初一数学期中考试模拟试卷2

合集下载

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中的度数为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出,∴,∵,∴,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;22a b -<-a b >22a b >a b >0a b ->α∠60︒65︒75︒85︒115ABD ABC ∠=∠-∠=︒6045ABD ABC ∠=︒∠=︒,1604515ABD ABC ∠=∠-∠=︒-︒=︒90D Ð=°180901575α∠=︒-︒-︒=︒B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵是关于x 、y 的方程x +ky =3的一个解,∴把代入到原方程,得1+2k =3,解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. C. 2 D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则,即,只有选项D 符合题意.故选D .7. 不等式的解集在数轴上表示正确的是( )12x y =⎧⎨=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩1.55353x -<<+28x <<53x -≥A.B.C.D.【答案】A【解析】【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:,,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配名工人生产电压表,名工人生产电流表,恰好使每天生产的电压、电流表配成套,则可列出方程组( )A. B. C. D. 【答案】D【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配名工人生产电压表,名工人生产电流表,由题意,得.故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程,用含x 的代数式表示y ,则______.为53x -≥∴2x ≤x y 6022014x y y x+=⎧⎨⨯=⎩6014202x y x y +=⎧⎪⎨=⎪⎩601420x y x y +=⎧⎨=⎩6021420x y x y+=⎧⎨⨯=⎩x y 6021420x y y y +=⎧⎨⨯=⎩327x y +=y =【答案】【解析】【分析】本题考查了解二元一次方程,根据,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵∴故答案为:10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过,通过桥洞的车高应满足的不等式为_____________.【答案】##【解析】【分析】根据不等式的定义列不等式即可.【详解】解:∵车辆高度不能超过,∴.故答案为.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组的最小整数解为_________.【答案】【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组得:,∴最小整数解为,故答案为:.的7322x -327x y +=327x y +=273y x=-7322y x =-7322x -5m m x 5x ≤5x≥5m 5x ≤5x ≤10{212x x -<-≥210{212x x -<-≥32x ≥2212. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解:正五边形内角和为且在直线上,,正六边形内角和为且在直线上,,在中,,,,,故答案是:.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各一直金几何?”译文问题:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子,问一头牛、一只羊一共值多少两银子?”则头牛、只羊一共值 ______ 两银子.【答案】【解析】【分析】设每头牛值两银子,每只羊值两银子,根据“头牛、只羊,值两银子;头牛、只羊,值两银子”,可得出关于,的二元一次方程组,利用,即可求出结论.DEF ∠ 540︒CD l 5401085EDC ︒∴∠==︒ 720︒FG l 7201206EFG ︒∴∠==︒EDF 180DEF EDF EFD ∠=︒-∠-∠18010872EDF ∠=︒-︒=︒ 18012060EFD ∠=︒-︒=︒48DEF ∴∠=︒48《》.52192516115x y 52192516x y ()7+÷①②【详解】解:设每头牛值两银子,每只羊值两银子,根据题意得:,得:,∴头牛、只羊一共值两银子,故答案为:.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买个跳绳,个呼啦圈,利用总价单价数量,即可得出关于,的二元一次方程,结合,均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买个跳绳,个呼啦圈,依题意得:,.,均为正整数,为3的倍数,或或或,该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)x y 52192516x y x y +=⎧⎨+=⎩①②()7+÷①②5x y +=1155x y =⨯x y x y x y 812120x y +=2103y x ∴=-x y x ∴∴38x y =⎧⎨=⎩66x y =⎧⎨=⎩94x y =⎧⎨=⎩122x y =⎧⎨=⎩∴23328y x x y =-⎧⎨+=⎩(2)【答案】(1) (2)【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:把①代入②得:,解得,把代入①得,∴方程组的解为;小问2详解】解:得:,解得,把代入①得:,解得,∴方程组解为.16. 解下列不等式(组):(1);(2)【的28452x y x y +=⎧⎨-=⎩21x y =⎧⎨=⎩32x y =⎧⎨=⎩23328y x x y =-⎧⎨+=⎩①②()32238x x +-=2x =2x =2231y =⨯-=21x y =⎧⎨=⎩28452x y x y +=⎧⎨-=⎩①②2⨯-①②714y =2y =2y =228x +=3x =32x y =⎧⎨=⎩()32723x +≥()313122x x x x ⎧->⎪⎨--≥⎪⎩【答案】(1) (2)无解【解析】【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键.(1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:,,,;【小问2详解】解:,由,得,解得,由,得,解得,此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的,线段在网格线上.