四边形练习题总的
三角形四边形看图形周长面积专项练习30题(有答案)ok

三角形四边形周长面积专项练习30题(有答案)1.计算下面图形的面积.2.求下列图形的面积.3.计算如图图形的周长.(单位:厘米)4.如图中梯形的面积是20dm2,阴影三角形的面积是多少?5.如图,两个正方形的边长分别是4分米和3分米,阴影部分的面积是多少平方分米?6.寻找合适的条件,求出各图形的面积.(单位:米)7.算出下面图形的面积.8.求阴影部分面积.单位:厘米.9.图形王国展风采.(求下面图形的周长,单位:厘米.)10.找准所需条件,计算下列图形的面积.(单位:米)11.求下面图形的面积.12.如图:三角形ABC的面积是6cm2,AB长4cm,求AB边上的高CD的长.13.如图所示,BC长为5,求画阴影线的两个三角形的面积之和.14.找准所需条件,计算下列图形的面积.(单位:米)15.如图,直角三角形的三条边分别长3cm、4cm、5cm,求最长边上的高为多少厘米.16.17.选择合适的数据计算下面图形的面积.18.求下面图形的面积.(单位:厘米)请同学们先写出每个图形的面积计算字母公式,然后再进行计算.19.计算下面图形或阴影部分的面积.(单位:cm)20.找出如图所需数据再求出面积.(单位:cm)21.一个三角形的底长是5m,如果底边延长1m,那么面积就增加1.5m2,请你求出原来三角形的面积是多少平方米?22.三角形ABC是一个正三角形,求这个图形的周长.23.求下面图形中阴影部分的面积.24.求下面各图形中涂色部分的面积25.如图,长方形的长是12cm,宽是5cm,三角形①的面积是24cm2,阴影部分面积是多少?26.求下面图形的面积.(单位:厘米)27.28.下面平行四边形中,涂色部分的面积是10平方分米求空白部分的面积.(单位:分米)29.30.如图数字分别表示两个长方形和一个直角三角形的面积,另一个三角形面积是_________.参考答案:1.三角形的面积:10×8÷2=80÷2,=40(m2);梯形的面积:(4+10)×5÷2=14×5÷2,=35(m2);答:三角形的面积为40(m2);梯形的面积为35(m2).2.(1)3.6×3÷2=5.4(平方厘米);(2)(4.8+13.2)×4÷2,=18×4÷2,=36(平方厘米);答:三角形的面积是5.4平方厘米,梯形的面积是36平方厘米3.①7+15+18=40(厘米);②5+11+15×2,=16+30,=46(厘米);③(18+9)×2=27×2,=54(厘米).答:三角形的周长是40厘米,等腰梯形的周长是46厘米,六边形的周长是54厘米.4.20﹣4×4÷2,=20﹣8,=12(平方分米),答:阴影三角形的面积是12平方分米.5.(4+3)×3÷2﹣(3×3﹣×3.14×32),=7×3÷2(9﹣7.065),=10.5﹣1.935,=8.565(平方分米);答:阴影部分的面积是8.565平方分米6.(1)三角形的面积:7×8.5÷2,=59.5÷2,=29.75(平方米);(2)梯形的面积:(3+5)×3.2÷2,=8×3.2÷2,=25.6÷2,=12.8(平方米);(3)平行四边形的面积:9.8×2.1=20.58(平方米);答:三角形的面积是29.75平方米,梯形的面积是12.8平方米,平行四边形的面积是20.58平方米7.(1)3.6×2.5÷2=4.5(平方厘米);(2)(1.4+4.6)×3.2÷2=6×3.2÷2=9.6(平方分米);(3)6.2×3.5=21.7(平方米);答:三角形的面积是4.5平方厘米;梯形的面积是9.6平方分米;平行四边形的面积是21.7平方米.8.12×12×=36(平方厘米);答:阴影部分的面积为36平方厘米.9.①6+7+9=22(厘米);②(13+24)×2=37×2,=74(厘米);③7+8+6+5+3+4=33(厘米);④32×4=128(厘米);答:三角形的周长是22厘米,长方形的周长是74厘米,六边形的周长是33厘米,正方形的周长是128厘米.10.(1)6×8÷2=24(平方米);(2)(14+24)×10÷2,=38×10÷2,=190(平方米);答:三角形的面积是24平方米;梯形的面积是190平方米11.(1)2.4×0.9÷2=1.08(平方厘米);(2)2.2×1.2+2.2×0.8÷2,=2.64+0.88,=3.52(平方分米);答:甲图形的面积是1.08平方厘米,乙图形的面积是3.52平方分米.12.6×2÷4,=12÷4,=3(cm);答:AB边上的高CD的长为3厘米.13.(5×5÷2﹣5×2÷2)×2,=(12.5﹣5)×2,=7.5×2,=15,答:阴影线的两个三角形的面积之和是15.14.三角形的面积:3×4÷2,=12÷2,=6(平方米);梯形的面积:(8+12)×10÷2,=20×10÷2,=200÷2,=100(平方米);组合图形的面积:6.3×4×2,=25.2×2,=50.4(平方米);答:三角形的面积是6平方米,梯形的面积是100平方米,组合图形的面积是50.4平方米15.3×4÷2×2÷5,=12÷5,=2.4(厘米),答:这个三角形最长边上的高2.4厘米,16.(27×2÷9)×5÷2,=(54÷9)×5÷2,=6×5÷2,=30÷2,=15(平方米);答:阴影部分的面积是15平方米.17.(1)30×40÷2,=1200÷2,=600(平方厘米),答:三角形的面积是600平方厘米;(2)15×8=120(平方分米),答:平行四边形的面积是120平方分米;(3)(8+15)×10÷2,=23×10÷2,=230÷2,=115(平方厘米),答:梯形的面积是115平方厘米.18.S△=ah÷2,=8×6÷2,=48÷2,=24(平方厘米);S▱=ah,=12×15,=180(平方厘米);S梯形=(a+b)h÷2,=(10+18)×12÷2,=28×12÷2,=336÷2,=168(平方厘米);答:三角形、平行四边形和梯形的面积分别是24平方厘米、180平方厘米和168平方厘米19.(1)12×4.5÷2,=4.5×6,=27(平方厘米),(2)8×8=64(平方厘米),(3)42×2÷15=5.6(厘米),(4.5+15)×5.6÷2,=19.5×5.6÷2,=54.6(平方厘米).20.(1)20×22÷2=220(平方厘米);答:三角形的面积是220平方厘米.(2)(18+12)×10÷2,=30×10÷2,=150(平方厘米);答:图形的面积是150平方厘米.(3)10×8=80(平方厘米);答:平行四边形的面积是80平方厘米21.原三角形的高:1.5×2÷1=3(米),原三角形的面积:5×3÷2=7.5(平方米);答:原来三角形的面积是7.5平方米.22.6×2+3.14×6×,=12+9.42,=21.42(厘米),答:这个图形的周长是21.42厘米.23.14×12÷2=84(平方厘米);答:阴影部分的面积是84平方厘米.24.(60+80)×30÷2﹣60×20÷2,=2100﹣600,=1500(平方厘米);答:图形中涂色部分的面积1500平方厘米25.阴影部分的面积:12×5﹣24=36(平方厘米);答:阴影部分的面积是36平方厘米.26.(1)8×6÷2,=48÷2,=24(平方厘米);(2)12×15=180(平方厘米);(3)(10+18)×12÷2,=28×12×,=28×6,=168(平方厘米),答:三角形的面积是24平方厘米,平行四边形的面积是180平方厘米,梯形的面积是168平方厘米.27.8×5÷2,=40÷2,=20,答:阴影部分是面积是20.28.因为空白部分的高=阴影部分的高,所以空白部分梯形的高为:10×2÷5=4(分米);空白部分的面积:(3+3+5)×4÷2,=11×4÷2,=44÷2,=22(平方分米);答:空白部分的面积是22平方分米.29.7×4﹣7×4÷2,=28﹣14,=14(平方厘米).答:阴影部分的面积是14平方厘米.30.因为AO×OD=15,OC×OE=12,所以AO×OD×OC×OE=15×12,而OD×OE=5×2=10,所以OA×OC=15×12÷10=18,所以另一个三角形面积是:18÷2=9,答:另一个三角形面积是9,故答案为:9。
平行四边形全章练习题

平行四边形的性质练习题之阿布丰王创作1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。
2.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。
4.平行四边形ABCD 中,∠A-∠B=20°,∠A=______∠B=______∠C=______∠D=______5、四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.6.平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,则平行四边形面积=_______7.在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,则∠DAC=________,∠D=________8.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,则平行四边形ABCD 的周长=_______ 9、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.ABCDF EOMABCD4321图3F EDCBA 10、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .11、如图,在ABCD 中,DE ⊥AB ,E 是垂足,如果∠C=40°,求∠A 与∠ADE 的度数。
12 、如图,在ABCD 中,已知对角线AC 和BD 相交于点O ,△BOC 的周长为24,BC=10,求对角线AC 与BD 的和是多少? 13.如图所示,在ABCD 中,AB=10cm ,AB 边上的高DH=4cm ,BC=6cm ,求BC 边上的高DF 的长.14、如图,ABCD 的周长为60㎝,△AOB 的周长比△BOC 大8㎝,求AB 、BC 的长。
2020年数学一轮复习专题练习:四边形填空综合题(含答案)

