结构动力特性与动力反应
结构动力学

L
L
L
1
2l 3 3EI
M1图
1 m
1 2m 2l 3 EI
3
3 EI 4ml 3
4ml 3 T 2 3EI
2
第十章 结构动力学简介
二、单自由度体系的受迫振动
内 蒙 古 农 业 大 学
受迫振动指体系是在干扰力 FP (t )持续作用下的振动。 单自由度体系在动荷载下的振动及相应的振动模型如图示:
3、自由振动和受迫振动
自由振动 结构在没有动荷载作用时,由初速度、初位移所引起的振动。 研究结构的自由振动,可得到结构的自振频率、振型和阻尼参数。
第十章 结构动力学简介
强迫振动 结构在动荷载作用下产生得振动。研究强迫振动,可得到结构的
内 蒙 古 农 业 大 学
动力反应。
§10-2 动力自由度
一、自由度的定义
内 蒙 古 农 业 大 学
一、多自由度体系的自由振动
1 多自由度体系振动方程的建立(以两个自由度为例来说明)
(1) 柔度法
在惯性力作用下的位移等于实际的动位移。(力法)
y2
m2 y
m1 y
21
11
P 1 1
22
P2 1
y1
12
M 1图
M 2图
第十章 结构动力学简介
t
无阻尼y- t曲线
第十章 结构动力学简介
②阻尼对振幅的影响.
内 蒙 古 农 业 大 学
振幅ae- ξω t 随时间衰减,相邻两个振幅的比
y k 1 e T 常数 yk
振幅按等比级数递减.
经过一个周期后,相邻两振幅yk和yk+1的比值的对数为:
第10章结构动力学

由此可知,体系的自由振动由两部分组成:一部分由初位移 y 0 引
0 引起,变现为正弦规律 起,表现为余弦规律;另一部分由初速度 y
[图10-13(a)、(b)],两者叠加为简谐振动[图10-13(c)]。
目录
上页
下页
图10-13
令
y0 A sin
(d)
目录
则有
0 y
A cos
下页
图10-8 简支梁的广义位移
3. 有限单元法 有限元法是将实际结构离散成有限个单元,对每个单元给定插
目录
值函数,然后叠加单元在各个相应结点的贡献建立系统求解方程。 有限单元法根据基本未知量选取的不同,分为位移有限元法、应力
有限元法和混合有限元法。其中,位移有限元方法应用最广。
上页
在确定结构震动自由度时,应注意不能根据结构有几个集中 质量就判定它有几个自由度,而应该由确定集中质量位置所需的独
小,如图10-2。例如打桩机的桩锤对桩的冲击、各种爆炸荷载等。
目录
上页
下页
图10-2 冲击荷载
(3)突加荷载。在一瞬间施加于结构上并继续留在结构上的荷载, 如图10-3。例如吊重物的起重机突然启动时施加于钢丝绳的荷载就 是这种突加荷载。
目录
上页
下页
图10-3 突加荷载
(4)快速移动荷载。例如高速通过桥梁的列车、汽车等。
普通高等学校土木工程专业精编系列规划教材
结构力学
主编 丁克伟
目录
上页
10 结构动力学
下页
目录
目录
上页
10.1 结构动力学计算基本概念 10.2 自由度结构自由振动 10.3 简谐荷载作用下的单自由度体系受迫振动 10.4 一般荷载作用下的单自由度体系受迫振动
结构动力学

