晶闸管的结构原理及测试

合集下载

晶闸管的原理与应用pdf

晶闸管的原理与应用pdf

晶闸管的原理与应用一、晶闸管的基本原理晶闸管是一种电子器件,具有可控硅的特点。

其基本原理如下:1.PN结–晶闸管由P型半导体、N型半导体和P型半导体三层特殊结构构成。

–P型半导体具有正电荷载流子,N型半导体具有负电荷载流子,形成PN结。

2.开关特性–当PN结两端没有电压时,晶闸管处于关断状态。

–当PN结两端有正向电压时,晶闸管依然处于关断状态。

–当PN结两端有反向电压时,当反向电压超过某一临界值时,晶闸管会被击穿,进入导通状态。

3.可控性–通过控制晶闸管的控制电极,可以改变晶闸管的导通时间和导通电流。

–当控制电极施加正脉冲信号时,晶闸管进入导通状态,电流流过。

–当控制电极施加负脉冲信号时,晶闸管恢复关断状态,电流停止流动。

二、晶闸管的应用晶闸管由于其独特的特性,在电力控制、电动机控制和功率供应等领域有着广泛的应用。

1.电力控制–晶闸管可以控制电流的大小和方向,广泛应用于电力变频调速系统中。

–通过调节晶闸管的导通时间和导通电流,可以实现对电力系统的精确控制。

2.电动机控制–晶闸管可以控制电动机的启动、停止和转速等参数。

–通过控制晶闸管的导通时间和导通电流,可以实现对电动机的精确控制。

3.功率供应–晶闸管具有高功率控制能力,适用于高功率负载。

–晶闸管广泛应用于电力系统的功率供应、工业控制和电压变换等领域。

4.电流调制–晶闸管可通过不同的控制方式,实现电流的调制。

–通过改变晶闸管的导通时间和导通电流,可以实现正弦波、脉冲及方波等各种电流波形的调制。

三、晶闸管的优势与发展晶闸管作为一种可控硅器件,具有以下优势:•高可靠性:晶闸管的寿命长,无机械动部件,可靠性高。

•调制能力强:晶闸管能够实现多种电流波形的调制。

•功率控制精度高:晶闸管能够实现对功率的精确控制。

•体积小:晶闸管体积小,便于集成和安装。

晶闸管在过去几十年里得到了快速发展,随着科技的进步,有望在以下领域实现更多突破:1.新能源–晶闸管在风能、太阳能等新能源的开发和利用中有着广阔的应用前景。

晶闸管的结构和工作原理课件

晶闸管的结构和工作原理课件

晶闸管的导通实验二
实验 顺序
实验时晶闸管条件
阳极电压 Ua
门极电压 Ua
பைடு நூலகம்
实验后灯 的情况
1
正向
反向

结论
2
正向

晶闸管同时在正向阳极电压与正向门

极电压作用下才能导通。
3
正向
正向

电力电子技术
晶闸管的结构和工作原理课件
晶闸管导通后的实验(原来灯亮)
实验 顺序
实验时晶闸管条件
阳极电压 Ua
门极电压 Ua
晶闸管的导通关断条件
实 验 电 路 图
电力电子技术
晶闸管的结构和工作原理课件
点击进入仿真
晶闸管的导通实验一
实验 顺序
实验时晶闸管条件
阳极电压 Ua
门极电压 Ua
实验后灯 的情况
1
反向
反向

结论
2
反向

晶闸管在反向阳极电压作用下,不论

门极为何种电压,它都处于关断状态。
3
反向
正向

电力电子技术
晶闸管的结构和工作原理课件
K
晶闸管的结构和工作原理课件
有关晶闸管的几个名词
触发:当晶闸管加上正向阳极电压后,门极加上适当的正向门极电压, 使晶闸管导通的过程称为触发。
维持电流IH:维持晶闸管导通所需的最小阳极电流。 正向阻断:晶闸管加正向电压未超过其额定电压,门极未加电压的情 况下,晶闸管关断。
硬开通:给晶闸管加足够的正向阳极电压,即使晶闸管未加门极电压 也会导通的现象叫硬开通。
实验后灯 的情况
1
正向
反向