(1)画出边上的高线;(2)画出边上的中线;(3)在线段上任取一点P ,则的面积是______.【答案】(1)见详解 (2)见详解(3)513x ≥()32723x +≥62123x +≥62x ≥13x ≥()313122x x x x ⎧->⎪⎨--≥⎪⎩()31x x ->33x x ->32x >3122x x --≥243x x -≥-1x ≤ABC MN AB CD BC AE MN ABP【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C 作垂直于的延长线,交点为点,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出与的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:边上的高线如图所示:【小问2详解】解: 边上的中线如图所示:【小问3详解】解:如图所示:∴的面积.CD BA D MN AB AB CD BC AE ABP 12552=⨯⨯=18. 如图,在中,是的角平分线,,,求的度数.【答案】【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.【详解】解:∵.∴,∵是角平分线,∴,在中,.19.若一个多边形的内角和的比它的外角和多,那么这个多边形的边数是多少?【答案】12【解析】【分析】设这个多边形的边数是n ,根据题意,列方程求解即可.【详解】解:设这个多边形的边数是n ,由题意得:,解得:,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键.20. 在长方形中,放入5个形状大小相同的小长方形(空白部分),其中,,求图中阴影部分图形的面积.ABC AN ABC 50B ∠=︒80ANC ∠=︒C ∠70︒5080ANC B BAN B ANC ∠=∠+∠∠=︒∠=︒,,805030BAN ANC B ∠∠∠=-=︒-︒=︒AN BAC ∠223060BAC BAN ∠=∠=⨯︒=︒ABC 180180506070C B BAC ∠=︒-∠-∠=︒-︒-︒=︒1490︒1(2)180360904n -⨯︒=︒+︒1(2)180360904n -⨯︒=︒+︒12n =ABCD 8cm AB =12cm BC =【答案】【解析】【分析】设小长方形的长为,宽为,根据图形中大长方形的长和宽列二元一次方程组,求出和的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为,宽为,根据题意,得:,解得:,每个小长方形的面积为,阴影部分的面积.21. 阅读下列材料:小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组.小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的看成一个整体,把看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令,.原方程组化为,解得,把代入,,得,解得,236cm xcm ycm x y xcm ycm 3128x y x y +=⎧⎨+=⎩62x y =⎧⎨=⎩∴()22612cm ⨯=∴()281251236cm =⨯-⨯=23237432323832x y x yx y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩()23x y +()23x y -23m x y =+23n x y =-743832m nm n ⎧+=⎪⎪⎨⎪+=⎪⎩6024m n =⎧⎨=-⎩6024m n =⎧⎨=-⎩23m x y =+23n x y =-23602324x y x y +=⎧⎨-=-⎩914x y =⎧⎨=⎩原方程组的解为.(1)学以致用:运用上述方法解方程组:(2)拓展提升:已知关于x ,y 的方程组的解为,请直接写出关于m 、n 的方程组的解是______.【答案】(1) (2)【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令,得,解得即即可求解;(2)结合题意,利用整体代入法求解,令,,则可化为,且解为则有,求解即可.【小问1详解】解:令,,原方程组化为,解得,∴914x y =⎧⎨=⎩()()()()213211224x y x y ⎧++-=⎪⎨+--=⎪⎩111222a xb yc a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩()()1112222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩11x y =⎧⎨=⎩143m n =⎧⎪⎨=-⎪⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩1221x y +=⎧⎨-=-⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩,解得:,∴原方程组的解为 ;【小问2详解】解:在中,令,,则可化为,∵方程组解为,∴,,故答案为:.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台【解析】【分析】(1)设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据“购进2台甲种农耕设1221x y +=⎧∴⎨-=-⎩11x y =⎧⎨=⎩11x y =⎧⎨=⎩()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩143m n =⎧⎪∴⎨=-⎪⎩143m n =⎧⎪⎨=-⎪⎩x y备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备台,则购进乙种农耕设备台,利用总价单价数量,结合总价不超过10万元,可得出关于的一元一次不等式,解之可得出的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.【小问1详解】解:设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据题意得:,解得:.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元;【小问2详解】解:设购进甲种农耕设备台,则购进乙种农耕设备台,根据题意得:,解得:,又为正整数,的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在中,点D 是延长线上一点,的平分线与的平分线相交于点P .则有,请补全下面证明过程:证明:平分,平分,,______(______).