SPSS统计分析非参数检验
SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种在统计学中常用于比较两个或多个独立样本的方法。
与参数检验不同,非参数检验不需要对数据的分布进行假设,并且适用于非正态分布的数据。
SPSS(统计软件包for社会科学)是一个广泛使用的统计分析软件,它提供了许多非参数检验的功能。
本文将以一个案例为例,解析如何使用SPSS进行两独立样本的非参数检验。
案例描述:一家公司正在评估一个新的培训课程对员工的绩效是否有显著影响。
为了评估培训课程的效果,研究人员随机选择了两组员工,一组接受了培训课程(实验组),另一组没有接受培训课程(对照组)。
研究人员想要比较两组员工在绩效上的差异。
步骤一:导入数据首先,将实验组和对照组的数据分别导入SPSS中。
假设每个样本中有n个观测值。
在SPSS中,每一组数据应该是一个独立的变量(或列),并且每个观测值应该占据矩阵中的一个单元格。
步骤二:选择非参数检验方法在SPSS中,可以使用Mann-Whitney U检验来比较两组独立样本的绩效差异。
该检验的原假设是两组样本来自同一个总体,备择假设是两组样本来自不同的总体。
步骤三:运行非参数检验在SPSS的菜单栏中,依次选择"分析" - "非参数检验" - "独立样本检验(Mann-Whitney U)"。
将实验组和对照组的变量分别输入到"因子1"和"因子2"中。
在"可选"选项中,可以选择在报告中包含各种统计量。
步骤四:解读结果SPSS将输出很多统计信息,包括推断统计、置信区间、效应大小等。
其中,最重要的是U值和显著性。
U值是用来检验两组样本是否来自同一个总体的统计量,显著性则是用来判断差异是否显著。
如果显著性小于0.05,则可以拒绝原假设,认为两组样本在绩效上存在显著差异。
总结:通过上述步骤,我们可以利用SPSS进行两独立样本的非参数检验。
SPSS 非参数检验

Step07单击【OK】按钮,结束操作,SPSS软件自动输
出结果。
实例图文分析:人员结构的调动
• 1. 实例内容 某公司经营多年,形成了一套成熟的企业文化和管理体系, 例如根据多年的运营经验,经理层、监察员、办事员三种职务 类别人员比例大约在15:5:80为宜,这样运行效率最高。目 前公司进行人事调整,公司人员结构发生变动,有员工担心是 否人事调整已经导致职务类型比例的失调。请利用数据文件61.sav来解决该问题。 三种职务的期望构成比为15%、5%和80%。而目前样本中 观察到的三种职务的人数比为84:27:363,构成比分别是17. 7%、5.7%和76.6%,和理论值有差异。那么这种差异是由随 机误差造成的,还是真的构成比和以前有所变化?该问题就可 以用χ2检验来实现。相应的假设检验如下。 H0:目前三个职业的总体构成比仍然是15%、5%和80%。 H1:目前三个职业的总体构成比不再是15%、5%和80% 。
实例结果及分析
(1)频数表
SPSS的结果报告中列出了期望频数和实际频数。 显然残差值越小,说明实际频数与期望频数越接近。
Observed N-Expected N
Observed N Clerical 363 27 84 474 Expected N 379.2 23.7 71.1 Residual -16.2 3.3 12.9
0.63 0.95 0.95 0.95 0.91 没有可比较的基 础
1 SPSS 在卡方检验中的应用
1.使用目的 卡方检验(Chi-Squar Test)也称为卡方拟合优度检验,是K.Pearso n给出的一种最常用的非参数检验方法。它用于检验观测数据是否与某 种概率分布的理论数值相符合,进而推断观测数据是否是来自于该分 布的样本的问题。 2.基本原理 H 0样本X来自的总体分布服从期 进行卡方检验时,首先提出零假设 : 望分布或某一理论分布。接着,利用实际观测值的频数与理论的期望 c 2,它描述了观察值和理论值之间的 频数之间的差异来构造检验统计量 偏离程度。 3.软件使用方法 SPSS会自动计算出χ2统计量及对应的相伴概率P值。
SPSS的非参数检验

02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。
SPSS第讲非参数检验(共72张PPT)

SPSS应用
Kendall协同系数检验中会计算Friedman检验方 法,得到friedman统计量和相伴概率。如果相伴概
率小于显著性水平,可以认为这10个节目之间没有 显著差异,那么可以认为这5个评委判定标准不一 致,也就是判定结果不一致。
SPSS应用
3.多配对样本的Cochran Q检验
多配对样本的Cochran Q检验也是对多个互 相匹配样本总体分布是否存在显著性差异的统计 检验。不同的是多配对样本的Cochran Q检验所能 处理的数据是二值的(0和1)。其零假设是:样 本来自的多配对总体分布无显著差异。
SPSS应用
单样本K-S检验可以将一个变量的实际频数分
布与正态分布(Normal)、均匀分布(Uniform)、
泊松分布(Poisson)、指数(Exponential)分 布进行比较。其零假设H0为样本来自的总体与指定
的理论分布无显著差异。
SPSS应用
6.2 两配对样本非参数检验
6.2.1 统计学上的定义和计算公式
SPSS应用