晶闸管的结构以及工作原理

晶闸管的结构以及工作原理

晶闸管的结构以及工作原理晶闸管是一种异型双极结构的电子器件,由三层PNPN结构组成。

它的结构和工作原理可以分为几个方面进行介绍。

1.结构晶闸管由P型和N型半导体材料交叉组成的四层PNPN结构,形成了三个PN结的结构,即P1-N1-P2-N2、两个P型区域称为主极(anode,A)和触发极(gate,G),两个N型区域称为P型区域的发射层(emitter,E)和P型区域的集电层(collector,C)。

晶闸管的主极两端接有外部电源,而触发极一般连接到控制电路。

2.工作原理当晶闸管的控制电极施加一个低于临界电压的阳极电压时,即晶闸管处于关断状态,没有电流通过。

当控制电极施加一个高于临界电压的阳极电压时,即晶闸管处于导通状态,电流可以通过。

晶闸管的导通过程可以分为四个阶段:保持阶段、启动阶段、加强阶段和饱和阶段。

-保持阶段:当触发电压上升时,晶闸管开始导通,但此时并没有电流通过。

主极处于反向偏置,控制电压从触发极上扩展到集电极端,使得内部的PNPN结正向偏置。

-启动阶段:当控制电压达到晶闸管的启动电压时,发射极和集电极之间的电流开始增加。

这个过程是正反馈的,因为电流的增加会引起发射层电压的降低,从而增加集电层电压。

这种正反馈的作用会使晶闸管持续导通而不需要保持电流。

-加强阶段:在启动阶段之后,电流从发射层向集电层继续增加,响应时间非常快,仅为纳秒级别。

晶闸管的涉及电压变小,其间接穿晶闸管的电流开始逐渐加强。

-饱和阶段:在集电极电流和发射极电流足够大的情况下,晶闸管进入饱和状态,其电压降只有几个伏特,并且电流保持在一个稳定的值。

晶闸管的导通和关断是通过控制电极的电压来实现的。

当控制电压去除或降低,晶闸管将自动进入关断状态。

晶闸管的关断过程相对较长,需要通过外部电路才能完全关断。

总结:晶闸管是一种PNPN结构的电子器件,由四个区域(P1-N1-P2-N2)组成。

其工作原理是通过控制电压对其导通和关断进行控制。

晶闸管开关工作原理

晶闸管开关工作原理

晶闸管开关工作原理
一、晶闸管结构
晶闸管是一种半导体器件,由三个PN结组成,具有单向导电性。

其结构类似于二极管,但具有更高的耐压和电流容量。

晶闸管的主要类型有单向晶闸管和双向晶闸管。

二、触发电压控制
晶闸管的导通和关断需要一定的触发电压。

当施加正向电压时,晶闸管内部的PN结形成正向偏置,使得电流能够通过。

当施加反向电压时,晶闸管内部的PN结形成反向偏置,阻止电流通过。

因此,通过控制触发电压的大小和方向,可以控制晶闸管的导通和关断。

三、电流控制
晶闸管的导通电流受到其内部PN结的限制。

当电流超过一定值时,晶闸管会进入饱和区,导致电流不再增加。

因此,通过控制晶闸管的导通电流,可以实现对电路的精确控制。

四、温度稳定性
晶闸管的性能受温度影响较小。

在一定的工作温度范围内,晶闸管的触发电压和导通电流的稳定性较好。

因此,在高温环境下使用晶闸管时,其性能仍然能够保持稳定。

五、抗干扰能力
晶闸管具有较强的抗干扰能力。

在电路中,由于各种因素的影响,可能会产生干扰信号。

但是,由于晶闸管的单向导电性和触发电压的控制特性,其抗干扰能力较强,能够保证电路的稳定运行。

总之,晶闸管开关工作原理主要涉及到其结构、触发电压控制、电流控制、温度稳定性和抗干扰能力等方面。

通过对这些方面的了解和掌握,可以更好地应用晶闸管开关实现电路的控制和保护功能。

双向晶闸管的结构及工作原理

双向晶闸管的结构及工作原理

双向晶闸管的检测方法(1)电极的判断与触发特性测试将万用表置Rx1挡,测量双向晶闸管任意两脚之司的阻值,如果测出某脚和其他两脚之间的电阻均为无穷大,则该脚为T2极。

确定T2极后,可假定其余两脚中某一脚为T1电极,而另一脚为G极,然后采用触发导通测试方法确定假定极性的正确性。

试验方法如图所示。

首先将负表笔接T1极,正表笔接乃极,所测电阻应为无穷大。

然后用导线将T2极与G极短接,相当于给G极加上负触发信号,此时所测T1-T2极间电阻应为10Ω左右,证明双向晶闸管已触发导通,如图(a)所示。

将巧极与G极间的短接导线断开,电阻值若保持不变,说明管子在T1→T2方向上能维持导通状态。

再将正表笔接T1极,负表笔接T2极,所测电阻也应为无穷大,然后用导线将T2极与G 极短接,相当于给G极加上正触发信号,此时所测T1-T2极间电阻应为10Ω左右,如图(b)所示。

若断开T2极与G极间的短接导线阻值不变,则说明管子经触发后,在T2→T1方向上也能维持导通状态,且具有双向触发性能。

上述试验也证明极性的假定是正确的,否则是假定与实际不符,需重新作出假定,重复上述测量过程。

双向晶闸管测试方法(2)大功率双向晶闸管触发能力的检测小功率双向晶闸管的触发电流较小,采用万用表Rx1挡可以检查出管子的触发性能。

大功率双向晶闸管的触发电流较大,再采用万用表Rx1挡测量巳无法使管子触发导通。

为此可采用图所示的方法进行测量,但测量中需要采用不同极性的电源,以确定管子的双向触发能力。

晶闸管模块晶闸管模块内由多个晶闸管或晶闸管与整流管混合组成,电流容量一般为25~100A,电压范围为400~1600V。

它具有体积小、重量轻、散热板与电路高度电气绝缘、安装方便、耐冲击等特点,主要用于电力变换与电力控制,如各种整流设备、交一直流电机驱动电路、无触点开关以及调光装置等。

表给出了一组晶闸管模块的主要特性参数,它们的外形如图所示。

一些晶闸管模块主要特性参数型晶闸管模块外形关断晶闸管的检测可关断晶闸管的极性及触发导通性能的检测可参考前面所述的方法进行,其关断能力采用双万用表法检查,如图所示,表1用来进行触发导通,表2用以产生负向触发信号。