______(三角形的一个外角等于与它不相邻的两个内角的和),.x y m ()7m -=⨯m m x y 2 4.23 5.1x y x y +=⎧⎨+=⎩1.51.2x y =⎧⎨=⎩m ()7m -()1.5 1.2710m m +-≤153m ≤m m ∴ABC BC ABC ∠BP ACD ∠CP 12P A ∠=∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD ∠=∠ACD A ∠=∠+∠ 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),.【应用】如图②,在四边形中,设,,若,四边形的内角与外角的角平分线相交于点P .为了探究的度数与和的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边与交于点A .如图③,若,,则,因此.【拓展】如图④,在四边形中,设,,若,四边形的内角与外角的角平分线所在的直线相交于点P ,请直接写出______.(用含有和的代数式表示)【答案】探究:;角平分线的定义;;;应用:;;拓展:【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义:探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出的度数,再有探究的结论即可得到答案;拓展:延长交的延长线于A ,则由三角形内角和定理可得;再由题意可得分别平分,则.【详解】解:探究:证明:平分,平分,,(角平分线的定义).(三角形的一个外角等于与它不相邻的两个内角的和),._____PCD PBC ∠=∠+∠ 12P A ∴∠=∠MNCB M α∠=N β∠=180αβ+>︒MBC ∠NCD ∠BP CP ,P ∠αβBM CN 106BMN∠=︒124MNC ∠=︒______A ∠=︒______P ∠=︒MNCB M α∠=N β∠=180αβ+<︒MBC ∠NCD ∠P ∠=αβPCD PBC P 50︒25︒121902αβ︒--A ∠MB NC 180A αβ=︒--∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD PCD ∠=∠ACD A ABC ∠=∠+∠Q 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),,故答案为:;角平分线的定义;;;应用:延长了边与交于点A .如图③,∵,,∴,∴,∴,故答案:;.拓展:如图,延长交的延长线于A ,∵,,∴;∵四边形的内角与外角的角平分线所在的直线相交于点P ,∴分别平分,∴,故答案为:.24. 如图①,点O 为数轴原点,,正方形的边长为6,点P 从点O 出发,沿射线方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为PCD P PBC ∠=∠+∠ 12P A ∴∠=∠PCD PBC P BM CN 106BMN∠=︒124MNC ∠=︒1807418056AMN BMN ANM MNC =︒-=︒=︒-=︒∠∠,∠∠18050A AMN ANM =︒--=︒∠∠∠1252P A ∠=∠=︒50︒25︒MB NC M α∠=N β∠=180180A M N αβ=︒--=︒--∠∠∠MBC ∠NCD ∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠121902αβ︒--3OA =ABCD OA(1)点A 表示的数为______,点D 表示的数为______.(2)的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段,点E 在数轴上点P 右侧,以为边向上作正方形,当与面积和为16时,直接写出t 的值.【答案】(1)3,9(2)t的值为秒或秒 (3)或或或.【解析】【分析】(1)根据线段的长和正方形的边长可以求解.(2)根据点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据点运动确定正方形的位置再去讨论与面积和为16时的值.本题考查了数轴与动点的结合,表示出点的运动距离是本题的解题关键.【小问1详解】解: ,且为数轴原点,在的右侧,表示的数为3,正方形的边长为6,,表示的数为9.故答案是3,9;【小问2详解】解:∵的面积为6,∴,解得,点从点开始运动且速度为每秒2个单位长度,,APC △3PE =PE PEFG DPF ABG 12521318t =23631614918OA P P DPF ABG t P 3OA = O O A ∴ 639OD ∴=+=D ∴APC △116622APC S AP CD AP =⨯=⨯⨯=△2AP =P O 2OP t ∴=∵,∴当点在之间时,则,解得,∴当点在的延长线上时,则,解得,∴的面积为6时,t 的值为秒或秒;【小问3详解】解:①当P 点在A 点左侧时,,由题意得:连接,如图所示:∵,∴,∵速度为每秒2个单位长度,设运动时间为t 秒,∴,∴,∴,,∵与面积和为16,∴,解得,当P 点在A 点右侧时,连接,如图所示:3OA =P AO 3322AP OP t =-=-=12t =P OA 3232AP OP t =-=-=52t =APC △12522OP t =BG AG PF FD ,,,36OA AD ==,9OD =902t ≤≤32PA OA OP t =-=-()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116329622ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27396162DPF ABG S S t t +=-+-= 1318t =BG AG PF FD ,,,同理得,,∵与面积和为16,∴,解得,②点从向运动时,则,连接,如图所示:∴此时,,∵与面积和为16,∴,()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116236922ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27369162DPF ABG S S t t +=-+-= 236t =P D O 9999222t <≤+=BG AG PF FD ,,,9926222PD t AP AD PD t ⎛⎫⎛⎫=⨯-=-=-- ⎪ ⎪⎝⎭⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ 119662456222ABG S AB AP t t ⎡⎤⎛⎫=⨯⨯=⨯⨯--=- ⎪⎢⎥⎝⎭⎣⎦ DPF ABG 273456162DPF ABG S S t t +=-+-=解得,当P 点在A 点左侧时,由题意得:连接,如图所示:∴,此时,,∵与面积和为16,∴,解得,综上:或或或.316t =BG AG PF FD ,,,92292962152PD t t AP PD AD t t ⎛⎫=⨯-=-=-=--=- ⎪⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ ()11621564522ABG S AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 273645162DPF ABG S S t t +=-+-= 14918t =1318t =23631614918。