两配对样本非参数检验的前提要求两个样本 应是配对的。在应用领域中,主要的配对资料包 括:具有年龄、性别、体重、病况等非处理因素 相同或相似者。首先两个样本的观察数目相同, 其次两样本的观察值顺序不能随意改变。
SPSS应用
SPSS中有以下3种两配对样本非参数检验方 法。
SPSS应用
1验.两配对样本的McNemar变化显著性检
SPSS应用
2.两配对样本的符号(Sign)检验
当两配对样本的观察值不是二值数据时,无法 利用前面一种检验方法,这时可以采用两配对样本
的符号(Sign)检验方法。其零假设为:样本来
自的两配对样本总体的分布无显著差异。
第5讲SPSS非参数检验

数据文件:“糖果中的卡路里.sav” 菜单:“分析→非参数检验→旧对话框→K个独立样本”
多独立样本非参数检验整体分析与设计的内容
输入最大值、 最小值。
Kruskal-Wallis H检 验:是曼-惠特尼U 检验在多个独立样 本下的推广。
检验各个样本是否来自有相同中位数的 总体。--- 这种检验的效能最低。
2)对数据的测量尺度无约束,对数据的要求也不严格,任何数据类型 都可以。
3)适用于小样本、无分布样本、数据污染样本、混杂样本等。
注:若参数检验模型的所有假设在数据中都能满足,而且测量达到了所 要求的水平,那么,此时用非参数检验就浪费了数据。
因此,若所需假设都满足的情况下,一般就选择参数检验方法。
卡方检验
此时,零假设:两总体的 均值无显著性差异;就可 能不成立。
K-S检验。以变量的秩 作为分析对象;而非变 量值本身。
也需要先将两组样本混 合、升序排列。
两独立样本非参数检验整体分析与设计的内容 二、操作
该检验有特定用途,给出的结果均为单侧 检验。若施加的处理时的某些个体出现正 向效应,而另一些个体出现负向效应时, 就应当采用该检验方法。 基本思想为:将一组样本作为控制样本, 另一组作为试验样本。以控制样本为对照, 检验试验样本相对于控制样本是否出现了 极端反应。若无极端反应,则认为两总体 分布无显著性差异;否则,有显著性差异。
选择分布
“结”的处理
单样本K-S检验
整体分析与设计的内容
三、补充描述性统计的P-P图和Q-Q图
P-P图的输出样子: P-P图
期望(理论)累计 概率值
去势P-P图
样本数据实际累计 概率值
实际与期望的差值
样本数据实际累计 概率值
SPSS教程-非参数检验

一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ
表
肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。
非参数检验-SPSS
非参数检验-SPSS什么是非参数检验?非参数检验是一种统计假设检验方法,它不依赖于总体的任何假设条件,如总体分布的正态性、方差的同一性等。
与参数检验相比,非参数检验更加灵活,能够适应更多的数据情况。
为什么需要非参数检验?当我们的数据不满足正态分布等假设条件时,就需要使用非参数检验。
此外,非参数检验还有以下优点:1.不需要知道总体分布的具体形态,从而更加适用于实际情况2.对于离群值和极端值并不敏感3.数据缺失并不会影响检验结果SPSS中的非参数检验现在我们来介绍SPSS中的非参数检验。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验旨在检验两组配对样本的中位数差异是否为零。
它的原假设是两组样本中位数相同。
首先,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“数据”-“配对样本T检验”-“Wilcoxon符号秩检验”。
接下来,我们需要在弹出的对话框中选择配对变量,然后点击“OK”即可得到检验结果。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于检验两组独立样本的中位数是否相同。
它的原假设是两组样本中位数相同。
要进行Mann-Whitney U检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“2独立样本”。
接着,在弹出的对话框中选择两组样本的变量,并设置分析的方法为“Mann-Whitney U检验”。
最后点击“OK”即可得到检验结果。
3. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数检验方法,用于检验多个独立样本的中位数是否相同。
它的原假设是多组样本中位数相同。
要进行Kruskal-Wallis检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“Kruskal-Wallis检验”。
接着,在弹出的对话框中选择多组样本的变量,并点击“OK”即可得到检验结果。
spss使用教程非参数检验
SPSS二项分布检验就是根据收集到的样本 数据,推断总体分布是否服从某个指定的二项 分布。其零假设是H0:样本来自的总体与所指 定的某个二项分布不存在显著的差异。
第24页/共152页
SPSS中的二项分布检验,在样本小于或等 于30时,按照计算二项分布概率的公式进行计 算;样本数大于30时,计算的是Z统计量,认 为在零假设下,Z统计量服从正态分布。Z统计 量的计算公式如下
人数 2 4 7 16 20 25 24 22 16 2 6 1
第49页/共152页
实现步骤
图10-12 在菜单中选择“1-Sample K-S”命令
