混凝土湿度和干缩变形及应力特性的细观模型分析_朱岳明
混凝土HJC动态本构模型的研究

混凝土HJC动态本构模型的研究混凝土材料在结构工程中扮演着重要的角色,混凝土结构的本构模型研究对于设计和分析都非常关键。
本文将对混凝土HJC动态本构模型进行研究,并探讨其在结构动力学分析中的应用。
混凝土是一种非线性、各向异性材料,具有显著的本构特性。
传统的混凝土本构模型多以弹塑性本构模型为基础,忽略了混凝土的动态响应特性。
随着结构动力学的发展,研究者们意识到在动态载荷下混凝土的本构行为与静态载荷下存在着差异,因此提出了混凝土HJC动态本构模型。
混凝土HJC动态本构模型的基本原理是通过沿容积和形状的追踪来描述混凝土的动态形变和应力响应。
它既考虑了混凝土的非线性行为,又考虑了动态载荷的影响。
根据实验结果,HJC模型将混凝土分为三部分:平坦区、线性区和剩余区。
其中,平坦区是混凝土的初始刚度区域;线性区是混凝土的线性应力-应变关系区域;剩余区是混凝土的非线性行为区域。
通过这种分区,混凝土的动态本构行为可以更准确地描述。
对于HJC模型的参数确定,可以利用试验数据进行参数拟合。
常用的试验方法包括动态压缩试验、剪切试验和拉伸试验等。
通过这些试验可以获得混凝土在动态载荷下的应力-应变曲线,并进一步得到本构模型的参数。
另外,也可以借助于有限元方法进行模拟分析,通过与试验结果进行对比来验证模型的准确性。
混凝土HJC动态本构模型在结构动力学分析中的应用非常广泛。
例如,在地震工程中,结构的抗震性能评估需要考虑动态载荷下的材料本构特性,而HJC模型可以提供较为准确的混凝土响应。
此外,在爆炸冲击和车辆碰撞等动态载荷下,HJC模型也能够很好地模拟混凝土的变形和破坏过程。
因此,混凝土HJC动态本构模型对于结构抗震、安全和可靠性分析具有重要的意义。
总而言之,混凝土HJC动态本构模型的研究是混凝土结构分析的重要方向。
通过对混凝土的动态响应特性进行研究,可以更准确地模拟混凝土在动态载荷下的行为,并为结构设计、分析和抗震评估提供参考。
混凝土的干燥收缩过程

混凝土的干燥收缩过程分析了混凝土干缩的机理及过程,为指导配制低干缩的混凝土提供依据。
关键字:混凝土;干缩;过程干缩是水泥混凝土中常见的一种变形,而干缩变形又是引起水泥混凝土开裂的最主要的原因之一。
混凝土收缩主要是由水泥浆体引起的。
混凝土结构由于处于不同的约束状态下因收缩引起拉应力,当混凝土的抗拉强度小于该拉应力时,就会引起混凝土产生裂缝,从而导致混凝土耐久性性能的下降.因而对水泥砂浆以及混凝土的干缩和干缩补偿问题的研究,具有十分重要的实际意义。
在准静态条件下,水泥石的干缩过程如图1所示:图1横坐标起点相当于在水中长期养护的水泥石(含水量为100%),曲线AB段为干缩初期阶段,水泥石中大孔及大毛细孔(孔半径大于100nm)失水,水泥石不收缩。
曲线BC段为孔半径小于100nm的毛细孔失水,水泥石发生收缩,这是由于毛细孔和凝胶孔中失水产生的毛细管压力引起的。
毛细管压力随水泥石含水量减少而变化,起初增加,达到最大值之后开始减少。
相对湿度进一步减少时,大部分毛细管完全脱水,毛细管压力减少,由于固体骨架的弹性恢复,可以使水泥石体积膨胀,这相当于曲线CD段。
在不同条件下养护的混凝土收缩试验结果表明,没有发现干缩过程中含水量在一定范围内变化时水泥石体积有所增加,只是在收缩—含水量试验曲线上发现一个拐点。
毛细管水失去后,吸附结合水开始蒸发,空气相对湿度越低、温度越高,则吸附水从晶体表面蒸发的越多,同时亚微观晶体相互靠近,C—S—H凝胶中的层间水也开始蒸发,这是曲线DE 段。
曲线最后一段EF,相当于水化硅酸钙层间水蒸发阶段。
就一般的湿度条件(相对湿度从100%到40%)下,水泥石的干缩主要是由毛细管张力控制,拆散应力的作用可能也是重要的。
就毛细管张力而言,它是毛细管内部的液体对毛细管壁的一种拉力,毛细管张力的作用使得在毛细管壁上产生压力,从而使毛细管壁产生压力变形而产生体积收缩。
形成弯月面的毛细管半径越小,数量越多,则毛细管张力越大,收缩越大。
混凝土三维细观模型的建模方法与力学特性分析