【典型题】七年级数学上期中第一次模拟试题(及答案) (2)

【典型题】七年级数学上期中第一次模拟试题(及答案) (2)

【典型题】七年级数学上期中第一次模拟试题(及答案) (2)一、选择题1.x =5是下列哪个方程的解( ) A .x +5=0 B .3x ﹣2=12+x C .x ﹣15x =6 D .1700+150x =24502.方程去分母,得( ) A .B .C .D .3.000043的小数点向右移动5位得到4.3, 所以0.000043用科学记数法表示为4.3×10﹣5, 故选A . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…12 25 310 417 526…那么,当输入数据8时,输出的数据是( ) A .861B .863C .865D .8675.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-6.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( ) A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a7.计算3x 2﹣x 2的结果是( ) A .2 B .2x 2 C .2x D .4x 28.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A.84B.81C.78D.769.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为32102222a b c d⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.10.下列数中,最小的负数是()A.-2 B.-1 C.0 D.111.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°12.如图所示几何体的左视图是()A.B.C.D.二、填空题13.23-的相反数是______.14.若代数式5x-5与2x-9的值互为相反数,则x=________.15.几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有_____棵.16.若一个角的余角是其补角的13,则这个角的度数为______.17.整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要_______小时完成.18.用黑白两色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:则第n个图案中有白色纸片________张.19.如图,AB∥ED,AG平分∠BAC,∠ECF=80°,则∠F AG=_____.20.若a与b互为相反数,c与d互为倒数,则a+b+3cd=_____.三、解答题21.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.22.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?23.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?24.初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(片断一)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC = °.(片断二)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD也平分∠ODC的理由.(片断三)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.25.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】依次解各个选项中的方程,找出解为x=5的选项即可.【详解】A.解方程x+5=0得:x=-5,A项错误,B.解方程3x-2=12+x得:x=7,B项错误,C.解方程x-12x=6得:x=152,C项错误,D.解方程1700+150x=2450得:x=5,D项正确,故选D.本题考查了一元一次方程的解,正确掌握解一元一次方程的步骤是解题的关键.2.B解析:B 【解析】 【分析】解一元一次方程中去分母的步骤:先确定几个分母的最简公分母,然后将方程两边同时乘以这个最简公分母约去分母即可. 【详解】解:因为最简公分母是6, 所以将方程两边同时乘以6可得: ,约去分母可得: ,故选B. 【点睛】本题主要考查解一元一次方程中去分母的步骤,解决本题的关键是要熟练掌握去分母的步骤.3.无 4.C解析:C 【解析】 【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解. 【详解】 输出数据的规律为2+1nn , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C . 【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.5.B解析:B 【解析】 【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.解:设共有x人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.6.C解析:C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.7.B解析:B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.8.A【解析】【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【详解】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点睛】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n(n+1).9.B解析:B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【详解】A.第一行数字从左到右依次为1,0,1,0,序号为32101202120210⨯+⨯+⨯+⨯=,表示该生为10班学生.B.第一行数字从左到右依次为0,1, 1,0,序号为3210⨯+⨯+⨯+⨯=,表021212026示该生为6班学生.C.第一行数字从左到右依次为1,0,0,1,序号为3210120202129⨯+⨯+⨯+⨯=,表示该生为9班学生.D.第一行数字从左到右依次为0,1,1,1,序号为3210⨯+⨯+⨯+⨯=,表021212127示该生为7班学生.故选B.【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.10.A解析:A【解析】试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵最小的负数,∴ C、D不对,->-,∵21绝对值大的反而小,∴-2最小.故选A考点:正数和负数.11.C解析:C【解析】【分析】【详解】解:∵OA⊥OC,∴∠AOC=90°.∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点睛】本题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.12.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.二、填空题13.【解析】试题解析:根据只有符号不同的两个数互为相反数可得的相反数是解析:2 3【解析】试题解析:根据只有符号不同的两个数互为相反数,可得23-的相反数是2314.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x=14系数化为1得x=2【点睛】本题考查了解析:2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.15.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应解析:124【解析】【分析】由题意设这批树苗共有x棵,根据题意利用种树人数相等建立方程并解出方程即可.【详解】解:由题意设这批树苗共有x棵,根据题意列出方程:441516x x-+=,解得124x=.故答案为:124.【点睛】本题考查一元一次方程的应用,读懂并理解题意以及根据题意等量关系列方程求解是解题的关键.16.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1解析:45︒【解析】【分析】设这个角的度数为x ,则它的余角为90°-x ,补角为180°-x ,再根据题意列出方程,求出x 的值即可. 【详解】设这个角的度数为x ,则它的余角为90°-x ,补角为180°-x , 依题意得:90°-x=13(180°-x ), 解得x=45°. 故答案为:45°. 【点睛】本题考查的是余角及补角的定义,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,能根据题意列出关于x 的方程是解答此题的关键.17.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x 小时完成解得x=45故答案为:45【点睛】此题考查一元一次方解析:45 【解析】 【分析】由已知先得到甲、乙的工作效率,再根据合作的工作总量为1得到方程求解即可. 【详解】由题意得:甲一小时完成130,乙一小时完成160, 设乙还需x 小时完成,115()1306060x⨯++=, 解得x=45, 故答案为:45. 【点睛】 此题考查一元一次方程的实际应用,正确理解题意是解题的关键.18.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第 解析:3n+1 【解析】 【分析】试题分析:观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可. 【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,…第n个图案中有白色纸片=3n+1张.故答案为3n+1.【点睛】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.19.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG 即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分解析:140°.【解析】【分析】根据平行线的性质求出∠BAC,求出∠BAF和∠BAG,即可得出答案.【详解】∵AB∥ED,∠ECF=80°,∴∠BAC=∠FCE=80°,∴∠BAF=180°﹣80°=100°,∵AG平分∠BAC,∴∠BAG=12∠BAC=40°,∴∠F AG=∠BAF+∠BAG=100°+40°=140°,故答案为140°.【点睛】本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC是解此题的关键,注意:两直线平行,内错角相等.20.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值解析:【解析】【分析】【详解】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为3.【点睛】本题考查代数式求值.三、解答题21.(1)m=-5 (2)37【解析】(1)依题意有|m+4|=1,解之得m=-3(舍去),m=-5,故m=-5,(2)()()232341m m +--= 6m+4-12m+3=-6m+7当m=-5时,原式= 37.22.(1)224,440;(2)3800元【解析】【分析】(1) 根据条件②、③解答;(2) 分类讨论:稿费高于800元和低于4000元进行分析解答.【详解】解:(1) 若王老师获得的稿费为2400元,则应纳税:()2400-80014%=224⨯(元) 若王老师获得的稿费为4000元,则应纳税:400011%=440⨯(元);故答案为:224 ; 440(2)解:由420<440可知,王老师获得稿费应高于800,低于4000元设这笔稿费是x 元14%(x-800)=420x=3800答:这笔稿费是3800元【点睛】考查了一元一次方程的应用.解题关键是要读懂题目的意思,依据题目给出的不同条件进行判断,然后分类讨论,再根据题目给出的条件,找出合适的等关系,列出方程,求解.23.这件商品的进价是150元.【解析】【分析】设这件商品的进价是x 元,根据题意可得等量关系:(1+40%)×进价×打折=进价+利润,根据等量关系代入相应数据可得方程,再解方程即可.【详解】解:设这件商品的进价是x 元,由题意得:(1+40%)x ×80%=x+18,解得:x =150答:这件商品的进价是150元.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.24.(1)180°;(2)见解析;(3)DE ⊥BF.【解析】【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC,根据相似三角形的判定与性质,可得答案.【详解】(1)由四边形内角的性质,得,∠OBC+∠DOB+∠ODC+∠DCB=360°,∵∠DOB=∠DCB=90°,∴∠OBC+∠ODC=180°;(2)∵∠OBD+∠ODC=180°BD平分∠OBC∴∠OBD=∠CBD∴∠OBD+∠ODB=90°∴∠CBD+∠ODC=90°∴∠ODB=∠BDC∴BD平分∠ODC.(3)如图,延长DE交BF于G,,∵∠ODC+∠OBC=∠CBM+∠OBC=180,∴∠CBM=∠ODC,∠CBM=∠EBG=∠ODC=∠EDC.∵∠BEG=∠DEC,∴△DEC∽△BEG,∴∠BGE=∠DCE=90°,∴DE垂直BF.【点睛】本题考查了三角形的内角和定理,利用相似三角形的判定与性质是解题关键;利用补角的性质得出∠NDC+∠CBM=180°是解题关键.25.∠BHF=115° .【解析】【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=12∠EFD=65°;∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.。