2020年数学一轮复习专题练习:《四边形填空综合题》1.如图,四边形ABCD中,AD∥BC,AD=3,BC=8,E是BC的中点,点P以每秒1个单位长度的速度从A点出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C 出发,沿CB向点B运动,点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.2.如图,在Rt△ABC中,∠C=90°,AC=1,BC=2,点D为边AB上一动点,正方形DEFG 的顶点E、F都在边BC上,联结BG,tan∠DGB=.3.如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P不与点B,C 重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD 于点N.则线段MN的最小值为.4.如图,△ABC中,∠ACB=90°,AC=8,BC=6,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、ND,则图中阴影部分的面积之和等于.5.如图,四边形ABCD 、AEFG 都是正方形,且∠BAE =45°,连接BE 并延长交DG 于点H ,若AB =4,AE =,则线段BH 的长是 .6.如图,在坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B 的落点依次为B 1,B 2,B 3,…,则B 2019的坐标为 .7.如图,在菱形ABCD 中,AB =2,∠C =120°,点P 是平面内一点,且∠APB =90°,则DP 的最小值为 .8.如图,抛物线y =x 2+2x +2和抛物线y =x 2﹣2x ﹣2的顶点分别为点M 和点N ,线段MN 经过平移得到线段PQ ,若点Q 的横坐标是3,则点P 的坐标是 ,MN 平移到PQ 扫过的阴影部分的面积是 .9.如图,平面直角坐标系中,长方形OABC,点A,C分别在y轴,x轴的正半轴上,OA=6,OC=3.∠DOE=45°,OD,OE分别交BC,AB于点D,E,且CD=2,则点E坐标为.10.如图,小志同学将边长为3的正方形塑料模板ABCD与一块足够大的直角三角板叠放在一起,其中直角三角板的直角顶点落在点A处,两条直角边分别与CD交于点F,与CB 延长线交于点E,则四边形AECF的面积是.11.已知点E是正方形ABCD外的一点,连接DE,AE,CE.请从下面A,B两题中任选一题作答.我选择题:A.如图1,若∠DCE=45°,DC=CE=2,则AE的长为.B.如图2,若∠DEC=45°,DE=CE=2,则AE的长为.12.如图,梯形ABCD中,AD∥BC,AF⊥BC于F,M是CD中点,AM的延长线交BC的延长线于E,AE⊥AB,∠B=60°,AF=,则梯形的面积是.13.如图,长方形ABCD中,AB=6,BC=2,直线l是长方形ABCD的一条对称轴,且分别与AD,BC交于点E,F,若直线l上的动点P,使得△PAB和△PBC均为等腰三角形,则动点P的个数有个.14.如图,在矩形ABMN中,AN=1,点C是MN的中点,分别连接AC,BC,且BC=2,点D 为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为.15.如图,等边△ABC的边长为2,点D、E分别在AC、AB上,AD=BE,连BD、CE交于点G,以BG、CG为邻边作平行四边形BGCP,BF⊥BC,BF=2,延长PF、AC交于点Q,当CQ最长时,PF=.16.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE 关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.17.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=5,BF=8,则EF的长为.18.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.19.如图,在矩形ABCD中,AD=3AB=6.点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上,若△PMN是等腰三角形且底角与∠DEC相等,则MN=.20.如图,矩形ABCD中,点E,F分别在AD,CD上,且CF=2DF=2,连接BE,EF,BF,且BF平分∠EBC,∠EFB=45°,连接CE交BF于点G,则线段EG的长为.参考答案1.解:由已知梯形,当Q运动到E和B之间,设运动时间为t,则得:2t﹣=3﹣t,解得:t=,当Q运动到E和C之间,设运动时间为t,则得:﹣2t=3﹣t,解得:t=1,故当运动时间t为1或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:1或.2.解:如图,DE与BG交于点O,∵正方形DEFG,∴∠DEB=∠EDG=∠GFB=90°,GF=DE=EF,∴△BDE∽△ABC,∴,∴,∵∠DOG=∠EOB,∴△DOG∽△EOB∽△FGB,∴,∴tan∠DGB=.故答案为:3.解:连接AM、MN、AN,如图1所示:∵MN+AM≥AN,∴MN≥AN﹣AM,当A、M、N三点共线时,MN=AN﹣AM,最小,当A、M、N三点共线时,如图2所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠B=∠C=∠D=90°,∵点B关于直线AP的对称点为M,∴AP垂直平分BM,∴AB=AM,PB=PM,在△ABP和△AMP中,,∴△ABP≌△AMP(SSS),∴∠B=∠PMA=90°,∴∠PMN=∠C=90°,∵PN是∠MPC的角平分线,∴∠NPM=∠NPC,在△NPM和△NPC中,,∴△NPM≌△NPC(AAS),∴MN=CN,设MN=x,则DN=CD﹣CN=3﹣x,AN=AM+MN=3+x,在Rt△ADN中,42+(3﹣x)2=(3+x)2,解得:x=,∴线段MN 的最小值为, 故答案为:.4.解:如图将△FAE 绕点A 顺时针旋转90°得到△KAB .∵∠FAC =∠EAB =90°, ∴∠FAE +∠CAB =180°, ∵∠FAE =∠KAB , ∴∠KAB +∠CAB =180°, ∴C 、A 、K 共线, ∵AF =AK =AC , ∴S △ABK =S △ABC =S △AFE , 同理可证S △BDN =S △ABC ,∴S △AEF +S △BDN =2•S △ABC =2××6×8=48, 故答案为:48.5.解:连结GE 交AD 于点N ,连结DE ,如图,∵∠BAE=45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;由题意可得:△ABE相当于逆时针旋转90°得到△AGD,∴DG=BE=,∵S=GE•ND=DG•HE,△DEG∴HE==,∴BH=BE+HE=+=.故答案是:.6.解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B3向右平移1344(即336×4)到点B2019.∵B3的坐标为(2,0),∴B2019的坐标为(2+1344,0),∴B2019的坐标为(1346,0).故答案为:(1346,0).7.解:∵∠APB=90°,∴点P在以AB为直径的圆上,如图,设圆心为O,连接OP,OD,过点O作OH⊥AD,交DA延长线于点H,在△OPD中,PD>OD﹣OP,∴当点P在OD上时,DP有最小值,∵在菱形ABCD中,AB=2,∠C=120°,∴AO=1,∠BAH=60°,∴AH=AO=,OH=AH=,∴DH=,∴OD===∴DP的最小值=OD﹣OP=﹣1,故答案为:﹣1.8.解:如图,连接PM,QN,MQ、PN.由y=x2+2x+2=(x+1)2+1,y=x2﹣2x﹣2(x﹣1)2﹣3,知M(﹣1,1),N(1,﹣3).∵点Q的横坐标是3,点Q在抛物线y=x2﹣2x﹣2上,∴y=32﹣2×3﹣2=1.∴Q(3,1).∴线段MN先向上平移4个单位,然后向右平移2个单位得到线段PQ.∴点P的坐标是(1,5),∴PN⊥MQ,且PN与MQ相互平分,∴平行四边形PMNQ是菱形.根据平移的性质知,S阴影部分=S菱形PMNQ=PN•MQ=×4×8=16.故答案是:(1,5);16.9.解:如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴,∴∴AE=,∴点E(,6)故答案为:(,6)10.解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中,,∴△AEB≌△AFD(ASA),∴S△AEB +S四边形ABCF=S△AFD+S四边形ABCF,∴四边形AECF的面积=正方形ABCD的面积=9.故答案为:9.11.解:A.如图,以CE为对角线画正方形CFEG,延长EG交AB于点H,∴EH⊥AB,得矩形BCGH,∴HG=BC=DC=AB=2在Rt△ECF中,∠F=90°,∠ECF=45°,CE=2∴CF=EF=BH=GE=∴EH=HG+GE=2+AH=AB﹣BH=2﹣在Rt△AEH中,AE2=(2+)2+(2﹣)2=12,∴AE=2.故答案为2.B,如图2,将△ADE绕点D逆时针旋转90°,点A与点C重合,点E旋转至点F,连接DF、CF、EF,∴△ADE≌△CDF(SAS)∴AE=CF∵∠EDF=90°,DE=DF=2,∴EF=2,∠DEF=45°,∠DEC=45°∴∠CEF=90°∴在Rt△ACE中,CE=2,EF=2由勾股定理得:CF=2∵AE=CF,∴CF=2.故答案为:2.12.解:设BF=x,在Rt△ABF中,∠B=60°,∴∠BAF=30°,∴AB=2BF=2x,由勾股定理得,(2x)2﹣x2=(2)2,解得,x=2,∴AB=4,在Rt△A BE中,∠B=60°,∴∠AEB=30°,∴BE=2AB=8,∵AD∥BC,∴∠DAM=∠CEM,在△DAM和△CEM中,,∴△DAM≌△CEM(A AS)∴AD=CE,∴AD+BC=CE+BC=BE=8,∴梯形的面积=×(AD+BC)×AF=8,故答案为:8.13.解:如图,∵直线l是长方形ABCD的一条对称轴,直线l上的动点P,∴PB=PC,∴△PBC是等腰三角形,作AB或CD的垂直平分线与直线l有一个交点,以点B为圆心,AB为半径作圆与与直线l有两个交点,则BP=AB=CD=CP,所以△PAB 和△PBC均为等腰三角形,以点A为圆心,AB为半径作圆与与直线l有两个交点,则AB=AP=CD=CP,所以△PAB 和△PBC均为等腰三角形,故答案为:5.14.解:∵四边形ABMN是矩形,∴AN=BM=1,∠M=∠N=90°,∵CM=CN,∴△BMC≌△ANC(SAS),∴BC=AC=2,∴AC=2AN,∴∠ACN=30°,∵AB∥MN,∴∠CAB=∠CBA=30°,①如图1中,当DF⊥AB时,∠ADF=60°,∵DA=DF,∴△ADF是等边三角形,∴∠AFD=60°,∵∠DFE=∠DAE=30°,∴EF平分∠AFD,∴EF⊥AD,此时AE=.②如图2中,当△AEF是等边三角形时,EF⊥AC,此时EF=.综上所述,满足条件的EF的值为或.15.解:∵△ABC是等边三角形,∴AB=BC,∠A=∠ABC=60°,∵BE=AD,∴△ABD≌△BCE(SAS),∴∠ABD=∠BCE,∴∠GBC+∠BCE=60°,∴∠BGC=120°,∴∠BPC=120°,∴点P在△ABC的外接圆⊙O上,∵∠OBC=30°,又BF⊥BC,BF=2=OB,∴∠OBF=120°,∴OF=OB=2.当FP与⊙O相切于P时,CQ最长,此时,由勾股定理得PF==2.故答案为:2.16.解:连接BB′,∵BE=B′E=EC,∴∠BB′C=90°,∴∠B′CD<90°,(1)如图1,∠B′DC=90°,则四边形ABEB′和ECDB′是正方形,∴BC=2AB=4,(2)如图2,∠CB′D=90°,则B,B′,D三点共线,设AE,BB′交于F,∵AB=AB′,EB=EB′,∴AE垂直平分BB′,∴BF=B′F,∵∠AFB=∠DB′C=90°,∵∠BAF=∠ABF=∠ABF+∠EBF=90°,∴∠BAF=∠EBF,同理∠EBF=∠DCB′,∴∠BAF=∠DCB′,∵AB=CD,∴△ABF≌△CDB′,∴BF=D′D,∴F,B′是对角线BD的三等分点,∵△BCB′∽△CDB′,∴==,∴=,∴BC=CD=2,故答案为:4或2.17.解:∵四边形ABCD是正方形,∴∠DAB=90°,AB=AD,∵BF⊥a于点F,D E⊥a于点E,∴∠DEA=∠BFA=∠BAD=90°,∴∠BAF+∠DAE=90°,∠BAF+∠ABF=90°,∴∠DAE=∠ABF,且AB=AD,∠DEA=∠BFA,∴△ABF≌△DAE(SAS)∴DE=AF=5,BF=AE=8,∴EF=AF+AE=13,故答案为:13.18.