晶闸管及其驱动实验报告

晶闸管及其驱动实验报告

一、实验目的1. 了解晶闸管的基本结构、工作原理及触发方式。

2. 掌握晶闸管驱动电路的设计方法及驱动信号的生成。

3. 通过实验验证晶闸管的触发、导通和关断特性。

二、实验原理1. 晶闸管(Thyristor)是一种大功率半导体器件,具有可控硅整流器的特性,是一种四层三端器件。

晶闸管在正向电压作用下,在阳极与阴极之间形成PNPN结构,导通电流;在反向电压作用下,阻断电流。

2. 晶闸管的触发方式主要有以下几种:(1)正触发:在阳极与阴极之间施加正向电压,并在控制极与阴极之间施加正向脉冲信号,使晶闸管导通。

(2)负触发:在阳极与阴极之间施加反向电压,并在控制极与阴极之间施加负向脉冲信号,使晶闸管导通。

(3)双极触发:在阳极与阴极之间施加正向电压,同时在控制极与阴极之间施加正向脉冲信号,使晶闸管导通。

3. 晶闸管驱动电路主要作用是产生触发信号,驱动晶闸管导通和关断。

驱动电路一般由脉冲发生器、驱动放大器、隔离电路和缓冲电路组成。

三、实验器材1. 晶闸管:2只2. 驱动电路:1套3. 脉冲发生器:1台4. 测量仪器:示波器、万用表、电源等5. 电路板、导线、连接器等四、实验步骤1. 晶闸管基本特性测试(1)将晶闸管安装在电路板上,连接好电路。