新的顶点坐标 p′i(见图 2):
p′i = pi + qv
(4)
式中:q (0<q<1)为缩放因子,通过改变 q,可以实现对多面体缩放大小的控制,从而得到满足一定级配
的随机骨料模型(见图 3)。
在生成的骨料模型基础上,利用下式对多面体顶点沿着向量v进行延伸,并保留多面体顶点,得到顶
Vi = ∩ P ∈ D d (P, S i) ≤
d (P, S j)
,
i
} j
(1)
ij
d (P, S ) =
√ (Px
−
S
x
)2
+
( Py
−
S
y
)2
+
(Pz
−
S
z
)2
(2)
为了避免产生过于畸形的胞元,通过下式控制两核心之间的最小距离:
δmin = (1 − K) δ0
(3)
式 中 : δ0 为 两 核 心 之 间 的 平 均 距 离 , 根 据δ0
054205-1
第 39 卷
爆炸与冲击
第5期
本文中基于三维 Voronoi 图形,提出一种简单、高效的混凝土细观模型生成方法。在传统 Voronoi 图形的基础上,通过控制多面体的随机度和引入缩放因子等参数,得到具有级配的随机骨料模 型。然后,对骨料几何体的外表面进行延伸,得到一定厚度的黏接界面层,从而得到完整的混凝土细观 有限元模型。采用连续介质损伤模型分析混凝土材料的静态和动态力学特性,拟为该模型的进一步应 用提供基础。
zhou等45建立了圆形随机骨料模型利用材料损伤本构关系系统研究了混凝土细观模型在不同受力条件下的拉伸压缩和爆炸问题指出骨料和砂浆之间的黏接界面层在压缩时先出现破坏裂纹在拉伸时对混凝土失效机理和拉伸强度影响最大
混凝土收缩徐变

武汉理工大学《高等桥梁结构理论》读书报告混凝土徐变收缩理论学院(系):专业班级:学生姓名:学号:指导教师:混凝土徐变收缩理论1 概述桥梁结构分析这门课程是研究生阶段的必修课,只有通过这门课的学习,我们才能对高等桥梁结构理论有所了解,摆脱本科阶段对桥梁设计和结构分析的困惑,也为我们以后的科学研究和参与实际项目做一些伏笔。
该门课程中我们主要学习了薄壁箱梁剪力滞效应、混凝土的徐变、收缩及温度效应理论、混凝土的强度、裂缝及刚度理论以及结合梁和大跨径桥梁计算理论等知识点。
本文主要为我对混凝土收缩徐变的一些理解和读书报告。
在20世纪初,混凝土的收缩徐变现象就被人们所发现,但是直到20世纪30代才引起人们的重视,开始对混凝土的收缩徐变展开研究。
经过大半个世纪对混凝土收缩徐变的试验研究和理论分析,人们已经掌握了大量的资料和经验,对混凝土收缩徐变的认识以及其对结构的影响效应的分析方法得到了很大发展。
目前为止,许多国家、组织都提出了关于混凝土收缩徐变效应的设计规范及计算理论和方法,但由于各国和组织对收缩徐变机理的认识有所不同,提出的混凝土收缩徐变计算表达式存在一定的差异,繁简各异,精度上也各不相同。
因此,混凝土收缩徐变的理论以及计算方法仍然处在发展阶段,还需要大量的研究和探讨。
2 混凝土收缩徐变基本概念和理论2.1 混凝土收缩徐变的定义混凝土是以水泥为主要胶结材料,拌合一定比例的砂、石和水,有时还加入少量的添加剂,经过搅拌、注模、振捣、养护等工序后,逐渐凝固硬化而成的人工混合材料。
各组成材料的成分、性质和相互比例,以及制备和硬化过程中各种条件和环境因素,都对混凝土的力学性能有不同程度的影响。
所以,混凝土比其它单一性结构材料(如钢、木等)具有更为复杂多变的力学性能,但它却是工程中最常用的建筑材料之一。
混凝土的收缩是指混凝土体内水泥凝胶体中游离水蒸发而使本身体积缩小的一种物理化学现象,它是一种不依赖于荷载而与时间、气候等因素有关的干燥变形。
《基于三维细观模型的混凝土损伤力学行为研究》