解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.19.解:分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:则∠PFM=∠PFN=90°,∵四边形ABCD是矩形,∴AB=CD,BC=AD=3AB=6,∠A=∠C=90°,∴AB=CD=2,BD==20,∵点P是AD的中点,∴PD=AD=3,∵∠PDF=∠BDA,∴△PDF∽△BDA,∴,即,解得:PF=3,∵CE=2BE,∴BC=AD=3BE,∴BE=CD,∴CE=2CD,∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,∴MF=NF,∠PNF=∠DEC,∵∠PFN=∠C=90°,∴△PNF∽△DEC,∴,∴MF=N F=2PF=6,∴MN=2NF=12;②MN为等腰△PMN的腰时,作PF⊥BD于F,如图2所示:由①得:PF=3,MF=6,设MN=PN=x,则FN=6﹣x,在Rt△PNF中,32+(6﹣x)2=x2,解得:x=,即MN=;综上所述,MN的长为12或;故答案为:12或.20.解:在BC上截取BN,使BN=BE,过点G作GH⊥EF于点H,∵BF平分∠EBC,∴∠EBF=∠CBF,又∵BE=BN,BF=BF,∴△BEF≌△BNF(SAS),∴EF=NF,∠EFB=∠NFB=45°,∴∠EFN=90°,∴∠EFD+∠NFC=90°,又∵∠EFD+∠FED=90°,∴∠NFC=∠FED,又∵∠D=∠NCF=90°,∴△NFC≌△FED(AAS),∴ED=FC=2,在Rt△FED中,DF=1,∴EF===,在Rt△EDC中,EC===,设BN=BE=x,作GQ⊥BE于Q,GP⊥BC于P.在Rt△ABE中,∵AB2+AE2=BE2,∴32+(x﹣1)2=x2,解得x=5,∵BG平分∠EBC,GQ⊥BE,GP⊥BC,∴GQ=GP,∴==,∴==,∴EG=EC=,故答案为.。
初中所有四边形知识点考点类型题及练习含答案

四边形考点一、四边形的相关概念考点一、多边形及镶嵌1.若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.2.下列正多边形中,能够铺满地面的是( )A、正五边形B、正六边形C、正七边形D、正八边形3.一个多边形从一个顶点共引出三条对角线,此多边形一定是( )A.四边形B. 五边形C.六边形D.三角形4. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.举一反三:【变式1】如果一个多边形的每一个内角都相等,且每一个内角的度数为135°,那么这个多边形的边数为( ) A.6 B.7 C.8 D.以上答案都不对【变式2】多边形的内角和随着边数的增加而_____,边数增加一条时,它的内角和增加___度. 考点二、平行四边形考点二、平行四边形5. 平行四边形的周长为40,两邻边的比为2:3,则这一组邻边长分别为________.考点:平行四边形的边的性质.6. 已知O是□ABCD的对角线交点,AC=24,BD=38,AD=14,那么△OBC的周长等于_______.7. 如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是______________.举一反三:【变式1】在平行四边形ABCD中,两条对角线AC、BD相交于点O,如右图,与△ABO面积相等的三角形有( )个.A、1B、2C、3D、4【变式2】如图,△ABC中∠ACB=90°,点D、E分别是AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.考点三、矩形8.如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=8,则矩形对角线的长_________.9. 如右图,把一张矩形纸片ABCD沿BD对折,使C点落在E处且与AD相交于点O.写出一组相等的线段__________.(不包括和).举一反三:【变式1】四边形ABCD的对角线相交于点O,在下列条件中,不能判定它是矩形的是( )A.AB=CD,AD=BC,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°【变式2】矩形一个角的平分线分矩形一边成2cm和3cm,则这个矩形的面积为__________. 考点四、菱形10.在菱形ABCD中,对角线AC、BD交于点O,AC、BD的长分别为5厘米、10厘米,则菱形ABCD的面积为_________厘米2.11.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角举一反三【变式1】已知菱形的一条对角线与边长相等,则菱形的两个邻角度数分别为( )A. 45°,135°B. 60°,120°C. 90°,90°D. 30°,150°【变式2】如图,已知AD平分∠BAC,DE∥AC,DF∥AB,AE=5.(1)判断四边形AEDF的形状?(2)它的周长是多少?【变式3】如图,菱形ABCO的边长为2,∠AOC=45°,则点B的坐标为___________.考点五、正方形12.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等定互相垂直.13.如图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个.14.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?举一反三:【变式1】下列选项正确的是( )A.四边相等的四边形是正方形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.四角相等的四边形是正方形【变式3】(1)顺次连结任意四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(2)顺次连结对角线相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(3)顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(4)顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形考点六、梯形15.等腰梯形中,,cm,cm,,则梯形的腰长是_________cm.16. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=8,AC=6,BD=8,则此梯形的面积是( )(A)24(B)20(C)16(D)1217.如图,在等腰梯形ABCD中,AD∥BC,AC,BD相交于点O.•有下列四个结论:①AC=BD;②梯形ABCD是轴对称图形;③∠ADB=∠DAC;④△AOD≌△ABO.其中正确的是( ).(A)①③④(B)①②④(C)①②③(D)②③④举一反三:【变式1】已知梯形的上底长为3,中位线长为6,则下底长为______.【变式2】如图,梯形ABCD中,AD∥BC,E、F分别是AD、BC的中点,∠ABC和∠BCD 互余,若AD=4,BC=10,则EF=_________.【变式3】已知等腰梯形ABCD,AD∥BC ,E为梯形内一点,且.求证:考点七、平面图形四.中考题萃1.(北京市)(4分)若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.82.(赤峰市)(3分)分别剪一些边长相同的①正三角形,②正方形,③正五边形,④正六边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有( )A.①②③B.②③④C.①②④D.①②③④都可以3.(湖北省襄樊市)(3分)顺次连接等腰梯形四边中点所得四边形是( )A.菱形B.正方形C.矩形D.等腰梯形4.(衡阳市)(3分)如图,在平行四边形中,,为垂足,如果,那么的度数是( )A. B. C. D.5.(广州)(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.6.(永春县)(3分)四边形的外角和等于__________度.7.如图,在正五边形ABCDE中,连结AC,AD,则∠CAD的度数是__________°.8.(佳木斯市)(3分)一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是__________.9.(江苏省宿迁市)(3分)若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.10.(安顺市)(4分)若顺次连接四边形各边中点所得四边形是菱形,则原四边形可能是__________.(写出两种即可)11.(赤峰市)(4分)如图,已知平分,,,则________.12.(佛山市)(3分)如图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则∠ACP度数是__________.13.(湖南省怀化市)(2分)如图,在平行四边形ABCD中,DB=DC、,CE BD于E,则__________.14.(海南省)(3分)如图,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE=__________cm.15.(莆田市)(3分)如图,大正方形网格是由16个边长为1的小正方形组成,则图中阴影部分的面积是__________.16.(广州)(3分)如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.17.(莆田市)(3分)如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______________度.18.(湖北省荆门市)(3分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为________.19.(江苏省宿迁市)(3分)如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_________.20.(内蒙古)(6分)如图,在梯形中,AD∥BC,,,AE⊥BD于E,.求梯形的高.21.(湖北省荆州市)(6分)如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.22.(北京市)(5分)如图,在梯形中,,,,,,求的长.学习成果测评基础达标一、选择题1.只用下列图形不能镶嵌的是( )A.三角形B.四边形C.正五边形D.正六边形2.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD3.如图,将平行四边形ABCD沿翻折,使点恰好落在上的点处,则下列结论不一定成立的是( )A. B. C. D.4.顺次连结等腰梯形各边的中点,所成的四边形必定是( )A.等腰梯形B.菱形C.矩形D.平行四边形5.如图:等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对6.如图,矩形ABCD中,AD∥BC,AC与BD交于点O,则图中与△AOD面积相等的三角形有( )A.1个B.2个C.3个D.4个7.