高层建筑风效应及风振控制分析
(完整版)高层建筑在风荷载作用下的相关研究

高层建筑在强风作用下由于脉动风的影响将产生振动,这种振动有可能使在高层建筑内生活或工作的人在心理上产生不舒适的感觉,从而影响建筑物的正常使用”由于风是一种经常性的荷载作用,因此有必要将风引起的高层建筑的振动限制在人体舒适的感觉范围之内”重现期的选择也最大风速样本的取法影响着平均风速的数值”如果以口最大风速为样本,则一年有365个样本,平时低风速的口子的风速值占有很大的权,而最大风速那一天的风速只占1/365的权,因而最大风速重要性大大降低了,统计出的平均风速必将大大偏低"如果采用月最大风速,则每年最大风速在整个数列中也只占1/12的权,也降低了最大风速所起的重要性,所得结果也是偏低的"对十工程结构应该能承受一年中任何口子的极大风速,因此取年最大风速为样本”最大风速有它的自然周期,每年季节性地重复一次,因而采用年最大风速作为一个样本,较为合适”世界各国基本上是取年最大风速作为统计样本的”平均风的时距平均风速的数值与时距的取值有很大的关系”如果时距取得很短,例如3秒钟,则必定将记录中最大值附近的较大数据都突出反映在计算中,较低风速在平均风速中的作用难以得到反映,因而平均风速值很高”如果取得很长,例如1天,则必定将1天中大量的小风平均进去,较高风速在该长时距中起不到显著作用,其值一般偏低”一般来说,时距愈短,平均风速愈大,时距愈长,平均风速也就愈小"风速记录表明,阵风的卓越周期约为1min,通常认为10min(约10个周期)至1小时(约60个周期,由于阵风有较长的持续性,衰减较慢)其平均值基本上是一个稳定值,因而我国规范规定以10分钟作为取值标准”一般我们所研究的对象不会出现异常风的气候,称为良态气候"对十这种气候,我们可以认为年最大风速的每一个数据都对极值的概率特性起作用,因此,世界上许多国家把年最大风速作为概率统计的样本,由重现期和风速的概率分布获得该地区的设计最大风速,或者称为基本风速"我国规定基本风速采用极值I型概率分布函数进行统计分析"对于多层建筑和高层建筑的风致响应问题,连续体系,采用随机振动理论进行分析。
超高层建筑结构风效应的关键技术研究及其应用

超高层建筑结构风效应的关键技术研究及其应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着中国城市化进程的加速,超高层建筑的兴建已成为现代城市发展的重要特征。
高层建筑顶部幕墙结构的风振控制研究

