直流电动机调速系统设计

合集下载

双闭环直流调速系统设计

双闭环直流调速系统设计

一、课程设计目的在《电机与拖动》、《电力电子技术》、《伺服系统》和《电力拖动自动控制系统》课程知识的基础上,完成课程的综合性设计。

通过课程设计环节的训练,包括设计方案的论证、参数计算、系统仿真和设计报告的撰写,掌握系统综合应用项目的设计流程和方法,加深对完整项目开发的的理解和掌握,培养应用系统的设计能力,初步积累双闭环直流调速系统的设计方法,以及分析问题和解决问题的能力,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

电力系统综合课程课程设计是电气工程及其自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练,其主要目的是:1、理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。

2、对一种典型的双闭环调速自动控制系统进行综合性分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。

加强基本技能训练。

3、掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。

4、培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。

为下学期毕业设计作准备。

5、通过设计熟练地查阅有关资料和手册。

二、课程设计内容与要求1、本课程设计的对象直流伺服电机:学生自行查找电机型号直流测速机:学生根据设计任务选择2、本课程设计的内容要求设计一个直流双闭环调速系统。

其主要内容为:1、测定综合实验中所用控制对象的参数(在实验室完成)。

2、根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。

3、按设计结果组成系统,以满足给定指标。

4、研究参数变化对系统性能的影响。

5、在时间允许的情况下进行调试。

3、本课程设计的设计要求a.调速范围D=5~10,静差率S≤5%。

b.空载启动时电流超调σi≤5%,转速超调σn≤10%(在额定转速时)。

c.动态速降小于10%。

d.振荡次数小于2次。

基于DSP的无刷直流电动机的调速系统设计的开题报告

基于DSP的无刷直流电动机的调速系统设计的开题报告

基于DSP的无刷直流电动机的调速系统设计的开题报告一、选题背景随着现代工业的快速发展,无刷直流电动机(Brushless DC motor,简称BLDC)的应用越来越广泛,已经成为工业自动化领域的重要组成部分。

与传统的有刷直流电动机相比,BLDC具有结构简单、寿命长、能效高、响应快等优点,特别适用于高速、高精度、高效率、高可靠性的工业控制系统中。

BLDC电机的调速系统是其应用的核心,为确保电机在不同负载下的稳定运行,需要设计一种高性能、高精度的调速系统。

以往的调速系统多采用PID控制算法,虽然可以实现基本的调速功能,但由于PID调节参数难以确定,不适用于多变、不确定的控制环境。

近年来,随着数字信号处理器(digital signal processor,简称DSP)技术的发展,DSP已经被广泛应用于控制系统中,并能够提供更为灵活的控制策略和更高的性能指标。

因此,本论文选取基于DSP的无刷直流电动机调速系统作为研究对象,旨在设计一种高性能、高精度、高可靠性的调速系统,为工业控制系统中BLDC电机的应用提供更为优化的技术支持。

二、研究内容本论文的主要研究内容包括:1. BLDC电机的调速原理及其特点分析:分析BLDC电机的结构特点、工作原理和调速控制策略,为后续的调速系统设计提供理论基础。

2. 基于DSP的调速系统设计:选用TMS320F28335作为DSP控制器,搭建BLDC电机调速系统的硬件平台,开发调速控制算法,并实现系统的软件编程,为电机的精确控制提供支持。

3. 调速系统性能测试:评估调速系统的性能指标,包括调速精度、系统稳定性、响应速度等,对系统进行全面的性能测试和分析。

4. 结论及展望:总结本论文的研究内容和结论,指出调速系统的优点和不足之处,并提出未来的研究方向和发展趋势。

三、研究意义BLDC电机是现代工业自动化中不可缺少的重要组成部分,其调速系统的性能直接影响到工业控制系统的稳定性和效率,因此,本论文的研究对于提高工业控制系统BLDC电机的性能指标、推动工业自动化技术的发展具有一定的理论和实践意义。

基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

交直流调速系统课程设计(DOC)