不能判定四边形ABCD为平行四边形的命题是( )A.AB∥CD且AB=CDB.AB=AD、BC=CDC.AB=CD,AD=BCD.∠A=∠C,∠B=∠D8.下列命题中,真命题是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边和一组对角分别相等的四边形是平行四边形C.两组对角分别相等的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是平行四边形9.正方形具有而菱形不一定具有的性质是( )A.对角线相等B.对角线互相垂直且平分C.四条边都相等D.对角线平分一组对角10.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长是( ).A.3cmB.4cmC.5cmD.6cm二、填空题11.四边形的内角和等于__________°,外角和等于___________°.12.正方形的面积为4,则它的边长为________,一条对角线长为_________.13.一个多边形,若它的内角和等于外角和的3倍,则它是_________边形.14.如果四边形ABCD满足______________________________条件,那么这个四边形的对角线AC 和BD互相垂直(只需填写一组你认为适当的条件)15.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为________.16.如图,平行四边形ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为________.17.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,则中位线EF=___________,EF分梯形所得的两个梯形的面积比S1:S2为________________.18.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为___________.三、解答题19.如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.20.如图,正方形中,与分别是、上一点.在①、②∥、③中,请选择其中一个条件,证明. (1)你选择的条件是___________(只需填写序号);(2)证明:21.如图,已知平行四边形ABCD中,AQ,BN,CN,DQ分别是∠DAB,∠ABC,∠BCD,∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:推理过程要用到“平行四边形”和“角平分线”这两个条件)能力提升一、选择题1.等腰梯形的两条对角线互相垂直,中位线长为8,则该等腰梯形的面积为( )A.16B.32C.64D.5122.下列图形中是轴对称图形,但不是中心对称图形的是( )A.菱形B.矩形C.正方形D.等腰梯形3.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于( )A.20°B.25°C.30°D.35°4.如图,在梯形中,,,边的垂直平分线交边于,且为边的中点,又,则梯形的周长等于( )A. B. C. D.5.如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于( ).二、填空题6.如图(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图(2)所示的一个菱形.对于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:________________.7.如图,矩形纸片ABCD,BC=2,∠ABD=30°.将该纸片沿对角线BD翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为________________.8.四边形ABCD为边长等于1的菱形,顺次连结它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连结四边形EFGH的各边中点组成第二个中点四边形,……,则按上述规律组成的第八个中点四边形的边长等于_____________.9.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为________.10.如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n层有___________白色正六边形.三、解答题11.在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.12.如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处.(1)求证:;(2)设,试猜想之间有何等量关系,并给予证明.。
四边形典型练习题

四边形典型练习题一.选择题(共9小题)1.如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB.其中正确的结论有()A.0个B.1个C.2个D.3个2.如图,菱形ABCD的边长为1,BD=1,E,F分别是边AD,CD上的两个动点,且满足AE+CF=1,设△BEF的面积为s,则s的取值范围是()A.1/4≤s≤1B.3√3/4≤s≤√3C.3√3/16≤s≤√3/4D.3√3/8≤s≤ /2√33.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A.48cm B.36cm C.24cm D.18cm4.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则PG/PC==()A.√2 B.√3 C.√2/2 D.√3/35.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°6.如图,把一个长方形的纸片对折两次,然后剪下一个角,把剪下的这个角展开,若得到一个锐角为60°的菱形,则剪口与折痕所成的角α的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°7.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°8.如图,在菱形ABCD中,若∠B=60°,点E、F分别在AB、AD上,且BE=AF,则∠AEC+∠AFC的度数等于()A.120°B.140°C.160°D.180°9.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边做第二个菱形ACEF,∠FAC=60°.连结AE,再以AE为边做第三个菱形AEGH,使∠HAE=60°…按此规律所作的第2014个菱形的边长是()A.(√3)2012 B.(√3)2013 C.(√3)2014 D.(√3)2015二.填空题(共21小题)10.如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF.若∠A=80°,则∠DGF的度数为50°.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为4/312.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是√7-1 13.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒√2 cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QPCP′为菱形,则t的值为214.如图,已知菱形ABCD,E、F分别为AB、BC的中点,EP⊥DC,垂足为P,连接PF,若∠A=110°,则∠FPC= 55°.15.如图,边长为1的菱形ABCD中,A在原点,B在x轴正半轴上,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°,…,C、C1、C2、C3…按逆时针方向排列,按此规律所作的第2015个菱形AC2013C2014D2014的顶点C2014的坐标为16.如图,菱形OABC的面积为3√3,顶点O 的坐标为(0,0),顶点A的坐标为(3,0),顶点B在第一象限,边BC与y轴交于点D,点E在边OA上.将四边形ABDE沿直线DE翻折,使点A落在这个坐标平面内的点F处,且AE⊥EF.则点F的坐标为(√3,√3-3)17.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=√3/3 cm.18.如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则AB/AE= √3+1/219.如图,菱形ABCD的顶点分别在x轴或y轴上,物体甲和物体乙分别由点A(2,0)同时出发,沿菱形ABCD的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以3个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是(0,1).20.如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若m/n=47/25,则△ABC的边长是12.21.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是17/222.如图,已知菱形ABCD的边AB=10,对角线BD=12,BD边上有2012个不同的点P1,P2,…,P2012,过P i(i=1,2,…,2012)作P i E i⊥AB于E i,P i F i⊥AD于F i,则P1E1+P1F1+P2E2+P2F2+…+P2012E2012+P2012F2012的值为19315.2.23.如图,在菱形ABCD中,已知E、F分别是边AB、BC的中点,CE、DF交于点G.若△CGF的面积为2,则菱形ABCD的面积为40.24.如图,在一个内角为60°的菱形ABCD中,边长为4,将它绕点O顺时针旋转90°后得到菱形A′B′C′D′,则阴影部分的周长为16(√3-1)25.如图①,在菱形ABCD中,AD=BD=1,现将△ABD沿AC方向向右平移到△A1B1D1的位置,得到图②,则阴影部分的周长为2.26.已知直线AB交平面直角坐标系xOy两坐标轴的A(10,0)、B(0,5)两点,在直线AB上有一动点M,在坐标系内有另一点N,若以点O、B、M、N为顶点构成的四边形为菱形,则点N的坐标为(−2√5,√5),)(4,8)(−5,5/2)27.如图,菱形ABCD的周长为16,以AB为一边画等边△ABE,点E、D在直线AB的同侧,在AC上找一点P,使EP+DP最小,则这个最小值为4.28.如图,在菱形ABCD中,对角线AC、BD相交于点O,且AC=12,BD=16,E为AD的中点,点P 在BD上移动,若△POE为等腰三角形,则所有符合条件的点P共有4个.29.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A->B->C->D->E->F->C->G->A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在B点.30.