【典型题】初一数学上期中试卷及答案 (2)

【典型题】初一数学上期中试卷及答案 (2)

【典型题】初一数学上期中试卷及答案 (2)一、选择题1.下列各数中,比-4小的数是()-B.5-C.0D.2A. 2.52.生物学家发现一种病毒的长度约为0.000043mm,用科学记数法表示这个数的结果为(单位:mm)()A.4.3×10﹣5B.4.3×10﹣4C.4.3×10﹣6D.43×10﹣5 3.000043的小数点向右移动5位得到4.3,所以0.000043用科学记数法表示为4.3×10﹣5,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定5.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2C.2a2-a D.2a2+a6.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°7.如图,从左面看该几何体得到的形状是()A.B.C.D.8.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384000km用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km 9.下列数中,最小的负数是()A.-2 B.-1 C.0 D.110.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°11.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27B.51C.69D.7212.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.二、填空题13.若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为_____.14.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.15.如图,用代数式表示图中阴影部分的面积为___________________.16.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.17.若有理数a 、b 、c 在数轴上的位置如图所示,则化简:| a |+| a -b |-| c +b |=________.18.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 19.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____.20.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题21.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6;故答案为:3t +3;5t +9;2t +6.(4)不变.3BC−2AB =3(2t +6)−2(3t +3)=12.【点睛】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.22.已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.23.当多项式()()22521421x m x n x -+----不含二次项和一次项时. (1)求,m n 的值;(2)求代数式()()22213122m n n m-+--+-的值. 24.解下列方程.(1)2(35)26x x -=+;(2)2(1)132x x +=+. 25.如图,直线BC 与MN 相交于点O ,AO 丄OC ,OE 平分∠BON ,若∠EON=20°,求∠AOM 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】3.无4.C解析:C【解析】分两种情况,作出图形,然后解答即可.【详解】如图1,两个角相等,如图2,两个角互补,所以,一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