(2)打开脉冲发生器,设置触发方式为正触发。

(3)使用示波器观察晶闸管的触发、导通和关断波形。

(4)调整脉冲发生器的脉冲宽度,观察晶闸管的导通和关断特性。

2. 晶闸管驱动电路设计(1)设计驱动电路,包括脉冲发生器、驱动放大器、隔离电路和缓冲电路。

(2)连接好电路,确保电路连接正确。

(3)打开脉冲发生器,设置触发方式为正触发。

(4)使用示波器观察驱动电路的输出波形,确保触发信号正确。

3. 驱动电路性能测试(1)在晶闸管驱动电路的基础上,连接晶闸管。

(2)打开脉冲发生器,设置触发方式为正触发。

(3)使用示波器观察晶闸管的触发、导通和关断波形,验证驱动电路的性能。

五、实验结果与分析1. 晶闸管基本特性测试实验结果显示,晶闸管在正触发方式下,触发电压为20V,导通电流为5A。

晶闸管的结构与工作原理

晶闸管的结构与工作原理

晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。

晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。

在本文中,我们将讨论晶闸管的结构和工作原理。

一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。

2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。

3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。

在晶片上另一端同样有一块P型区,通常称为阴极。

4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。

5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。

门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。

晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。

二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。

下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。

此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。

2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。

在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。

3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。

因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。

晶闸管工作原理

晶闸管工作原理

晶闸管工作原理引言概述:晶闸管是一种重要的电子器件,广泛应用于电力控制和电子调节领域。

了解晶闸管的工作原理对于理解其应用和故障排除至关重要。

本文将详细介绍晶闸管的工作原理,包括晶闸管的结构、特性和工作方式。

一、晶闸管的结构1.1 硅基材料:晶闸管的主要材料是硅,因其具有较好的电特性和热特性而被广泛应用。

1.2 PN结:晶闸管由两个PN结组成,其中一个PN结被称为控制结,另一个PN结被称为终端结。

1.3 门极结:晶闸管的控制结上有一个附加的门极结,通过控制门极上的电压来控制晶闸管的导通和截止。

二、晶闸管的特性2.1 可控性:晶闸管的导通和截止状态可以通过控制门极上的电压来实现,具有可控性。

2.2 双向导通性:晶闸管可以在正向和反向电压下导通,具有双向导通性。

2.3 高电压和高电流承受能力:晶闸管能够承受较高的电压和电流,适用于高功率电子设备的控制。