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为√3/3.三.解答题(共30小题)1.如图,△ABC是等腰直角三角形,∠BAC=90°,BC=2,D是线段BC上一点,以AD为边,在AD的右侧作正方形ADEF.直线AE与直线BC交于点G,连接CF.(1)猜想线段CF与线段BD的数量关系和位置关系,并说明理由;(2)连接FG,当△CFG是等腰三角形时,①当BD<1时求BD的长.②当BD >1时,BD的长度是否改变,若改变,请直接写出BD的长度.2.如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长线上一点,连接AP,作PF⊥AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG.(1)求证:∠GCF=∠FCE;(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;(3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形?若存在,求出BM的长度;若不存在,说明理由.3.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG∥BD,BG=BD.求∠BDE 的度数;(3)在(2)的条件下,当正方形ABCD的边长为√2时,请直接写出正方形CEFG的边长.4.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足∠B+∠D=180°关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E 均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.5.如图,在正方形ABCD中,点P是CD边上的点,连结BP,将△BCP绕点C按顺时针方向旋转90°,得到△DCE,连结EP并延长,交AD于点F,连结BF、FC.(1)证明△CEP是等腰直角三角形;(2)若CD=2CP,证明:四边形CEDF是平行四边形;(3)若CD=kCP(k是常数,k>0),记△BPF的面积为s1,△DEP的面积为s2,证明:s1=(k+1)s2.6.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F,连接AC、AF、DF,求证:(1)AE=EF;(2)△ABE∽△ACF;(3)△DFC是等腰直角三角形.7.如图,在正方形ABCD中,点P为AD边上一点,PC的垂直平分线交PC于E交CB的延长线于F,连接PF交AB于G,连接CG.(1)如图1,求证:GC平分∠PGB;(2)如图2连接AN,试判断线段PC与AN的数量关系,并给予证明.8.如图,直线MN经过正方形ABCD的一个顶点A,过点B作BE⊥MN于点E,过点C作CF⊥MN于点F,当直线MN经过点D(如图1)时,易证:AF+CF=2BE.当直线MN不经过点D时,线段AF、CF、BE又有怎样的数量关系?请直接写出你的猜想,并选择图(2)、图(3)中的一种情况给予证明.9.如图,已知正方形ABCD,点P为射线BA上的一点(不和点A,B重合),过P作PE⊥CP,且CP=PE,过E作EF∥CD交射线BD于F点,EC交直线BD于G点.(1)求证:EF=AB;(2)请探究BF,DG和CD这三条线段之间的数量关系,并证明你的结论.10.如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为6s时,四边形ACFE是菱形;②当t为1.5s时,以A、F、C、E为顶点的四边形是直角梯形.11.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.12.在数学活动课中,小辉将边长为√2和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.13.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)FC/EF的值为多少;(2)求证:AE=EP;(3)在AB 边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.14.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 58度.15.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.①若CD=2PC时,求证:BP⊥CF;②若CD=n•PC(n是大于1的实数)时,记△BPF 的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2.16.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.17.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM 最长,并求出此时DM的值.18.(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,▱ABCD中,过对角线BD上一点P作EF∥BC,HG∥AB,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为▱AEPH和▱PGCF;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,则S△PAC= 1;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为24.19.如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B,E,F 三点共线时,两点同时停止运动.设点E移动的时间为t(秒).(1)求当t为何值时,两点同时停止运动;(2)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(3)求当t为何值时,以E,F,C三点为顶点的三角形是等腰三角形;(4)求当t为何值时,∠BEC=∠BFC.20.(1)如图1,在矩形ABCD中,AB=2BC,M是AB的中点.直接写出∠BMD与∠ADM的倍数关系;(2)如图2,若四边形ABCD是平行四边形,AB=2BC,M是AB的中点,过C作CE⊥AD与AD所在直线交于点E.①若∠A为锐角,则∠BME与∠AEM有怎样的倍数关系,并证明你的结论;②当0°<∠A<120°时,上述结论成立;当120°≤∠A<180°时,上述结论不成立.21.如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF=90°,交AD于F点,易证EA=EF.(1)如图2,若EF与AD的延长线交于点F,证明:EA=EF仍然成立;(2)如图3,若四边形ABCD是平行四边形(AB<BC),在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点.则EA=EF是否成立?若成立,请说明理由.(3)由题干和(1)(2)你可以得出什么结论.22.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)23.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.②当点D在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.24.如图所示,在正方形ABCD中,AB=2,两条对角线相交于点O,以OB、OC为邻边作第1个正方形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个正方形A1B1C1C对角线相交于点O1;再以O1B1、O1C1为邻边作第3个正方形O1B1B2C1,…依此类推.(1)求第1个正方形OBB1C的边长a1和面积S1;(2)写出第2个正方形A1B1C1C和第3个正方形的边长a2,a3和面积S2,S3;(3)猜想第n个正方形的边长a n和面积S n.(不需证明).25.如图,正方形ABCD中,对角线AC与BD相交于O,∠ADE=15°,过D作DG⊥ED于D,且AG=AD,过G作GF∥AC交ED的延长线于F.(1)若ED=4√6,求AG(2)求证:2DF+ED=BD.26.已知:如图,点O是平面直角坐标系的原点,点A的坐标为(0,-4),点B为x轴上一动点,以线段AB为边作正方形ABCD(按逆时针方向标记),正方形ABCD随着点B的运动而随之相应变动.点E 为y轴的正半轴与正方形ABCD某一边的交点,设点B的坐标为(t,0),线段OE的长度为m.(1)当t=3时,求点C的坐标;(2)当t>0时,求m与t之间的函数关系式;(3)是否存在t,使点M(-2,2)落在正方形ABCD的边上?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.27.已知,正方形ABCD的边长为1,直线l1∥直线l2,l1与l2之间的距离为1,l1、l2与正方形ABCD的边总有交点.(1)如图1,当l1⊥AC于点A,l2⊥AC交边DC、BC分别于E、F时,求△EFC的周长;(2)把图1中的l1与l2同时向右平移x,得到图2,问△EFC与△AMN的周长的和是否随x的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由;(3)把图2中的正方形饶点A逆时针旋转α,得到图3,问△EFC与△AMN的周长的和是否随α的变化而变化?若不变,求出△EFC与△AMN 的周长的和;若变化,请说明理由.28.如图1,已知∠EOF,点B、C在射线OF上,四边形ABCD是平行四边形,AC、BD相交于点M,连接OM.(1)当OM⊥AC时,求证:OA=OC.(2)如图2,当∠EOF=45°时,且四边形ABCD是边长为a的正方形时,求OM的长.(结果保留根号)29.感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E是AB上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.30.如图,正方形ABCD中,E,F分别是边AD,CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.(1)求证:BE⊥AF;(2)若正方形ABCD的边长为4,EH⊥DG,垂足为H,且GO/DE=4/5,求DE的长.31.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于1/2AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.32.如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE:CF的值(不必写出计算过程).33.如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.34.