《基于三维细观模型的混凝土损伤力学行为研究》篇一一、引言混凝土作为建筑结构的主要材料,其力学性能的研究对于保障建筑安全具有重要意义。
混凝土损伤力学行为的研究是该领域的重要方向之一,而基于三维细观模型的混凝土损伤力学行为研究更是当前研究的热点。
本文旨在通过对混凝土三维细观模型的研究,深入探讨混凝土损伤力学行为的特性及机理。
二、混凝土三维细观模型构建混凝土是由骨料、砂浆和孔隙等组成的多相复合材料。
为了更好地研究混凝土损伤力学行为,需要构建出真实反映混凝土细观结构的三维模型。
本文采用数字图像处理技术和计算机视觉技术,对混凝土试件进行微观结构分析,并构建出三维细观模型。
在模型构建过程中,需要考虑骨料的形状、大小、分布以及砂浆和孔隙的分布等因素。
同时,为了更准确地模拟混凝土的损伤过程,还需要在模型中引入裂缝、孔洞等缺陷。
三、混凝土损伤力学行为研究基于构建的三维细观模型,本文对混凝土的损伤力学行为进行了深入研究。
首先,通过对比不同加载条件下的混凝土试件,分析了混凝土在受力过程中的损伤演化规律。
其次,结合数值模拟方法,对混凝土在拉伸、压缩等不同应力状态下的损伤行为进行了模拟分析。
在研究过程中,我们发现混凝土的损伤过程是一个复杂的过程,涉及到多种因素的相互作用。
例如,骨料的形状和分布、砂浆的强度和韧性、孔隙的分布和大小等因素都会对混凝土的损伤行为产生影响。
此外,混凝土的损伤还与加载速率、温度等因素有关。
四、混凝土损伤机理分析通过对混凝土损伤力学行为的研究,我们发现混凝土的损伤机理主要包括以下几个方面:1. 骨料与砂浆之间的界面破坏:由于骨料和砂浆之间的粘结强度较低,当混凝土受到外力作用时,界面处容易发生破坏,导致裂缝的产生和扩展。
2. 孔隙和缺陷的扩展:混凝土中的孔隙和缺陷在受力过程中会逐渐扩展,形成较大的裂缝,导致混凝土的强度和韧性降低。
3. 材料的非均匀性:由于骨料的形状、大小和分布等因素的影响,混凝土的材料性质具有非均匀性。
混凝土的变形,耐久性

第三节混凝土的变形性能混凝土的变形包括非荷载作用下的变形和荷载作用下的变形。
非荷载作用下变形又包括:化学收缩、塑性收缩、干湿变形、温度变形;荷载作用下变形包括:短期变形和长期变形。
一.混凝土在非荷载作用下的变形1.化学收缩在硬化过程中,由于水泥水化产物的体积小于反应物(水和水泥)的体积,会引起混凝土产生收缩,称为化学收缩。
其收缩量随混凝土龄期的延长而增加,大致与时间的对数成正比。
一般在混凝土成型后40d内收缩量增加较快,以后逐渐趋向稳定。
这种收缩不可恢复,化学收缩值很小,对混凝土结构没有破坏作用,但在混凝土内部可能产生微细裂缝。
2.塑性收缩混凝土成型后尚未凝结硬化时属于塑性阶段,在此阶段往往由于表面失水而产生收缩,称塑性收缩。
新拌混凝土若表面失水速率超过内部水分向表面迁移的速率时,会造成毛细管内部产生负压,因而使浆体中固体粒子间产生一定的引力,便产生了收缩。
如果引力不均匀作用于混凝土表面,则表面将产生裂纹。
预防塑性收缩的方法是降低混凝土表面失水速率、采取防风、降温等措施。
最有效的方法是凝结硬化前保持表面的润湿,如在表面覆盖塑料膜、喷洒养护剂等。
3.干湿变形主要取决于周围环境湿度的变形,表现为干湿缩胀。
干缩对混凝土影响很大,应予以特别注意。
混凝土处于干燥环境时,首先发生毛细管的游离水蒸发,使毛细管内形成负压,随着空气湿度的降低,负压随之增加,产生收缩力,导致混凝土整体收缩。
当毛细管内水蒸发完后,若继续干燥,还会使吸附在胶体颗粒上的水蒸发。
由于分子引力的作用,粒子间距离小,引起胶体收缩,称这种收缩为干燥收缩。
混凝土干缩变形是由表及里逐渐进行的,因而会产生表面收缩大,内部收缩小,导致混凝土表面受到拉力作用。
当拉应力超过混凝土的抗拉强度时,混凝土表面就会产生裂缝。
此外,混凝土在干缩过程中,骨料并不产生收缩,因而在骨料与水泥石界面上也会产生微裂纹,裂纹的存在,会对混凝土强度,耐久性产生有害作用。
影响因素有:水泥用量、品种、细度;水灰比;骨料的质量;养护条件。
混凝土中的塑性本构模型