江苏省南京市2022~2023学年 七年级下学期数学期中调研模拟试卷

江苏省南京市2022~2023学年 七年级下学期数学期中调研模拟试卷

新课标七年级数学下册期中调研模拟试卷题号一二三总分得分一、选择题(共8小题,每小题3分,共24分.每小题只有一个选项是符合题意的)1.169的平方根是(A.13B.±13C.±13D.132.(2021湖南岳阳临湘期末,2,★☆☆)点P(m+3,m+1)在平面直角坐标系中的x轴上,则点P的坐标为( A.(0,-2) B.(2,0) C.(4,0)D.(0,-4)3.(2020贵州安顺中考,4,★☆☆)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3=( A.150° B.120° C.60°D.30°4.若2x-4与3x-1是同一个数的两个不相等的平方根,则这个数是(A.2B.-2C.4D.15.(2022辽宁丹东中考,6,★☆☆)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC⊥l2,垂足为C,若∠1=52°,则∠2的度数是( A.32° B.38° C.48°D.52°6.(2022河南南阳社旗期末,9,★★☆)如图,将三角形ABC沿着某一方向平移一定的距离得到三角形DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC=∠DFE;④∠DAE=∠AEB中,正确的是(A.①②B.①②④C.①②③D.①②③④7.[跨学科·英语](2022贵州六盘水中考,11,★★☆)两个小伙伴拿着如图所示的密码表玩听声音猜动物的游戏,若听到“咚咚—咚咚,咚—咚,咚咚咚—咚”表示的动物是狗,则听到“咚咚一咚,咚咚咚—咚咚,咚—咚咚咚”时,表示的动物是(A.狐狸B.猫C.蜜蜂D.牛8.我们知道“对于实数m、n、k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①在同一平面内,a、b、c是直线,若a∥b,b∥c,则a∥c;②在同一平面内,a、b、c是直线,若a⊥b,b⊥c,则a⊥c;③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余;④若∠α与∠β的两边分别平行,则∠α=∠β或∠α+∠β=180.其中正确的命题是( A.①④ B.②③ C.①②④D.②③④二、填空题(共8小题,每小题3分,共24分)9.(2022山东烟台蓬莱期末,13,★☆☆)-27的立方根与81 的平方根的和是_______。

北京市铁路第二中学2023~2024学年第二学期初一下期中数学试卷

北京市铁路第二中学2023~2024学年第二学期初一下期中数学试卷

北京市铁路第二中学2023—2024学年度第二学期初一数学期中考试试卷(试卷满分110分考试时长100分钟)第Ⅰ卷(主卷部分,共100分)一、选择题(本题共20分,每小题2分)以下每个小题中,只有一个选项是符合题意的. 1.下列式子正确的是( )A.B.C.D.2.下列选项中,可由如图2023年杭州亚运会会徽“潮涌”平移得到的是( )A. B. C. D.3. 下列实数3.14159260.2,1.212212221…,17,2−π,−2020,中,无理数有().A. 1个B. 2个C. 3个D. 4个4. 已知,则下列不等式一定成立的是().A. B. C. D.5.已知关于x的方程2x+4=m﹣x的解为非负数,则m的取值范围是( )A.m≤B.m≥C.m≤4 D.m≥46.在平面直角坐标系中,将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )A.(m﹣2,n﹣1)B.(m﹣2,n+1)C.(m+2,n﹣1)D.(m+2,n+1)7. 如图,直线与直线相交于点,,且平分,若,则的度数为()39±=283=--416=-()222-=-ba>22a b->-22ba<1212-<-ba22->-baAB C D O OE OF⊥OACOE∠50DOE∠=︒BOF∠A. B. C. D. 8.如图是北京地铁部分线路图.若崇文门站的坐标为(4,﹣1),北海北站的坐标为(﹣2,4),则复兴门站的坐标为( )A .(﹣1,﹣7)B .(﹣7,1)C .(﹣7,﹣1)D .(1,7)9.给出以下四个命题:①如果两个角互补,那么这两个角都是锐角;②如果两条直线被第三条直线所截,同旁内角互补,那么同位角相等;③如果一个角的两边分别与另一个角的两边互相垂直,那么这两个角互补;④平面上3条直线,最多可把平面分成7个部分。