已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MN.(1)若正方形的边长为a,求BM•DN的值.(2)若以BM,DN,MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.35.已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请判断并直接写出结果;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.36.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD 于F.(1)对角线AC的长是12,菱形ABCD的面积是96;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否会发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF 的值是否会发生变化?若不变,请说明理由;若变化,请探究OE、OF之间的数量关系,并说明理由.37.如图①,已知点O为菱形ABCD的对称中心,∠A=60°,将等边△OEF的顶点放在点O处,OE,OF 分别交AB,BC于点M,N.(1)求证:OM=ON;(2)将图①中的△OEF绕O点顺时针旋转至图②所示的位置,请写出线段BM,BN与AB之间的数量关系,并进行证明.38.如图,菱形ABCD中,∠B=60°,点M在AB上,点N在BC上,AM=BN,CM交AN于点P,DP 交AC于点Q.求证:(1)△ABN≌△CAM;(2)PD平分∠APC.39.如图,已知四边形ABFC为菱形,点 D、A、E在直线l上,∠BDA=∠BAC=∠CEA.(1)求证:△ABD≌△CAE;(2)若∠FBA=60°,连接DF、EF,判断△DEF的形状,并说明理由.40.已知:如图,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E和点F,AE、AF分别与BD相交于点M、N.(1)求证:EF∥BD;(2)当MN:EF=2:3时,求证:△AMN是等边三角形.41.如图,在菱形ABCD中,AB:AC=m:n,点P为BC边上一点,以AP为对角线作菱形AFPM,满足∠ABC=∠AFP,连结BF,猜想BF与CP的数量关系,并证明你的结论.42.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为64/3.43.如图1,在菱形ABCD中,∠ABC=60°,P、E分别在AB、AC边上,且PB=EB,连接PD,N为PD 的中点,连接AN、EN.(1)求证:AN⊥EN;(2)如图2,连接AC,过点E作EF⊥AC,F为垂足,连接NF,试判定线段AF、EF与NF的数量关系,并给予证明.44.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,连结BE交AC于点F,连结DF.(1)证明:△ABF≌△ADF;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,又知∠EFD=∠BCD,请问你能推出什么结论?(直接写出一个结论,要求结论中含有字母E)45.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作,在余下的四边形纸片中再剪去一个菱形,余下一个四边形,称为第二次操作,…依此类推,若第n次余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是2阶准菱形;②小明为了得剪去一个菱形,进行如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在边上的点F,得到四边形,请证明四边形是菱形.(2)操作、探究、计算:已知的边长分别为1,a(a>1)且是3阶准菱形,请画出▱ABCD 及裁剪线的示意图,并在下方写出的a值.46.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.47.如图,在等腰△ABC中,AB=AC,AD是∠BAC的角平分线,P是AD上任意一点,过P点作EF∥AB,PM∥AC.(1)证明四边形PFAM为菱形;(2)当菱形PFAM的面积为四边形BEFM面积的一半时,P 点在AD上的何处?48.如图,矩形纸片ABCD(AD>AB)中,将它折叠,使点A与C重合,折痕EF交AD于E,交BC于F,交AC于O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)过E作EP⊥AD交AC于P,求证:AE2=AO•AP;(3)若AE=8,△ABF的面积为9,求AB+BF的值.49.如图,矩形ABCD中,AB=8,AD=6.动点P从点A出发,沿线段AB(不包括端点A,B)以每秒2个单位长度的速度,匀速向点B运动;动点Q从点B出发,沿线段BC(不包括端点B,C)以每秒1个单位长度的速度,匀速向点C运动.连接DQ并延长交AB的延长线于点E,把DE沿DC翻折交BC延长线于点F,连接EF.点P,Q同时出发,同时停止,设运动时间为t秒.(1)当DP⊥DF时,求t的值;(2)当PQ∥DF时,求t的值;(3)在运动的过程中,△DEF的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.50.阅读下面材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.如图1,平行四边形ABEF即为△ABC的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若△ABC是钝角三角形,则△ABC显然只有一个“友好矩形”,若△ABC是直角三角形,其“友好矩形”有2个;(3)若△ABC是锐角三角形,且AB<AC<BC,如图2,请画出△ABC的所有“友好矩形”;指出其中周长最小的“友好矩形”并说明理由.51.(1)如图1,四边形ABCD是矩形,E为AD上一点,且BE=ED,P为对角线BD上一点,PF⊥BE 于点F,PG⊥AD于点G.判断PF、PG和AB的数量关系并说明理由.(2)如图2,当四边形ABCD变为平行四边形,其他条件不变,若∠ABC=60°,判断PF、PG和AB的数量关系并说明理由.(3)如图3,当四边形ABCD满足∠ABD=90°,AB=3,BD=4,其它条件不变,判断PF、PG和AB的数量关系并说明理由.52.我们定义:如图1,矩形MNPQ中,点K、O、G、H分别在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,则称四边形KOGH为矩形MNPQ的反射四边形.如图2、图3四边形ABCD、A′B′C′D′均为矩形,它们都是由32个边长为1的正方形组成的图形,点E、F、E′、F′分别在BC、CD、B′C′、C′D′边上,试利用正方形网格在图2、图3中分别画出矩形ABCD和矩形A′B′C′D′的反射四边形EFGH和E′F′G′H′.53.如图1,两个直角三角形拼成一个四边形ABCD,其中∠B=∠D=90°,AD=BC.(1)求证:四边形ABCD是矩形;(2)△ABC不动,△ADC沿CA方向平移,重新标注字母后如图2,割掉Rt△AEG和Rt△CFH 后,得到一个正方形DGBH,若AD=18,DF=12,求正方形DGBH的边长.54.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC的长及四边形AOFE的面积.55.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C 顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.56.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系:CM=√2BN.57.如图,正方形ABCD中,点E从点A出发沿着AD向D运动,(点E不与点A,点D重合)同时点F从点D出发沿着线段DC向C运动,(点F不与点D,点C重合)点E与F点运动速度相同,当点E 停止运动时,另一动点F随之停止运动,设BE与AF相交于点P,连接PC请研究:(1)AF=BE,AF⊥BE;(2)当点E运动到AD中点位置时:①PA:PB的值是多少?②PC和BC又怎样的数量关系?并证明你的结论.58.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=√2BM;(2)如图2,当点M在BC 延长线上时,BD、DE、BM之间满足的关系式是BD+2DE=√2BM;(3)在(2)的条件下,连接BN 交AD于点F,连接MF交BD于点G,连接CG.若DE=√2,且AF:FD=1:2时,求线段DG的长.59.正方形ABCD中,点O是对角线DB的中点,点P在DB所在的直线上,PE⊥BC于E,PF⊥DC于F.(1)如图1,当点P与点O重合时,延长FP交AB于点M,求证:AP=EF;(2)如图2,当点P在线段DB上(不与点D、O、B重合)时,延长FP交AB于点M,求证:AP=EF;(3)如图3,当点P在DB的延长线上时,请你猜想AP与EF的数量关系及位置关系,直接写出结论;若不成立,请写出相应的结论.60.正方形ABCD的对角线AC、BD相交于O,直角三角板EFG的直角顶点E在线段AC上,EF、EG 与BC、CD边相交于M、N.(1)如图1,若E点与O点重合,求证:EM=EN;(2)如图2,若E点不与O点重合:①EM还等于EN吗?说明理由;②试找出MC、CN、EC三者之间的等量关系,并说明理由.61.如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.(1)求△PEF的边长;(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形,并说明理由;(3)若△PEF的边EF 在线段BC上移动.试猜想:PH与BE有何数量关系并证明你猜想的结论.62.如图,▱ABCD中,对角线AC,BD相交于点O,分别过D,C作DE∥OC,CE∥OD.(1)图中有若干对相似三角形,请至少写出三对相似(不全等的)三角形,并选择其中一对加以证明;(2)求证:DM= 1/2OB.63.已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.64.如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由.65.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在。
平行四边形的性质与判定综合练习题课件

练习一
• 1、下列条件中,不能判定四边形ABCD是平行四边形的是( )
• A、∠A=∠C,∠B=∠D
D
• B. ∠A=∠B=∠C=90 º
• C.∠A+∠B=180º ,∠B+∠C=180 º
• D.∠A+∠B=180 º ,∠C+∠D=180 º
A
D
B
C
第12页/共36页
2,几种容易产生误判的命题: 1.一组对边平行,另一组对边相等的四边形是 平行四边形吗? 2.有两组边相等的四边形是平行四边形吗? 3.对角线相等的四边形是平行四边形吗? 4.有两组邻角互补的四边形是平行四边形吗? 5.有一组对角相等的四边形是平行四边形吗? 6.有两组角相等的四边形是平行四边形吗?