一、绪论
1.1 阪神地震
首先请大家看日本阪 神地震录像,希望能从 中体会到学习结构动力 学的重要性。 更希望大家能学好结 构动力学(三要素),且作用
结果使受荷物体质量的加速度(惯性力与外荷比)不
可忽视,这种荷载称动力荷载,简称动荷。
自重、缓慢变化的荷载,其惯性力与外荷比很小, 分析时仍视作静荷载。 静荷只与作用位臵有关,而动荷是坐标和时间的函 数。
二、体系的运动方程建立
2.1 建立运动方程的基本步骤 2.2 运动方程建立举例
2.3 体系运动方程的一般形式
2.4 应注意的几个问题
2.5 刚度法、柔度法列方程的步骤
2.6 运动方程建立总结
2.1 建立运动方程的基本步骤
作为本科学习,这里只讨论用达朗泊尔原理通过列 平衡方程得到运动方程的“直接平衡法”。以下讨论 列平衡方程称刚度法 中一律认为系统的阻尼是等效粘滞阻尼。 直接平衡法列方程的一般步骤为: 1) 确定体系的自由度——质量独立位移数; 2) 建立坐标系,确定未知位移(坐标正向为正); 3) 根据阻尼理论确定质量所受的阻尼力; 4) 根据达朗泊尔原理在质量上假想作用有惯性力 (注意:惯性力是实际的,但它不作用在质量上); 5) 取质量为隔离体并作受力图; 6) 根据达朗泊尔原理列每一质量的瞬时动力平衡方 程,此方程就是运动(微分)方程。
1.6 建立结构运动方程的一般方法
3) 利用哈密顿原理来建立运动方程——变分法 分析力学中学过哈密顿原理。通过建立系统动能、 势能和耗能(分别记作 T、EP、V),获得如下哈密 顿泛函
H (T E P V )dt
t1
t2
根据哈密顿原理,可由令哈密顿泛函的一阶变分等于 零来建立“动平衡方程”——运动方程。 当没有耗能时,所得到的是无阻尼的方程。否则, 是有阻尼情况。 用哈密顿原理时和上两方法不同,不再考虑惯性力、 阻尼例和弹性恢复力等,它们通过能量变分来得到。
注册土木工程师(港航)基础考试大纲

注册土木工程师(港口与航道工程)资格考试基础考试大纲1 高等数学1。
1 空间解析几何向量代数直线平面柱面旋转曲面二次曲面空间曲线1。
2 微分学极限连续导数微分偏导数全微分导数与微分的应用1.3 积分学不定积分定积分广义积分二重积分三重积分平面曲线积分积分应用1.4 无穷级数数项级数幂级数泰勒级数傅里叶级数1.5 常微分方程可分离变量方程一阶线性方程可降阶方程常系数线性方程1。
6 概率与数理统计随机事件与概率古典概型一维随机变量的分布和数字特征数理统计的基本概念参数估计假设检验方差分析一元回归分析1。
7 向量分析1.8 线性代数行列式矩阵n 维向量线性方程组矩阵的特征值与特征向量二次型2 普通物理2.1 热学气体状态参量平衡态理想气体状态方程理想气体的压力和温度的统计解释能量按自由度均分原理理想气体内能平均碰撞次数和平均自由程麦克斯韦速率分布律功热量内能热力学第一定律及其对理想气体等值过程和绝热过程的应用气体的摩尔热容循环过程热机效率热力学第二定律及其统计意义可逆过程和不可逆过程熵2。
2 波动学1.机械波的产生和传播简谐波表达式波的能量驻波声速超声波次声波多普勒效应2.3 光学相干光的获得杨氏双缝干涉光程薄膜干涉迈克尔干涉仪惠更斯菲涅耳原理单缝衍射光学仪器分辨本领X 射线衍射自然光和偏振光布儒斯特定律马吕斯定律双折射现象偏振光的干涉人工双折射及应用3 普通化学3.1 物质结构与物质状态原子核外电子分布原子离子的电子结构式原子轨道和电子云概念离子键特征共价键特征及类型分子结构式杂化轨道及分子空间构型极性分子与非极性分子分子间力与氢键分压定律及计算液体蒸气压沸点汽化热晶体类型与物质性质的关系3。
2 溶液溶液的浓度及计算非电解质稀溶液通性及计算渗透压概念电解质溶液的电离平衡电离常数及计算同离子效应和缓冲溶液水的离子积及PH 值盐类水解平衡及溶液的酸碱性多相离子平衡溶度积常数溶解度概念及计算3.3 周期表周期表结构周期族原子结构与周期表关系元素性质及氧化物及其水化物的酸碱性递变规律3.4 化学反应方程式化学反应速率与化学平衡化学反应方程式写法及计算反应热概念热化学反应方程式写法化学反应速率表示方法浓度温度对反应速率的影响速率常数与反应级数活化能及催比剂概念化学平衡特征及平衡常数表达式化学平衡移动原理及计算压力熵与化学反应方向判断3.5 氧化还原与电化学氧化剂与还原剂氧化还原反应方程式写法及配平原电池组成及符号电极反应与电池反应标准电极电势能斯特方程及电极电势的应用电解与金属腐蚀3。
结构动力学基础理论