交直流调速系统课程设计(DOC)

交直流调速系统课程设计说明书转速、电流双闭环控制直流调速系统设计院部:电气与信息工程学院学生姓名:**指导教师:李建军老师专业:自动化班级:自本1001完成时间:2013年12月摘要转速、电流双闭环控制直流调速系统的性能很好,具有调速范围广、精度高、双闭环调速系统中设置了两个调节器,即转速调节器(ASR)和电流调节器(ACR),分别调节转速和电流。

本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,详细介绍了电流调节器和转速调节器的设计以及一些参数的选择和计算,使其满足工程设计参数标准。

关键词:直流双闭环调速系统电流调节器转速调节器ABSTRACTSpeed and current double closed-loop control dc speed control system performance is very good, has a wide speed range, high accuracy, good dynamic performance and the advantages of easy to control, so has been widely used in the electric drive system. Dc double closed loop speed regulation system set up two regulator, speed regulator (ASR) and current regulator (ACR), adjusting the rotational speed and current respectively. In this paper, the design of dc double closed loop speed regulation system is analyzed, the principle of dc double closed loop speed regulation system with some instructions, introduces the design of main circuit, detection circuit, the design of the current regulator and speed regulator is introduced and some parameters selection and calculation, to make it satisfy the standard of engineering design parameters.Keywords: current regulator dc double closed loop speed regulation system of speed regulator绪论采用转速负反馈和PI调节的单闭环调速系统可以实现转速的无静差,如果附带电流截止负反馈作限流保护可以限制电流的冲击,但并不能控制电流的动态波形。

PWM直流调速系统

PWM直流调速系统

pwm直流调速系统的建模与仿真1设计意义速系统是一种当前应用广泛,经济,适用的电力传动系统。

它具有动态响应快、抗干扰能力强等优点。

我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。

实际工作中,我们希望在电机最大电流限制的条件下,充双闭环调分利用电机的允许过载能负力,最好是在过度过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。

这时,启动电流波形,而转速是线性增长的。

这是在最大电流转矩的条件下调速系统所能得到的最快的启动过程。

2主电路设计2.1设计任务晶闸管三相桥式全控整流电路供电的双闭环直流调速系统,直流电动机:220V,136A,1460r/min,电枢电阻R a=0.2Ω,允许过载倍数λ= 1.5;电枢回路总电阻:R= 0.5Ω,电枢回路总电感:L= 15mH,电动机轴上的总飞轮力矩:GD2= 22.5N·m2,晶闸管装置:放大系数K s=40,电流反馈系数:β=0.05V/A,转速反馈系数:α=0.007Vmin/r,滤波时间常数:T oi=0.002s ,T on=0.01s设计要求:(1)稳态指标:转速无静差;(2)动态指标:电流超调量σi≤5%,空载起动到额定转速的转速超调量σn≤10%2.2电路设计及分析根据设计任务可知,要求系统在稳定的前提下实现无静差调速,并要求较好的动态性能,可选择PI控制的转速、电流双闭环直流调速系统,以完全达到系统需要。

转速、电流双闭环直流调速系统框图如图1所示。

图1 转速、电流双闭环调速系统系统框图两个调节器的输出均带限幅作用的,转速调节器ASR的输出限幅电压决定了电流给定电压的最大值,电流调节器ACR的输出限幅电压限制了电力电子电换器的最大输出电压。

双闭环直流调速系统原理框图如下图2所示图2双闭环直流调速系统原理框图2.2.1电流调节器直流电机是调压调速,一般用调电枢电压的方法来调速,用串电阻的方法或者可调电源都可以。

直流电机速度PID控制系统设计毕业论文(设计).doc.doc

直流电机速度PID控制系统设计毕业论文(设计).doc.doc

序号(学号〉: 161240303长春大学 毕业设计(论文)直流电机速度PID 控制系统设计李一丹国际教育学院自动化1612403曹福成2016 年 5 月 30 0姓 名 学 院 专 业 班 级 指导教师直流电机速度PID控制系统设计摘要:针对现有的直流电机控速难的问题,本文设计了一种基于ATmegal6L单片机的直流电机速度控制系统。