<= 顶部幕墙结构的风效应
<> <= 风荷载的模拟 ! ! 平均风荷载可用如下公式计算 ( 0 ! 1 !2 ( # (") 其中 ( # 为基本风压, ! 1 为体型系数。由此可产 生 作用在主楼迎风面各楼层处及顶部幕墙结构迎风面 桁架各节点处的平均风力。 根据高耸结构的风致振动理论可知, 高层建筑 迎风面沿竖向各楼层处作用的脉动风力是一组具有 零均值的高斯平稳随机过程向量。它具有如下的功 率谱密度函数矩阵 [ 3{4} ( ") ] 0[ 3 4 ] 3 ( ") 5 (() 其中 3 ( 为规格化的 S9J4GP:;< 谱, [34 ] 为 . T. 5 ") 阶常量矩阵 ( . 为结 构楼层总数) , 它 的第 $ 行 第 6 列的元素为 3 4$ 6 0 # $ 6 4 $ 4 6 (&) 式中 # $ 6 0 4UP 7 8 2 $ 7 2 6 8 为脉 动风力的竖向 相 $# ! ! ! ( 干函 ; 4 $ 0 5 $ 1$ 2$ # !-$ 。 !
!"#"$%&’ () *()+%(,,-). +’" /-)0 1-2%$+-() (3 4$,, 56-,0-). 4(7 *6%+$-) /$,,
!" #$%&’()$ , *" +)$ ’,$%&,+-./ #$&’()& ( 12345 647 893:;9<:;7 := >:9?@97 A;5?B4 C D<;2E<2;4 FGB5G44;5GB , H2I9G ,G5J4;K5<7 := +4EIG:L:B7 ,H2I9G *&##)# , MI5G9 ) ! ! 82#+%$&+ : NG E:GK5?4;9<5:G := <I4 5G<4;9E<5:G := <I4 O95G K<;2E<2;4 9G? <:P E2;<95G @9LL, <I4 @5G? ;4Q KP:GK4 := <I4 <9LL 325L?5GB 9G? <:P E2;<95G @9LL 9;4 E9LE2L9<4? @I5L4 <I4 O95G K<;2E<2;4 5K K5OPL5=54? 9K 9 L974; O:?4L 9G? <:P E2;<95G @9LL 5K K5OPL5=54? 9K 9 <;2KK O:?4L/ +I4 @5G?Q5G?2E4? @I5PP5GB 4==4E< := <:P E2;<95G @9LL 5K P;4J4G<4? 37 2K5GB J5KE:4L9K<5E ?9OP4;K @I5EI 5K 5GK<9LL4? 5GK5?4 <I4 :;5B5G9L K<44L <234/ +I4 @:;R :G 9 *(Q=L::; 325L?5GB KI:@K <I4 5GK5?4Q5GK<9LL5GB J5KE:4L9K<5E ?9OP4;K E9G K5BG5=5E9G<L7 ;4?2E4 <I4 @5G?Q5G?2E4? ?5KPL9E4O4G<,9G? P;4J4G< <I4 E:LL9PK4 := <:P E2;<95G @9LL/ 9": ;(%0#: J53;9<5:G 9G? @9J4 ;J5KE:4L9K<5E ?9OP4;K;<9LL 325L?5GB ;@5G? J53;9<5:G E:G<;:L ;@I5PQ P5GB 4==4E< ! ! 风荷载是高层建筑的主要设计荷载之一。为了 满足建筑外形的需要, 经常会在结构顶层设计一大 片钢结构玻璃幕墙。考虑到主楼结构为楼面承载的 钢筋混凝土或钢结构框架支撑体系, 而高出屋面部 分的玻璃幕墙仅为一个简单的空间珩架体系, 这两 部分的抗侧刚度存在巨大的反差, 因此, 高出屋面部 分幕墙结构在风力作用下会产生较大的风振鞭梢效 应。该效应会使此部分玻璃幕墙结构的水平变形过 大, 从而造成大风时玻璃幕墙的脱落或破坏, 影响它 的使用功能和安全性能。为了防止 上述结果的出 现, 在高出屋面部分的玻璃幕墙结构上采取风振控 制的措施, 以减小它的风振响应, 防止玻璃幕墙的脱 落或破坏是十分必要的。 本文首先分析了设计风荷载下顶部幕墙结构的 风效应, 然后针对顶部幕墙结构抗风的薄弱环节, 用 内置式粘弹性阻尼器支撑完成了结构风振控制的设 计, 降低了顶部幕墙结构的风振响应, 为防止顶部玻 璃幕墙的掉落增加了可靠性。
高层建筑结构设计中的风荷载

高层建筑结构设计中的风荷载随着现在建筑美学的发展和使用功能的要求,现代建筑结构朝着高层和大跨度的方向发展。
因此在结构设计中风荷载越来越重要,有时至起决定性的作用。
该文主要阐述作用在结构上的风压、风力和风振系数、高层建筑结构风振系数和风振响应的精确方法,并介绍了高层建筑的风振控制的多种方法。
目前世界上正在经历着史无前例的高层、超高层建筑建设高峰。
芝加哥西尔斯大厦(Sears tower)曾以443m的高度稳坐世界最高建筑物宝座26年。
而现在世界上,拟建、在建和已建的400m以上的结构有37栋,尤以正在建造且已超过700m的迪拜大厦(Burj Dubai)为首。
发达国家甚至提出了千米高度量级的“空中城市”的概念。
随着结构高度的增加和高强材料的使用,低阻尼、高柔结构的风振响应更加显著,使得强风作用下的结构风荷载成为结构安全性和舒适性设计的控制荷载。
从Davenport最早将随机概念和方法引入建筑结构的抗风研究30多年以来,在建筑结构的顺风向荷载及响应的研究方面,已逐渐形成比较完善的计算理论和方法,主要成果也反映在多数国家的建筑结构荷载规范中。
风的特征及风压风是空气相对于地面的运动。
由于太阳对地球上大气加热和温度上升的不均匀性,从而在地球相同高度的两点之间产生压力差,这样使不同压力差的地区产生了趋于平衡的空气流动,便形成了风。
大量的统计资料表明,近地风的平均风速随着高度的升高而增大,同时对应于不同的地面粗糙度具有不同的变化规律。
通常可采用风速剖面来描述平均风。
平均风剖面是微气象学研究风速变化的一种方法。
目前,气象学家认为用对数律表示大气底层强风风速廓线比较理想,其表达式为式中——大气底层内高度处的平均风速;——摩擦速度或流动剪切速度;K——卡曼(Karman)常数,k 0.40;——地面粗糙长度(m);——有效高度(m):=,其中z——离地高度(m);——零平均位移(m)。
风压是建筑结构设计中的基本设计依据之一,其取值的大小对高层(高耸)和大跨度结构的安全性、适用性、耐久性及是否经济有密切的关系.基本风压系以当地比较空旷平坦地面上离地比较离地10m 高统计所得的50年一遇10min平均最大风速、按确定的风压。
高层建筑的风振效应与结构设计