第50页/共152页
图10-13 “One-Sample Kolmogorov-Smirnov Test”对话框
第51页/共152页
图10-14 “One-Sample K-S:Options”对话框
第28页/共152页
表10-2
35名婴儿的性别
婴儿
Sex
婴儿
Sex
婴儿
Sex
1
1
13
1
25
1
2
0
14
1
26
1
3
1
15
1
27
0
4
1
16
1
28
0
5
1
17
0
29
0
6
1
18
0
30
0
7
0
19
0
31
1
8
0
20
0
32
0
9
0
21
0
33
0
10
2.spss应用(计数资料分析、非参数检验、统计图绘制)
配伍组设计的秩和检验:例题8-9(P143) Analyze→nonparametric tests →k related samples
→test variables:变量1、变→ok
三、统计图的绘制
1.直条图、误差条图 2.圆图
3.线图、半对数线图
配对四格表资料的2检验:例题7-3(P114)
Data→weight cases → weight cases by: frequency variable:f →ok analyze→descriptive statistics →crosstabs … : row: 法一 column:法二 statistics →选择McNemar →continue →ok
实例分析
P112 P114 P114 P116 P117 P119 P119 P120 例7-1 例7-2 例7-3 例7-4 例7-5 例7-6 例7-7 例7-8
二、非参数检验
配对设计的符号秩检验:例题8-1(P132)
Analyze→nonparametric tests
→2 related samples
例题7-1(P112)数据输入的格式: 组别:分组变量 1-试验组 2-对照组 疗效: 1-有效 0-无效 f:表示频数 组别 1 1 2 2 疗效 1 0 1 0 f 99 5 75 21
1 2 3 4
四格表资料的2检验:例题7-1(P112)
Data→weight cases → weight cases by: frequency variable:f →ok analyze →descriptive statistics →crosstabs … : row: 组别 column:疗效 statistics →选择chi-square →continue → ok
SPSS的参数检验和非参数检验
SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。
参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。
而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。
参数检验主要有t检验、方差分析和回归分析等。
其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。
方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。
回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。
非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。
Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。
在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。
2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。
3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。
4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。
5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。
无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。
同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。
在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非参数检验
非参数检验是指在总体不服从正态分布
且分布情况不明时,用来检验数据资料 是否来自同一个总体的一类假设检验方 法,因这些方法一般不涉及总体参数而 得名。 主要类型:
– Chi-square test 卡方检验 – Binomial test二项式检验 – Runs test 游程检验等等
C、卡方分布形状
接受域
拒绝域
D、SPSS中卡方检验示例(性别与文化程度) 步骤:
1)确定双变量总体参数的假设: H0: X2=0 ; H1: X2 ≠0; 2)确定检验此假设的概率标准:显著度为0.05。 3)抽取一个样本容量为1254的随机样本,计算出样本中 性别与文化程度的X2=27.89。 4)选择用来检验H0 的分布: X2分布,并根据显著度 0.05设立接受域(P>0.05)或拒绝域(P<0.05); 5)观察样本的统计量的概率值是否落在接受域内,从而 判断是接受/拒绝原假设。从下表看出,样本统计量X2 =27.89,概率值(Significance)=0.000<0.05,落在拒 绝域,因此,否定H0;接受总体中X2=27.89的判断。 此判断犯错误的概率)=0.000<0.05。
B、F 值计算公式:
F 组间方差 组内、F分布的形状
接受域
拒绝域 拒绝域
D、SPSS中 F 检验示例(文化程度与收入) 步骤:
1)确定双变量总体参数的假设:
H0: μ1=μ2 = μ3 = ...μk ; H1: μ1 ≠μ2 ≠μ3≠ ...μk ;
变量关系的显著性检验类型
定类 定类 定序 定距
卡方类测量 (卡方检验)
定序
卡方类测量 (卡方检验) Spearman 相 关系数 (Z 检验)
定距
方差分析 (F 检验) Spearman 相关 系数 (Z 检验) Pearson 相关 (t 检验) 回归系数 (t 检验)
样本2:X2= 样本1:X1= 795;S=10 790;S=10
性 别 * 文 化 程 度 Cros s ta b ula tio n 文化程度 不识字 或识字 很少 7 1 .1% 1 4.9 % 40 6 .4% 8 5.1 % 47 3 .8% 1 00 % 高中中 专或中 技 2 02 3 2.1 % 5 1.4 % 1 91 3 0.8 % 4 8.6 % 3 93 3 1.4 % 1 00 .0 % 研究 生以 上 8 1 .3% 5 0.0 % 8 1 .3% 5 0.0 % 16 1 .3% 1 00 %
男
女
T otal
初小 34 5 .4% 4 9.3 % 35 5 .6% 5 0.7 % 69 5 .5% 1 00 %
高小 30 4 .8% 4 6.2 % 35 5 .6% 5 3.8 % 65 5 .2% 1 00 %
初中 1 63 2 5.9 % 5 3.1 % 1 44 2 3.2 % 4 6.9 % 3 07 2 4.5 % 1 00 %
接受区95%
假设 m=800
拒绝区5%
m±1.96 Se
一、定类—定类尺度:χ2检验
卡方检验是用来检验样本中两个定类变量的关系强度测量 结果(卡方值)是否能推断总体。
A、χ2检验的假设: H0: χ2=0; H1: χ2≠0; B、卡方计算公式:
2
j i
(Oij Eij )2 Eij
卡方值
Chi-Square Tests Asymp. Sig. (2-s ided) .000 .000 .002
显著性检 验结果
df 7 7 1
Pearson Chi-Square Likelihood Ratio Linear-by-Linear Ass ociation N of Valid Cas es
大专 89 1 4.1 % 4 8.9 % 93 1 5.0 % 5 1.1 % 1 82 1 4.5 % 1 00 %
大学本 科 97 1 5.4 % 5 6.4 % 75 1 2.1 % 4 3.6 % 1 72 1 3.7 % 1 00 .0 %
T otal 6 30 1 00 % 5 0.4 % 6 21 1 00 % 4 9.6 % 1 25 1 1 00 % 1 00 %
Value 27.892 a 30.324 9.706 1251
a. 0 cells (.0%) have expected count les s than 5. The minimum expected count is 7.94.
二、 定类—定距尺度: F 检验
F检验是用来检验样本中一个定类变量和一个定距变量的关 系强度测量结果(分组平均数)是否能推断总体。如不同职 业的人在收入上是否有差异(即职业分组的平均收入是否不 同)。 A、F 检验的假设: H0: μ1=μ2 = μ3 = ...μk ; H1: μ1 ≠μ2 ≠μ3≠ ...μk ;
2)确定检验此假设的概率标准:显著度为0.05。 3)抽取一个样本容量为1254的随机样本,计算出样本中文化程度与收入的 F =6.006。 4)选择用来检验H0 的分布: F 分布,并根据显著度0.05设立接受域(P>0.05) 或拒绝域(P<0.05); 5)观察样本的统计量的概率值是否落在接受域内,从而判断是接受/拒绝原假
设。从下表看出,样本统计量F =6.006。 概率值(Significance)=0.000<0.05,
落在拒绝域,因此,否定H0;拒绝总体中H0: μ1=μ2 = μ3 = ...μk 的判断。 即由样本可以推断总体,不同的文化程度,收入有差别;文化程度与收入有 关。
Report 现在每月工资 文化程度 不 识 字 或 识 字很 少 初小 高小 初中 高 中 中 专 或 中技 大专 大学本科 研究生以上 To tal Mea n 30 2.8 6 46 0.2 8 77 3.5 0 54 6.9 5 67 6.5 7 79 3.6 6 82 8.8 6 66 6.0 0 68 1.2 2 N 7 18 22 21 3 31 2 14 6 12 5 15 85 8 Std . Devia tio n 13 7.9 3 17 6.6 4 13 86.82 32 6.5 8 47 0.1 8 46 0.9 1 61 8.1 9 32 5.0 0 50 9.6 0