本系统以ATinegal6L单片机为主控制器,搭载了L298n为电机驱动,通过霍尔元件进行测速,通过按键控制电机的转动方向和转动速度,并配以温度传感器DS18B20对温度进行监测,通过PID算法调节PW\1 进行对速度控制。

该系统包括的模块主要有单片机为主体的控制模块、电机的驱动模块、对电机速度进行监测的模块、由LCD1602构成的显示ky r模块、电源模块和按键控制模块等。

本系统可以通过PID算法实现可编程脉宽波形对直流电机的速度进行控制,并且可以显示出当前电机的转速。

关键词:单片机;PID算法;直流电机The design of DC motor speed control system with PID Abstract: According to the existing DC motor speed control problem, this paper describes the design of a DC motor speed control system based on ATmegal6L MCU. To ATMEGA16L microcontroller as the main controller for the system, equipped with a L298n for motor drive, through the hall element of speed, through the buttons to control the motor rotation direction and the rotation speed, and the temperature sensor DS18B20 the temperature monitoring, PID algorithm is used to adjust the PWM control of the speed. The system includes the following modules display microprocessor control module, as the main body of the motor drive module, monitoring module, the speed of motor is composed of LCD1602 module, power supply module and key control module.This system can realize through PID algorithm to control the speed of the programming pulse waveforms of DC motor, and can display the current motor speed.Keywords: single chip microcomputer, PID algorithm, DC motor ky r戈ml ml ——II —In —In | * 11—I 1111 ml 1111目录Bit (1)l.i选题背景及意义 (1)1.2国内外研宄现状 (2)1.3木文主要研究的内容 (3)第2章总体方案论述 (4)ky r2.1系统主要传感器介绍 (4)2.1.1温度传感器 (4)2.1.2转速检测模块 (5)2.2系统总体功能及方案选择 (6)2.2.1系统所需模块及功能 (6)2.2.2主控制器选择 (8)第3章系统总体硬件设计 (10)3.1单片机最小系统 (10)3.1.1ATmegal6L单片机的引脚分布 (10)3.1.2最小系统的硬件电路 (13)3.2电机驱动电路 (14)3.3温度检测电路 (15)3.4光电管提示电路和按键控制电路 (15)3.5LCD1602 显示电路 (16)3.6电源电路 (17)3.7本章小节 (18)第4章系统软件设计 (19)4.1系统总体流程图 (19)4.2 PID算法简介 (19)4.2.1PID算法介绍 (20)4.2.2HD算法结果 (21)4.3系统调试步骤 (21)4.4误差分析即改进方法 (22)给论 (23)致谢 (24)参考文献 (25)隱 (26)附录I系统总体硬件电路图 (26)附录II系统中部分程序 (27)ky r In—ml ml ml ml | , I af—.第1章绪论1.1选题背景及意义电动机简称电机,俗称马达,在现实生活中,我们处处都可以见到电机的身影,小到小学生玩的电动四驱车,大到炼钢厂用的滚动罐,这些都是电机家族的成员。

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。

采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。

而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。

并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。

随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。

1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。

示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。

交直流调速系统课程设计

交直流调速系统课程设计

目录交直流调速课程设计任务书 (2)前言 (4)关键词 (4)交直流调速课程设计说明书 (5)一、总体方案确实定 (5)1.1 现行方案的讨论与比拟 (5)1.2 选择PWM控制系统的优越性 (6)1.3采用转速电流双闭环的理由 (6)1.4起动过程电流和转速波形 (9)1.5 H桥双极式逆变器的工作原理 (9)1.6 PWM调速系统静特性 (11)二、双闭环直流调速系统的硬件结构 (12)2.1主电路 (13)2.2 电流调节器 (14)2.3转速调节器 (14)2.4控制电路设计 (15)2.5、控制环节电源设计 (16)2.6、限幅电路 (16)2.7转速检测电路 (17)2.8、电流检测电路 (17)2.9、泵升电压限制 (18)三、电机参数及设计要求 (19)3.1电路根本信息如下: (19)3.2计算反响关键参数 (19)四、课程设计心得体会 (23)五、系统主要硬件结构图 (24)参考文献: (25)交直流调速课程设计任务书一、题目:双闭环可逆直流PWM调速系统设计二、设计目的1、对先修课程〔电力电子学、自动控制原理等〕的进一步理解与运用2、运用?电力拖动控制系统?的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。