第四章
运动方程的建立
y (t)
单自由度 体系模型
c m k
F (t)
质量块m,用来表示结构的质量和惯性特性 自由度只有一个:水平位移y(t) 无重弹簧,刚度为 k,提供结构的弹性恢复力 无重阻尼器,阻尼系数c,表示结构的能量耗散,提供结构的阻尼力 随时间变化的荷载F(t)
单自由度体系运动方程的建立(直由度数为单元节点可发生的 独立位移未知量的总个数。 综合了集中质量法和广义坐标法的某些特点,是最灵活有效的 离散化方法,它提供了既方便又可靠的理想化模型,并特别适 合于用电子计算机进行分析,是目前最为流行的方法。 已有不少专用的或通用的程序(如SAP,ANSYS等)供结构分 析之用。包括静力、动力 和稳定分析。
代入:
单自由度无阻尼体系运动方程的解:
v(t )
0 v
sint v0 cost
(3-11)
第六章 简谐振动荷载反应
谐振荷载:
p (t )
k 1
则组合系数Ak(t)称为体系的广义坐标。
nπ x ( x ) bn sin l n 1
广义坐标 位移函数
广义坐标表示相应位移函数的幅值,是随时间变化的函数。 广义坐标确定后,可由给定的位移函数确定结构振动的位移曲线。 以广义坐标作为自由度,将无限自由度体系转化为有限个自由度。
1.3 动力荷载类型
概念:动荷载是时间的函数!
分类: 确定性荷载 动荷载 非确定性荷载
周期性荷载 非周期性荷载
确定性荷载:荷载的变化是时间的确定性函数。
FP
例如: 简谐荷载
t
FP
冲击荷载
t
第10章 结构动力学基础1

(1)重力 W 为静力荷载
(2)弹性恢复力 S(t) k[ y jw y(t)] 与位移成正比,方向与位移指向相
反的。在k质为点刚上度R所(系t加)数的,c力其y• (意t) 义是使质点沿位移方向产生的单位位移时所需
(3)阻尼力
•• 与质点的速度成正比,方向与速度相反。c为
粘滞阻尼系I (数t) 。 m y(t)
my(t) cy(t) ky(t) 0
当动力位移由质点的静力平衡位置算起时,可不考虑质点的重力。
(二)柔度法:取振动体系为研究对象。
I (t) R(t)
FP 1
m y(t)
δ(柔度 系数)
按动静法,体系的动力位移可看为是由于惯性力和阻尼力静力作 用所引起的可得方程:
y(t) [I(t) R(t)]
10.1 一般概念
一、结构的动力荷载及分类
动力荷载:是指荷载的大小、方向、位置随时间迅速变化的 荷载;它使结构质量产生不容忽视的加速度,使结构发生明 显的振动,即在平衡位置附近往返运动。
静力荷载:是指荷载的大小、方向、位置不随时间变化的荷 载;同时考虑其对结构的影响来看,如果荷载变化极其缓慢, 使结构质量产生的加速度可以忽略不计时,仍属于静力荷载
T
T
T
(二)自振周期与频率
自振频率(圆频率)
自振周期
T 2
k 1 g g m m W st
T 2π m 2π mδ 2π Wδ 2π Δst
动静法 根据达朗贝尔(d’Alembert)原理,设想将惯性力I(t)加
于振动体系的质点上,则任一瞬时体系中的实际各力与惯 性力处于平衡状态。
三、 动力计算简图和动力自由度
动力计算中要引入惯性力,因此计算简图要考虑质量的 分布。
结构动力学