高层建筑的风振效应与结构设计随着城市化的进程不断加快,高层建筑在我们的生活中占据了重要的地位。
然而,随之而来的一个问题就是高层建筑面临的风振效应。
高层建筑的结构设计需要考虑如何减小风振效应,保证建筑的安全性和稳定性。
一、风振效应的原理高层建筑受到风的作用会引起其产生共振,形成特定频率的振动,这就是风振效应。
当耐风设计不符合要求或者建筑结构强度不足时,风振效应会对建筑的结构产生严重影响,甚至造成倒塌。
二、风洞试验的重要性为了减小风振效应,高层建筑的结构设计通常需要进行风洞试验。
风洞试验通过模拟真实的气流条件,评估建筑在不同风速下的响应,从而找到合适的结构设计方案。
通过风洞试验,可以改善高层建筑的结构,提高其抗风性能。
三、主动控制防风技术除了通过结构设计来减小风振效应之外,主动控制防风技术也是一种有效的方法。
通过在建筑中设置主动控制装置,可以根据实时的风速和建筑的振动情况,调节建筑的阻尼力和刚度,从而减小风振效应的影响。
四、减小风振效应的其他措施除了风洞试验和主动控制装置之外,还有其他一些措施可以帮助减小风振效应。
例如,在建筑外部增加防风挡板、设置减震装置等。
这些措施都是为了增加建筑的稳定性,让人们能够安心居住和工作在高层建筑中。
五、从设计到施工的全过程管理要有效减小风振效应,需要从设计到施工的全过程管理。
在设计阶段,需要充分考虑建筑的抗风能力,并根据具体情况选择合适的结构设计方案。
在施工过程中,需要严格执行设计要求,确保结构的质量和稳定性。
六、结构设计与可持续发展高层建筑的结构设计不仅仅是为了减小风振效应,同时也需要考虑可持续发展的要求。
例如,结构设计可以采用节能材料,提高建筑的能源利用效率。
同时,结构设计还可以考虑生态环境的保护,减少对自然资源的消耗。
七、结语高层建筑的风振效应是一个复杂而重要的问题,涉及到结构设计、风洞试验、主动控制防风技术等多个领域。
通过综合运用这些方法和技术,我们可以有效减小风振效应的影响,保证高层建筑的安全性和稳定性。
高层建筑结构设计合理性控制

高层建筑结构设计合理性控制高层建筑是城市的地标,也是城市发展的重要标志和动力。
高楼大厦作为城市建设中的重要组成部分,其结构设计合理性的控制显得尤为重要。
在建筑结构设计过程中,合理性控制是保障建筑安全、耐久性和经济性的重要保证。
本文将围绕高层建筑结构设计合理性控制展开讨论,从结构设计原则、设计参数控制、风振效应分析等方面深入探讨,以期为高层建筑结构设计提供一些参考。
一、结构设计原则高层建筑的结构设计原则包括稳定性、耐久性、经济性三个方面。
首先是稳定性,这是高层建筑结构设计的首要原则。
稳定性设计应保证建筑在重力荷载和弯矩荷载作用下不发生倾覆、滑动或破坏。
其次是耐久性,也就是要求高层建筑的结构在使用寿命内能够保持稳定、不断强度和刚度。
最后是经济性,高层建筑的结构设计应该在满足稳定和耐久性要求的前提下,尽可能地减少材料和成本的使用。
二、设计参数控制在高层建筑结构设计中,设计参数的控制是非常重要的。
设计参数控制涉及到结构体系选择、荷载分布、材料选择等多个方面。
首先是结构体系选择,不同的结构体系会对建筑的稳定性、刚度和变形都产生不同的影响。
在选择结构体系时,需要综合考虑建筑的功能要求、耐震要求以及经济性,以得出最合适的结构体系。
其次是荷载分布,各种荷载的分布是设计参数控制的重点之一。
合理的荷载分布能够减小结构受力不均造成的变形,提高结构的稳定性和耐久性。
最后是材料选择,高层建筑结构设计中的材料选择应该充分考虑材料的力学性能、抗震性能和经济性,以求在满足结构要求的前提下,尽可能地减少材料的使用。
三、风振效应分析在高层建筑结构设计中,风振效应是一个不可忽视的因素。
风振效应是指风在建筑物表面产生气动力作用,导致建筑产生振动和应力的现象。
这种振动会对建筑的稳定性和耐久性产生影响,因此需要进行相应的风振效应分析。
风振效应分析主要包括风荷载计算和结构响应分析两个方面。
风荷载计算是指通过气象学和流体力学理论计算出建筑在风速、风向和大气密度等条件下所受到的风荷载大小和分布情况。
高层建筑的风振控制研究