也可以制作硬件电路。

3、同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。

到达综合提高学生工程设计与动手能力的目的。

三、系统方案确实定自动控制系统的设计一般要经历从“机械负载的调速性能〔动、静〕→电机参数→主电路→控制方案〞〔系统方案确实定〕→“系统设计→仿真研究→参数整定→直至理论实现要求→硬件设计→制板、焊接、调试〞等过程,其中系统方案确实定至关重要。

为了发挥同学们的主观能动作用,且防止方案及结果雷同,在选定系统方案时,规定外的其他参数由同学自已选定。

1、主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2、速度调节器和电流调节器采用PI调节器;U*nm=U*i m =U cm=10V3、机械负载为对抗性恒转矩负载,系统飞轮矩〔含电机及传动机构〕GD2 =1.5Nm2;4、主电源:可以选择三相交流380V供电,变压器二次相电压为52V;5、他励直流电动机的参数:见习题集【4-19】〔p96〕n N=1000r/min,电枢回路总电阻R=2Ω,电流过载倍数λ=2;6、PWM装置的放大系数K s=11;PWM装置的延迟时间T s=0.4ms。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社,2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 具体时间 设计内容 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介绍;学生确定选题,明确设计要求 - 开始查阅资料,完成方案的初步设计 — 由指导老师审核仿真模型,学生修改、完善并对仿真结果进行分析 - 撰写课程设计说明书 上交课程设计说明书,并进行答辩

指导教师签名: 年 月 日

系主任(或责任教师)签名: 年 月 日 目录 1概述 .............................................................. 1 2转速、电流双闭环直流调速系统的组成及其静特性 .......................... 1

转速、电流双闭环直流调速系统的组成 .................................. 1 稳态结构框图和静特性 ............................................... 2 3双闭环直流调速系统的数学模型与动态过程分析 ............................ 3

双闭环直流调速系统的动态数学模型 .................................... 3 双闭环直流调速系统的动态过程分析 .................................... 4 4转速电流双闭环直流调速系统调节器的工程设计 ............................ 6

转速和电流两个调节器的作用 .......................................... 6 调节器的工程设计方法 ................................................ 6 设计的基本思路 ................................................... 7

触发电路及晶闸管整流保护电路设计 ................................... 7 触发电路 ......................................................... 7 整流保护电路 ..................................................... 8 过电压保护和du/dt限制 .......................................... 8 过电流保护和di/dt限制 .......................................... 9

器件选择与计算 ..................................................... 9 5心得体会 ............................................................. 14 参考文献 ............................................................... 15 附录:电路原理图 ....................................................... 16 直流电动机调速系统设计 1概述 此设计采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计。本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。

2转速、电流双闭环直流调速系统的组成及其静特性 转速、电流双闭环直流调速系统的组成

图1 转速、电流双闭环直流调速系统结构 ASR—转速调节器 ACR—电流调节器 TG—测速发电机 TA—电流互感器 UPE—电力电子变换器 图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外 环。这就形成了转速、电流双闭环调速系统。为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压Uc为正电压的情况标出的,并考虑到运算放大器的倒相作用。

图2 双闭环直流调速系统电路原理图 稳态结构框图和静特性 稳态结构图,如图3。当调节器饱和时,输出为恒值,相当于使该调节环开环。当调节器不饱和时,PI作用使输入偏差电压U在稳态时总是零。在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。