第14页/共36页
比一比
如下图,在四边形ABCD中,对角线AC,BD 相交于点O,这个四边形必须具备哪些条件 才能成为一般的平行四边形?(看谁写的多)
A 0
B
D 例如:(1)AB∥CD,AD∥BC (2) (3) (4)
C (5) (6)
第15页/共36页
如图所示,在 ABCD中,E、F分别是AB 、 CD的中点.下图中有几个平行四边形? 请说明 理由.
求证:EF=BD A 12
F
3
B
D
第31页/共36页
E C
6、已知 平行四边形 ABCD中,直线MN // AC, 分别交DA延长线于M,DC延长线于N,AB于P, BC于Q。
求证:PM=QN。
M
A
P
B
Q
第32页/共36页
D
C N
陈杰是湖州近代史上很有名的数学家,他以精确地测 得黄道、赤道的交角度数是23°27'而闻名于世.
平行四边形专项练习题
平行四边形专项练习题一.选择题(共12小题)1.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线2.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°3.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S34.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.66.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.147.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4C.2D.8.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH9.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114° D.124°10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.2211.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种12.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤二.填空题(共6小题)13.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.14.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.15.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.21.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.22.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.23.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.24.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.25.如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.26.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.参考答案与解析一.选择题1.【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.2.【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.3.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.4.【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.5.【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.6.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.7.【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.8.【分析】根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,解:根据作图的方法可得AG平分∠DAB,∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴BC=DH,故选D.9.【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.10.【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.11.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:B.12.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN 的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题13.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.14.【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.15.【分析】根据平行四边形的定义或判定定理即可解答.解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.16.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.17.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN 是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.18.【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF 即可解决问题.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.三.解答题19.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.【分析】(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.21.【分析】利用平行线的性质得出∠BAE=∠CFE,由AAS得出△ABE≌△FCE,得出对应边相等AE=EF,再利用平行四边形的判定得出即可.解:四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);∴AE=EF,又∵BE=CE∴四边形ABFC是平行四边形.22.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.23.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC 且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.24.【分析】(1)只要证明CM∥AN,AM∥CN即可.(2)先证明△DEM≌△BFN得BN=DM,再在RT△DEM中,利用勾股定理即可解决问题.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=3,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴DM===5,∴BN=DM=5.25.【分析】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.26.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.。
四川省渠县第四中学2021年中考九年级数学专题复习《四边形》综合练习题
四川省渠县第四中学2021年中考九年级数学专题复习《四边形》综合练习题1、已知:如图,在□ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:四边形GEHF是平行四边形;(2)已知AB=5,AD=8.求四边形GEHF是矩形时BD的长.2、如图,在△ABC中,动点O在边AB上,点D在CB的延长线上,过点O作直线EF∥BC,分别交∠ABC,∠ABD的平分线于点F,E.(1)若BE=5,BF=12,求OB的长;(2)连接AE,AF.问:当动点O在边AB的什么位置时,四边形AEBF是矩形?并说明理由.3、在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处,折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)求∠PAQ的大小;(2)当四边形APCD是平行四边形时,求ABQR的值.4、如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP AB⊥交边CD于点P,连接NM,NP.(1)若60B∠=︒,这时点P与点C重合,则NMP∠=_______度;(2)求证:NM NP=;(3)当NPC△为等腰三角形时,求B的度数.ADM BP NC5、如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF =90°,点E、F分别在边AD、AB上.(1)如图①,正方形的边长为23,BP=BO,∠DOE=15°.①求证:△AOF≌△DOE;②求线段EF的长;(2)如图②,当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD =m·BP(m>1)时,请求出PE与PF的数量关系.6、如图,四边形ABCD 中,AD ∥BC ,∠ABC=90°,已知AD=AB=3,BC=,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.(1)求NC ,MC 的长(用t 的代数式表示);(2)当t 为何值时,四边形PCDQ 构成平行四边形?(3)当t 为何值时,射线QN 恰好将△ABC 的面积平分?并判断此时△ABC 的周长是否也被射线QN 平分.7、在菱形ABCD 中,∠MDN 的两边分别与AB ,BC 交于点E ,F ,与对角线AC 交于点G ,H ,已知∠MDN =∠BAD =60°,AC =6.(1)如图①,当DE ⊥AB ,DF ⊥BC 时,①求证:△ADE ≌△CDF ;②求线段GH 的长;(2)如图②,当∠MDN 绕点D 旋转时,线段AG ,GH ,HC 的长度都在变化,设线段AG =m ,GH =p ,HC =n ,试探究p 与mn 的等量关系,并说明理由.338、在菱形ABCD中,60∠=︒,E是对角线AC上一点,F是线段BC延长线上ABC一点,且CF AE=,连接BE、EF.(1)若E是线段AC的中点,如图1,证明:BE EF=;(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.9、定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.10、如图,在四边形ABCD中,AD//BC,∠C=90°,BC=16,DC=12,AD=21。
平行四边形练习题及答案
平行四边形练习题及答案平行四边形是初中数学中的重要概念之一,它具有特殊的性质和特点。
通过练习题的形式,我们可以更好地理解和掌握平行四边形的相关知识。
本文将为大家提供一些平行四边形的练习题及答案,希望能对大家的学习有所帮助。
1. 练习题一:已知平行四边形ABCD中,AB = 6cm,BC = 8cm,角A的度数为60°,求AD的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,AD = BC =8cm。
2. 练习题二:已知平行四边形EFGH中,EF = 10cm,GH = 15cm,角E的度数为120°,求FG的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,FG = EH =15cm。
3. 练习题三:已知平行四边形IJKL中,IJ = 12cm,KL = 18cm,角I的度数为135°,求JK的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,JK = IL = 18cm。
4. 练习题四:已知平行四边形MNOP中,MN = 5cm,NO = 7cm,角M的度数为45°,求OP的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,OP = MN = 5cm。
5. 练习题五:已知平行四边形QRST中,QR = 9cm,ST = 12cm,角Q的度数为30°,求RS 的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,RS = QT =9cm。
通过以上练习题,我们可以发现平行四边形的一个重要性质:平行四边形的对边长度相等。
这个性质在解题过程中起到了关键的作用,帮助我们求解未知的边长。
除了对边长度相等外,平行四边形还具有其他一些重要的性质。
例如,平行四边形的对角线互相平分,即对角线互相等长。
这个性质在解题过程中也经常被用到。
练习题只是帮助我们巩固平行四边形的相关知识点,实际问题中,平行四边形的应用非常广泛。
平行四边形综合习题精选版