第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
结构力学

第一讲平面体系的几何组成分析及静定结构受力分析【内容提要】平面体系的基本概念,几何不变体系的组成规律及其应用。
静定结构受力分析方法,反力、内力计算与内力图绘制,静定结构特性及其应用。
【重点、难点】静定结构受力分析方法,反力、内力计算与内力图绘制一、平面体系的几何组成分析(一)几何组成分析按机械运动和几何学的观点,对结构或体系的组成形式进行分析。
(二)刚片结构由杆(构)件组成,在几何分析时,不考虑杆件微小应变的影响,即每根杆件当做刚片。
(三)几何不变体系体系的形状(或构成结构各杆的相对位置)保持不变,称为几何不变体系,如图6-1-1 (四)几何可变体系体系的位置和形状可以改变的结构,如图6-1-2。
图6-1-1 图6-1-2(五)自由度确定体系位置所需的独立运动参数数目。
如一个刚片在平面内具有3个自由度。
(六)约束减少体系独立运动参数(自由度)的装置。
1.外部约束指体系与基础之间的约束,如链杆(或称活动铰),支座(固定铰、定向铰、固定支座)。
2.内部约束指体系内部各杆间的联系,如铰接点,刚接点,链杆。
规则一:一根链杆相当于一个约束。
规则二:一个单铰(只连接2个刚片)相当于两个约束。
推论:一个连接n 个刚片的铰(复铰)相当于(n- 1)个单铰。
规则三:一个单刚性结点相当于三个约束。
推论:一个连接个刚片的复刚性结点相当于( n- 1)个单刚性结点。
3.必要约束如果在体系中增加一个约束,体系减少一个自由度,则此约束为必要约束。
4.多余约束如果体系中增加一个约束,对体系的独立运动参数无影响,则此约束称为多余约束。
(七)等效作用1.虚铰两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作用与实铰相同。
平行链杆的交点在无限远处。
2.等效刚片一个内部几何不变的体系,可用一个刚片来代替。
3.等效链杆。
两端为铰的非直线形杆,可用一连接两铰的直线链杆代二、几何组成分析(一)几何不变体系组成的基本规则1.两刚片规则平面两刚片用不相交于一点的三根链杆连接成的体系,是内部几何不变且无多余约束的体系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 结构动力特性与动力反应
【内容提要】
自由度体系周期、频率计算,简谐荷载与突加荷载作用下简单结构的动力系数、振幅与
最大动内力,阻尼对振动的影响。
一、概念
(一)动力荷载
荷载大小、方向和作用位置随时间而改变。按时间可分为周期荷载、冲击荷载、突加恒
载和随机荷载。
(二)动力问题的特征
结构在动荷载作用下,其上质点产生惯性力,抵抗变形还产生阻尼力,因此,结构的内
力和位移成为时间的函数。
(三)动力响应
结构在动荷载作用下产生的动内力和动位移,统称为动力响应(动力反应)。它不仅与
动荷载有关,还与结构动力特征(固有频率、振型和阻尼)有关。
(四)动力自由度
描述一个体系在振动过程中全部质点的位置所需要的独立变量数目。
二、单自由度体系的振动方程
1.按平衡条件建立振动方程——刚度法
或
图6-4-2
图6-4-3
据此可以作出振型图.
【例题1】分析图6-4-6(a)、(c)、(e)、(g)、(i)所示体系的自由度。不计杆件的分布
质量。
图6-4-6(g)所示体系有两个质点,杆件可发生弹性弯曲变形,质点有竖向和水平的两个
位移分量,
这两个位移相互独立,故有两个自由度。加支杆确定时如图6-4-6(h)所示。
图6-4-6(i)所示体系有两个质点,质点有竖向两个位移分量和水平向一个位移分量,这
三个位移相互独立,
故有三个自由度。加支杆确定时如图6-4-6 (j )所示。
图6-4-14