图3 双闭环直流调速系统的稳态结构框图 -转速反馈系数 -电流反馈系数

K 1/CU* U

I

E n UU+ +

-

A+ U*-IR R A-

Ui U 图4双闭环直流调速系统的静特性 1转速调节器不饱和 稳态时,0*nnUUnn、diiIUU*,,——转速和电流反馈系数。 ,图5静特性的AB段。dmdII,CA段静特性从理想空载状态的0dI一直延续到

dmdII,而dmI一般都是大于额定电流dNI的。这就是静特性的运行段,它是水平的特性。

2转速调节器饱和 ASR输出达到限幅值*imU,转速外环呈开环状态,成电流无静差的单电流闭环调节系统。稳态时, ,dmI为最大电流。静特性是图4中的BC段,它是垂直的特性。这样的下垂特性只适合于0nn的情况,因为如果0nn,则*nnUU,ASR将退出饱和状态。 双闭环调速系统的静特性在负载电流小于dmI时表现为转速无静差,转速负反馈起主要调节作用。当负载电流达到dmI时,对应于转速调节器的饱和输出*imU,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。

3双闭环直流调速系统的数学模型与动态过程分析 双闭环直流调速系统的动态数学模型 图5是转速、电流双闭环直流调速系统的动态结构框图,ASRW(s)和ACRW(s)分别表示了转速调节器和电流调节器的传递函数。 如果采用PI调节器,则有: (3-1) ssKsWnnnASR1)(

ssKsWiiiACR1)(

0*nUnn

dmimdIUI

* (3-2) 图5 双闭环直流调速系统的动态结构框图 双闭环直流调速系统的动态过程分析 电流Id从零增长到Idm,然后在一段时间内维持其值等于Idm不变,以后又下降并经调节后到达稳态值Idl。转速波形先是缓慢升速,然后以恒加速上升,产生超调后,到达给定值n。从电流与转速变化过程所反映出的特点可以把起动过程分为电流上升、恒流升速和转速调节三个阶段,转速调节器在此三个阶段中经历了不饱和、饱和及退饱和三种情况。

图6 双闭环直流调速系统起动过程的转速和电流波形 第I阶段(0-t1)是电流上升阶段:突加给定电压Un后,经过两个调节器的跟随作用, Uc、U0d、Id都上升,但是在Id没有达到负载电流Idl以前,电动机不能转动。当Id Idl

后,电动机开始转动,由于电机惯性的作用,转速不会很快增长,因而转速调节器ASR的

输入偏差电压的数值较大,其输出电压保持限幅值Uim,强迫电枢电流Id迅速上升。直到IdIdm,Ui=Uim,电流调节器很快就压制了Id的增长,标志着这一阶段的结束。在这一阶段中,ASR很快进入并保持饱和状态,而ACR一般不饱和。 第II阶段(t1-t2)是恒流升速阶段:在这个阶段中,ASR始终是饱和的,转速环相当于开环,系统成为恒流给定Uim下的电流调节系统,基本上保持电流Id恒定,因而系统的加速度恒定,转速呈线性增长,是起动过程中的主要阶段。 第III阶段(t2以后)是转速调节阶段:当转速上升到给定值n时,转速调节器输入偏差为零,但输出却由于积分作用还维持在限限幅值Uim,所以电动机仍在加速,使转速超调。转速超调后,ASR输入偏差电压为负,使它开始退出饱和状态,Ui和Id很快下降。但是,只要Id仍大于负载电流Idl,转速就继续上升。直到Id= Idl时,转矩Te=Tl,则转速n到达峰值。此后,在t3-t4时间内,Id< Idl,电动机开始在负载的阻力下减速,直到稳态。如果调节器参数整定得不够好,也会有一段振荡过程。在这的转速调节阶段内,ASR和ACR都不饱和,ASR起主导的转速调节作用,而ACR则力图使Id尽快地跟随给定值Ui,此时电流内环是一个电流跟随子系统。

4转速电流双闭环直流调速系统调节器的工程设计 转速和电流两个调节器的作用 1. 转速调节器的作用

相关文档
最新文档