第六章平行四边形练习题一选择题1、平行四边形ABCD的周长是28㎝,△ABC的周长是20㎝,则AC的长为()A 6 厘米B 12 厘米C 4 厘米D 8厘米2、矩形,菱形,正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、两条对角线互相垂直的四边形是()A 矩形B 菱形C 正方形D以上都错4、顺次连结对角线相等的四边形各边中点所得的四边形必定是()A 菱形B 矩形C 正方形D 等腰梯形5、如图,在平行四边形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F 满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.AE=CF B.DE=BFC.∠ADE=∠CBF D.∠ABE=∠CDF6、菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A.2.5 B.5 C.2.4 D.不确定7、在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF(第5题)(第6题)(第7题)8、在平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12 , BD=10, AB=m ,那么m的取值范围是()A.10<m<12B.2<m<22C.1<m<11D.5<m<69、在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A 25B 20C 15D 1010、如图:在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数()A 50B 60C 70D 8011、如图:在△MBN中,BM=6,点A,C,D分别在MA、NB、MN上,四边形ABCD为平行四边形,∠NDC=∠MDA则□ABCD 的周长是()A.24B.18C.16D.1212、如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点D,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有( )A .1个B .2个C .3个D .4个(第12题) (第10题) (第11题)13、如图,在矩形ABCD 中,EF ∥AB , GH ∥BC , EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( ) A .3对 B .4对 C .5对 D .6对14、平行四边形ABCD 中,P 是形内任意一点, ABP ∆,BCP ∆,CDP ∆,ADP ∆的面积分别为4321,,,S S S S ,则一定成立的是 ( )A 4321S S S S +>+B 4321S S S S +=+C 4321S S S S +<+D 4231S S S S +=+15、.如图,四边形ACED 为平行四边形,DF 垂直平分BE 甲乙两虫同时从A 点开始爬行到点F ,甲虫沿着F E D A ---的路线爬行,乙虫沿着F B C A ---的路线爬行,若它们的爬行速度相同,则( )A 甲虫先到B 乙虫先到C 两虫同时到D 无法确定(第13题) (第14题) (第15题)16、如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,下列结论正确的是( )A .S ▱ABCD =4S △AOBB .AC=BDC .AC ⊥BD D .▱ABCD 是轴对称图形17、四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是( )A S1=S2B 、 S1<S2C 、 S1>S2D 、 3 S1=2S2(第16题) (第17题)18、在四边形ABCD 中,点O 是对角线的交点,在下列条件中,能判定这个四边形为正方形的是( )(A ) AC=BD AB ∥CD (B ) AD ∥BC ∠ A=∠C(C ) OA=OB=OC=OD,AC ⊥BD (D )OA=OC OB=OD AB=BC19、若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D 对角线相等的四边20、O 是菱形ABCD 的对角线AC 、BD 的交点,E 、F 分别是OA 、OC 的中点.下列结论:①S △ADE =S △EOD ;②四边形BFDE 也是菱形;③四边形ABCD 的面积为EF×BD ;④∠ADE=∠EDO ;⑤△DEF 是轴对称图形.其中正确的结论有:A 5B 4C 3D 221、如图,以正方形ABCD 的边AB 为一边向外作等边△ABE ,则∠BED 的度数为( )A 55°B 45° C40° D 42.5°22、如图,点D 、E 、F 分别是△ABC 三边的中点,则下列判断错误的是( )A .四边形AEDF 一定是平行四边形B .若∠A=90°,则四边形AEDF 是矩形C .若AD 平分∠A ,则四边形AEDF 是正方形D .若AD ⊥BC ,则四边形AEDF 是菱形(第22题) (第21题) (第20题)23、如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,又AB =DC ,下列结论:①EFGH 为矩形;②FH 平分EG 于T ;③EG ⊥FH ;④HF 平分∠EHG.其中正确的是( )A 、①和②B 、②和③C 、①②④D 、②③④24、如图,已知△ABC 的周长为1,连结△ABC 三边的中点构成第二个三角形,再连结第二个三角形三边的中点构成第三个三角形,依此类推,第2008个三角形的周长为( )A 、20071B 、20081C 、200721D 、200821(第23题) (第24题)二、填空题:25、平行四边形ABCD 中,若 40=∠-∠B A ,则=∠C ,若 100=∠+∠D B ,则=∠A ;26、 已知平行四边形ABCD 的周长为36cm,5:4:=BC AB ,则AB = ,CD = ;27、 已知平行四边形ABCD 的周长为28,对角线AC ,BD 相交于一点O ,且AOB ∆的周长比BOC ∆的周长大4,则AB = ,BC = ;28、在平行四边形ABCD 中, B ∠的平分线将CD 分成4cm 和2cm 两部分, 则平行四边形ABCD 的周长为 ;29、如图CD AB //,BC AD //,5=AD ,8=BE ,DCF ∆的面积为6,则四边形ABCD 的面积为30、 平行四边形ABCD 中, AB BC 2=,点M 为AD 的中点,则=∠BMC ;31、 平行四边形ABCD 中, BD AE ⊥于E ,且7:3:=DE BE ,20=BD ,10=AB ,则AB ,CD 的距离为 ;(第29题) (第30题) (第31题) 32、已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是 cm233、如图:在矩形ABCD 中,AB=16,BC =8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于F ,那么AF =___________34、如图,菱形ABCD 的周长为8倍根号 5,对角线AC 和BD 相交于点O ,AC :BD=1:2,则AO :BO= ,菱形ABCD 的面积S=35、平行四边形的四个内角平分线相交,如能构成四边形,则这个四边形是________(第33题) (第34题) (第35题)36、在矩形ABCD 中,E 、F 、G 、H 分别是四条边的中点,HF=2,EG=4,则四边形EFGH 的面积为( )37、∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于( )38、如图:P 是正方形ABCD 内一点,△PBC 为为等边三角形,连接PA 、 PD 则△PAD 的形状如( )∠APD=( )(第36题)(第37题)(第38题)39、如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.40、如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF ∥BC交CD于点F.求证:AM=EF.41、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.42、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.43、已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形44、在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形单元测试
一、填空
1、已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是 _______cm2;
2、若四边形ABCD是平行四边形,请补充条件____________________________ (写一个即可),使四边形ABCD是菱形;
3、如图在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=__________度;
4、如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面
积S2的关系是S1 _____S2(填“>”或“<”或“=” )
6、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________;
7、对角线长为22的正方形的周长为___________,面积为__________;
8、在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,阅读下列材料,
⑴连结AC、BD,由三角形中位线的性质定理可证四边形 EFGH是 ______________________________ ;
⑵对角线AC、BD满足条件__________________时,四边形 EFGH是矩形;
⑶对角线AC、BD满足条件___________________时,四边形 EFGH是菱形。(每空2分)
9、如图将一张正方纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中一个正方形剪成四个小正方形,如
此继续剪下去„„根据以上操作方法,请你填写下表:
二、选择题
1、菱形具有而矩形不具有的性质是 ( )A.对角相等 B.四边相等 C.对角线互相平分 D.四角相等
2、如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为 ( )
A.3 cm B.6 cm C.9 cm D.12 cm
3.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三
角形⑤等腰直角三角形 ( )A.①③⑤ B.②③⑤ C.①②③ D.①③④⑤
4、下列说法错误的是( )
(A)一组对边平行且一组对角相等的四边形是平行四边形。(B)每组邻边都相等的四边形是菱形。
(C)对角线互相垂直的平行四边形是正方形。 (D)四个角都相等的四边形是矩形。
5、把一个矩形纸片沿EF折叠后,点D、C分别落在D`,C`的位置,若∠EFB=650,则∠AED`等于( )
A、50度B、55度C、60度D、65度
6、已知平行四边形的一边上的高等于邻边长的一半,则它的最大内角是( )A、150° B、120°C、90°D、60°
7、过矩形各顶点作对角线的平行线所围成的四边形是( )A、平行四边形 B、矩形 C、菱形 D、正方形
8、下列图形中,面积最大的是( )A、边长为的3正方形 B、边长为2,高为1的平行四边形
C、对角线长分别为4和1的菱形 D、中位线长为2,高为2的梯形。
三、解答题1.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,
李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.
请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.
2、如图,平行四边形ABCD中,AE平分∠BAD交BC于E,EF∥AB交AD于F,求证四边形ABEF是菱形。
操作次数n 1 2 3 4 5 „ n „
正方形个数 4 7 10 „ „
K
N
M
Q
P
D
C
B
A
A
B
C
D
E
D`
C`
F
3题图
4题图
8题图
2题
A
B
C
D
E
F
A
B
C
D
3.如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,CF⊥AD交AD延长线于点F,请你猜想CE和CF的大小关系,并证明你的猜想。
4、如图在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF。
(1)求证:△ABE≌△ADF
(2)过C点做CG∥EA交AF于H,交AD于G,若∠BAE=250,∠BCD=1300,求∠AHC的度数。
5、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.
(1)
试说明:DE=DF
(2)
只添加一个条件,使四边形EDFA是正方形.并证明。(不另外添加辅助线)
6.如图,已知ABCD是正方形,对角线AC与BD相交于O,ABMN//,且分别与AO、BO交于M、N.求证:CNBM
BM⊥CN
7、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE
于E. (1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状(不用证明)。
D
A
B C E G F H
F
E
DCB
A
E
A
N
M
F
C
B
O
A
B
C
D
E
F
O
G
N
1.如图,正方形ABCD对角线AC、BD交于O,DE平分∠ADB,CN⊥DE于N,
求证:OF=21AG。
2.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度
都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?
(2)分别求出菱形AQCP的周长、面积.
3.如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
(1)判断△ABC的形状,并说明理由;
(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、
BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试
探究线段AD、BE、DE长度之间有什么关系?并给予证明.
(1)设经过x秒后,四边形AQCP是菱形,根据菱形的四边相等列方程即可求得所需的时间.
(2)根据第一问可求得菱形的边长,从而不难求得其周长及面积.
解答:解:(1)经过x秒后,四边形AQCP是菱形
由题意得16+x2=(8﹣x)2,解得x=3
即经过3秒后四边形是菱形.
(2)由第一问得菱形的边长为5
∴菱形AQCP的周长=5×4=20(cm)
菱形AQCP的面积=5×4=20(cm2)
点评:此题主要考查菱形的性质及矩形的性质的理解及运用.