 螺毗喃在光分子开关方面的应用。 (2)俘精酸醉类:俘精酸醉是芳取代的二亚甲基丁二酸配类化合物的统称,是最早被合成的有机光致变色化合物之一。1999年,Kiji等报道了通过1,4一双杂环取代的丁炔一1,4-二醇的碳基化的方法来合成双杂环俘精酸醉化合物。反应以Pd为催化剂,在高温高压下进行。该方法开辟了一条合成双杂环俘精酸配的新路径,但合成条件苛刻,难以推广。闻起强等困首次报道了通过两步传统的Stobbe缩合反应合成双峡喃俘精酸酥化合物。其所得结果与Kiii报道的不同之处在于:K

巧i方法所得的双杂环俘精酸醉化合物的结构为22式,而同起强等合成的双吠喃俘精酸酥化合物的结构为EE式,两个反应中心的距离分别是0.3394nm和0.34O6nm,有利于光致变色周环化反应的发生。此目标产物和成色体的最大吸收峰分别为368nm和489nln,在一定的实验条件下仅观察到成色体和开环体之间的转化,这预示着此化合物可能具有良好的抗疲劳性能。(3)二芳基乙烯类:二芳基乙烯类具有非常好的热稳定性、化学稳定性以及优良的灵敏度

和抗疲劳性,其研究正受到国内外材料工作者越来越多的关注。(4)偶氮苯类:偶氮苯类化合物光致变色性能良好,并其有超高存储密度和非破坏性信息读出等特点

一’7},其光致变色原理见图7。偶氮苯类化合物的变色机理是由于含有一N一N一、形成顺反异构结构所引起的。光或热的作用可使顺式和反式偶氮苯之间发生转化,反式结构一般比顺式结构稳定。热作川下的顺反异构反应通常是从顺式到反式,但在光作川下两种异构方向都能进行。2、无机光致变色化合物(1)过渡金属氧化物:这类物质主要有WO3、、MoO3、TiO2等。W03只氧化钨作为一种重要的无机光致变色材料,具有稳定性好、成本低等优点,但其光致变色效率较低。近来,解仁国等冲’J报道了一种新型的w()3/Zn()纳米粒子复合体系,结果表明,当Zn()质量分数为2%时,与W():相比,此体系的光致变色效率提高了200倍,其变色机理为:Zn()的光生电子通过界面转移至

W()3,同时W仆产生的一些空穴将迁移到Zn(〕的价带上,并最终转移到表面被HZC:0;等捕获,这样光生电子和空穴就可以被更有效地分离,转移至W():1的电子最终被其表面态所捕获,产生长波区的吸收,从而导致WO:发生变色。

(2)金属卤化物:金属卤化物具有一定的光致变色性.如碘

化钙和碘化汞混合晶体、氯化铜、氯化锅、氯化银等。当照射掺有La、Ce、Gd或Tb的氟化钙时,会发生稀土杂质

相关文档
最新文档