三、晶闸管的工作方式3.1 导通状态:当门极结施加正向电压时,晶闸管处于导通状态,电流可以从终端结流过。

3.2 截止状态:当门极结施加反向电压时,晶闸管处于截止状态,电流无法通过终端结。

3.3 触发方式:晶闸管可以通过正向或负向的脉冲电压来触发,使其从截止状态转变为导通状态。

四、晶闸管的应用4.1 电力控制:晶闸管可以用于电力调节、电压变换和电流控制等领域,实现对电力的精确控制。

4.2 电子调节:晶闸管可以用于调节电子设备的亮度、速度和功率等,提高设备的性能和效率。

4.3 高频电子设备:晶闸管具有快速开关速度和较低的开关损耗,适用于高频电子设备的控制和调节。

五、晶闸管的故障排除5.1 过电流保护:晶闸管在工作过程中可能会受到过电流的影响,需要采取相应的保护措施。

5.2 过电压保护:晶闸管在工作过程中可能会受到过电压的影响,需要采取相应的保护措施。

5.3 温度控制:晶闸管在工作时会产生较高的温度,需要采取散热措施来控制温度,以避免故障发生。

结论:晶闸管作为一种重要的电子器件,具有可控性、双向导通性和高电压、高电流承受能力等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2 章 常用电力电子器件介绍及选择
2.1晶闸管的结构原理及测试
一.晶闸管(Thyristor)简介 晶闸管包括:普通晶闸管(SCR)、快速晶闸管
(FST)、双向晶闸(TRIAC)、逆导晶闸管(RCT) 、 可关断晶闸管(GTO) 和光控晶闸管等。由于普通 晶闸管面世早,具备电流容量大,电压耐量高以及 开通的可控性(目前生产水平:4500A/8000V)已 被广泛应用于相控整流、逆变、交流调压、直流 变换等领域, 成为特大功率低频(200Hz以下)装置 中的主要器件。

UAK < 0, UGK不限
4.普通晶闸管SCR 的半控特性
当晶闸管处于UAK>0, UGK > 0时,器件 导通,若此时撤除门极电压(UGK≤0),则晶 闸管仍处于导通状态。即:晶闸管一旦导通,
门级即失去控制作用,因而门极电压可用脉冲 电压 。
判断下列图中晶闸管的状态:
第 2 章 常用电力电子器件介绍及选择
普通晶闸管:即可控硅整流管(Silicon Controlled Rectifier), 常用SCR表示,电路图上用“T”标识。
第 2 章 常用电力电子器件介绍及选择
2.1晶闸管的结构原理及测试 二.普通晶闸管SCR的结构 外形:平板式和螺旋式
三个电极: 阳极A, 阴极K 、门极(或称栅极、 控制极)G
电气符号如(e)所示
第 2 章 常用电力电子器件介绍及选择
2.1晶闸管的结构原理及测试
三.普通晶闸管SCR的特性 1.普通晶闸管SCR 具有单向导电特性和正向导通
的可控性。即:必须使元件主电极的电压处于 A+,K- 的状态,才有可能使元件导通。 2.普通晶闸管SCR 导通的条件 (1)晶闸管的阳极-阴极之间加正向电压(阳 极正偏)。
(2)晶闸管的门极-阴极之间加正向触பைடு நூலகம்电压 (门极正偏) ,且有足够的门极电流。
即:UAK>0, UGK>0(形成触发电流)
第 2 章 常用电力电子器件介绍及选择
2.1晶闸管的结构原理及测试
3.普通晶闸管SCR 关断的条件
UAK>0, UGK<0(初始状态为不导通)
或 UAK>0, UGK > 0,IAK <IH(维持电流)
第 2 章 常用电力电子器件介绍及选择
2.1晶闸管的结构原理及测试
五.晶闸管的测试 用万用表欧姆档判断晶闸管好坏的方法是:
将万用表置于R×1KΩ,测量阳极-阴极之间的 正反向电阻,正常时都为几百千欧以上。 将万用表置于R×10Ω,测量门极-阴极之间的 正反向电阻,正反向时都为数百欧。
注意:测量门极-阴极之间的电阻值时,禁止使用 R×10KΩ,以免表内高电压击穿门极的PN结。
2.1晶闸管的结构原理及测试
四.晶闸管管脚极性的判断
1.阳极A:用万用表R×1KΩ档测量晶闸管 的任意两管脚,其中有一管脚对另外两管 脚正反向电阻均在几百千欧以上,则该管 脚为A;
2.阴极K,控制极G: 用万用表R×10Ω档测 量另外两个管脚的电阻值,当数值为较小 时,黑表笔所接的管脚为G,红表笔所接 的管脚为K.
相关文档
最新文档