混凝土中的塑性本构模型摘要:混凝土由于其都特的性能,现今已成为土木建筑工程中应用最广泛的建筑材料之一。
由于其自身具有不匀质性,研究其力学性能时需建立特殊的本构关系。
本文阐述了混凝土在压应力下的应力应变关系,引用现有塑性本构模型理论,本分析了其不足。
关键词:应力-应变;塑性本构关系1 引言混凝土是现代建筑中使用量最大的建筑材料,在隧道、桥梁、工业与民用建筑等各类工程中发挥着重要作用。
混凝土内部结构中含有砂石骨料、水泥石、游离水分和气泡,而水泥石中又含有凝胶、警惕和未水化的水泥颗粒。
作为一种胶凝材料,不同组分的固有性质、配合比及固液气三相之间物理化学反应,使得混凝土材料类型多样。
混凝土内部含有大量的微裂缝和微空洞,使其具有非线性、随机性等力学行为特点[1],与可作为均质体假定的金属材料物理力学性质有较大不同。
本构关系的研究一直是混凝土材料基础理论科学的研究重点。
传统的混凝土结构分析中,由于受到计算能力的限制,以及对材料本身性能了解不足,对构件与结构分析一般在线弹性范围内进行,而早期的混凝土构件与结构相对比较简单,因此这种分析方法在当时起到了一定的作用。
但是随着混凝土在复杂结构中的广泛应用,需要对结构进行比较精确的分析。
这时简单但比较粗糙的线弹性本构模型的局限性显露了出来。
随着计算机技术和计算理论的快速发展,60年代以来,有限元技术及其发展成为复杂结构分析的一种有力工具。
早期对混凝土结构进行有限元分析的实践表明:误差的主要来源是所选用的混凝土本构模型不能很好地描述材料的本构行为。
因此对混凝土本构关系进行更深入更精确的研究愈显必要。
现已发展形成了多种理论本构模型,如弹性力学本构模型、塑性力学本构模型、断裂力学本构模型、损伤力学本构模型,以及针对高温、低温等特定关系下的本构模型。
由于混凝土材料在卸载后存在残余变形,适合采用塑性理论来描述,这样就形成以塑性理论为基础的混凝土弹塑性本构模型。
金属材料的塑性理论目前已经比较成熟,混凝土的塑性模型也具有较完备的理论基础,可以描述混凝土的循环响应待性、卸载非弹性响应等非线性弹性模型无法描述的本构现象,其适用范围较非线性弹性模型大,能够较好地反映混凝土的主要性能,如:受拉脆性破坏、受压延性破坏、卸载再加载、非比例加载、混凝土硬化、体积膨胀等,所以在工程中弹塑性本构模型的应用也是很广泛的。
混凝土的徐变和收缩读书报告2

混凝土的徐变和收缩——钢筋混凝土非线性分析读书报告之一混凝土的徐变和收缩一. 混凝土的徐变1.概述长期荷载作用下,混凝土的应力保持不变,他的应变随着时间的增长而增大的现象叫做混凝土的徐变。
徐变有两部分组成:(1)基本徐变或称真实徐变,即在湿度平衡条件下产生的徐变值。
这是密封试件在荷载下实测的徐变值,主要和常值应力大小和时间有关。
(2)干缩徐变,这是受力试件和周围环境中湿度交换的结果,随时间而引起的变形。
干缩徐变区别于收缩,主要是收缩是混凝土在不受力情况下引起的体积变形。
混凝土在应力作用的当时(混凝土龄期为τ天)产生瞬时弹性应变εel ,随荷载作用时间(t )的延续,徐变变形εcr 不断增长,经过一段时间后卸载,即时产生的弹性恢复变形εel ′<εel ,以后继续有徐变恢复又称弹性后效(迟后弹性变形)εel′′,但仍有残留的永久变形,称流动变形εcr ′。
如下图。
2.徐变应变值表达式 sd sb s εεε+=sh sb s εεεQ +=式中,εs =徐变总应变,εsb =基本徐变应变,εsd =干缩徐变应变,εsh =同一时期内的收缩应变,Q =系数,为常数值。
一般把未密封试件荷载所得随时间而增加的应变值,减去未受荷试件的相应的收缩应变值,即徐变应变。
时间(t ) 受荷混凝土时间-变形曲线3.混凝土徐变产生的原因(1)混凝土结硬以后,骨料之间的水泥浆的一部分变为完全弹性的结晶体,其他为填充在晶体间的凝胶体而具有黏性流动的性质。
水泥石在承受荷载的瞬间,结晶体和凝胶体共同受力。
然后,随着时间的推移,凝胶体由于粘性流动而逐渐卸载,此时晶体承受过多的外力,并产生弹性变形,从而使水泥石变形(混凝土徐变)增加,即由水泥凝胶体和水泥结晶体之间产生应力重分布所致。
(2)混凝土内部的微裂缝在荷载长期作用下不断增加,从而导致应变的增加。
在应力不大时,徐变以第一种原因为主;应力较大时,以第二种原因为主。
4.混凝土的徐变与混凝土应力大小的关系应力越大,徐变越大,随着混凝土应力的增加,混凝土的徐变将发生不同的情况。