高层建筑的风振控制研究摘要:高层建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。
文中分析了高层建筑的外部风环境、内部风环,以及风振控制中的被动控制、主动控制和混合控制系统,这一研究对于高层建筑安全设计具有一定意义。
关键词:风振控制;建筑风环境;控制系统0 引言高层建筑和高耸结构正向着日益增高和高强轻质的方向发展,使得结构的刚度和阻尼不断下降,直接影响了高层建筑和高耸结构的正常使用。
建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。
本文基于人员不舒适感分析了高层建筑风振控制,这一研究对于高层建筑安全设计具有一定意义。
1 高层建筑的风环境1.1 外部风环境根据高层建筑物的外形,相互布局情况及风的相对方向,有可能测得的建筑物外部环境的不舒适参数Ψ值,在风振舒适感控制中都是基于下述效应为基础。
(1)压力连通效应:当风垂直吹向错开排列的高层建筑物时,若建筑物间的距离小于建筑物的高度,则有部分压力较高的风流向背面压力较低的区域,形成街道风,在街道上形成不舒适区域。
(2)间隙效应:如图2所示,当风吹过突然变窄的剖面时(如底层拱廊),在该处形成不舒适区域。
图2 间隙效应(3)拐角效应:如图3所示,当风垂直吹向建筑物时,在拐角处由于迎面风的正压与背面风的负压连通形成一个不舒适的拐角区域;有时,当两幢并排建筑物的间距L≤2d(d为建筑物沿风向的长度)时,两幢间也形成不舒适区域。
图3 拐角效应(4)尾流效应:如图4所示,在高层建筑物尾流区里,自气流分离点的下游处,形成不舒适的涡流区。
图4 尾流效应(5)下洗涡流效应:如图5所示,当风吹向高层建筑物时,自驻点向下冲向地面形成涡流。
图5下洗涡流效应2.2内部风环境高层建筑的内部风环境是指,由于风荷载的作用,高层建筑受到脉动风影响而发生振动现象,这种振动会给生活或者工作在高层建筑内部人带来不舒适感,对高层建筑物的正常使用造成影响。
结构动力学中的风振问题分析

结构动力学中的风振问题分析结构动力学是研究结构在外界力作用下的振动行为的学科,而风振问题则是结构动力学中一个重要的研究方向。
本文将从风振问题的背景和原因、影响因素和评估方法等方面进行详细分析和讨论。
一、背景和原因在风振问题中,结构物在大风环境下会受到风力的作用,引起结构的振动。
风振问题主要存在于高层建筑、长跨度桥梁、烟囱、塔楼等高耸结构中。
这种振动既可能是结构自身的自由振动,也可能是受到风力激励后的强迫振动。
风振问题的产生原因可以归结为以下几点:1. 气象因素:大风引起的气动力是产生风振问题的主要原因之一。
气象因素包括风速、风向、风向变化频率等。
2. 结构刚度:结构刚度的大小将直接影响结构的振动特性,而刚度小的结构更容易受到风力的激励而发生振动。
3. 结构阻尼:结构的阻尼越小,振动越容易发生和持续。
因此,结构的阻尼对于风振问题的研究具有重要意义。
4. 结构质量:结构质量的大小也将影响结构的振动特性,质量越大,振动频率越低,风振问题相对较小。
二、影响因素风振问题的复杂性决定了其受到多个因素的共同影响。
主要的影响因素包括:1. 风速和风向:风速和风向是产生风振问题的主要因素,其中风速对结构振动的影响最为显著。
2. 结构特性:结构的刚度、质量和阻尼等特性将直接影响结构的振动响应。
3. 结构形状和几何尺寸:结构的形状和几何尺寸影响着结构对风力的反应,尤其是在流体作用下的层流和湍流区域。
4. 地面效应:结构与地面之间的交互作用对风振问题也具有重要影响。
三、评估方法针对风振问题,需要进行定量的评估和分析,以寻找有效的风振控制措施。
常用的评估方法包括:1. 数值模拟:通过数值模拟方法,可以模拟结构在大风作用下的振动响应。
常用的数值方法包括有限元法、计算流体力学方法等。
2. 风洞试验:风洞试验可以模拟真实的风场环境,并通过模型的测试来评估结构的振动响应。
风洞试验是评估风振问题最为直观和准确的方法之一。
3. 实测方法:通过实际的结构振动监测数据,可以对结构的风振问题进行评估和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。