其中正确的命题为()A .①②③④ B .②④ C .④ D .①③10.如图,在一个单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯⋯是斜边在x 轴上,斜边长分别为2,4,6的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1, ﹣1),A 3(0,0),则依图中所示规律,A 2025的横坐标为( )A .1014B .﹣1014C .1012D .﹣1012二.填空题:(本题共18分,每小题2分,第12、18题3分)11、由,用来表示,得.1213. 若点在y轴上,则P 点坐标为. 14.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为20︒25︒30︒35︒06911=--y x y x _____________=x 31_______-(2,31)P m m -+____________________________________.15、已知为实数,且,则16、如图,17.在平面直角坐标系中,已知点A (2,1),直线AB 与x 轴平行,若AB =4,则点B 的坐标为 .18、如图,直线AB ∥CD ,E 为直线AB 上一点,EH ,EM 分别交直线CD 于点F ,M ,EH 平分∠AEM ,MN ⊥AB ,垂足为点N ,∠CFH =α.(1)MN ME (填“>”或“=”或“<”),理由是 ;(2)∠EMN = (用含α的式子表示). 第16题图 第18题图三.解答题(本题共27分,19题8分,20题12分,21、24题每题5分,22、23、25题每题6分,26、27题每题7分)(2)20. 解方程及方程组(1); (2)(3)21.解不等式,并把解集表示在数轴上.y x,x x y 411431-+-+=_________34的平方根为y x +︒=∠︒=∠⊥___________2,1201,,////则于点P GH PS EF CD AB 234182161119⎪⎪⎭⎫ ⎝⎛--+-+)、计算(2--15722=+x ()092313=-+x ⎩⎨⎧=+=-421532y x y x 323125+<-+x x22.如图,BE平分∠ABC,∠E=∠1,∠3+∠ABC=180°,试说明DF∥AB.请完善解答过程,并在括号内填写相应的理论依据.解:∵BE平分∠ABC,∴∠1=∠2(①___________________________),∵∠E=∠1(已知),∴∠E=∠2(等量代换),∴② (③_____________________________),∴∠A+∠ABC=180°(④ __________),∵∠3+∠ABC=180°(已知),∴⑤ (⑥_____________________________)∴DF∥AB(同位角相等,两直线平行).23.如图,点C,D在直线AB上,∠ACE+∠BDF=180°,EF∥AB.(1)求证:CE∥DF;(2)∠DFE的角平分线FG交AB于点G,过点F作FM⊥FG交CE的延长线于点M.若∠CMF=55°,先补全图形,再求∠CDF的度数.24.如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30℃,流速为20mL /s ;开水的温度为100℃,流速为15mL /s .整个接水的过程不计热量损失.(1)甲同学用空杯先接了6s 温水,再接4s 开水,接完后杯中共有水_____ mL ;(2)乙同学先接了一会儿温水,又接了一会儿开水,得到一杯280mL 温度为40℃的水(不计热损失),求乙同学分别接温水和开水的时间.25.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别为A (﹣2,3),B (﹣3,1),C (0,﹣2).(1)将△ABC 向右平移4个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)求△ABC 的面积;(3)定义:在平面直角坐标系中,横坐标与纵坐标都是整数的点称为“整点”,请直接写出△A 1B 1C 1内部所有的整点的坐标.26.已知:AB ∥CD ,E 、G 是AB 上的点,F 、H 是CD 上的点,∠1=∠2.(1)如图1,求证:EF ∥GH ;(2)如图2,过F 点作FM ⊥GH 交GH 延长线于点M ,作∠BEF 、∠DFM 的角平分线交于点N ,EN 交GH 于点P ,求证:∠N =45°;(3)如图3,在(2)的条件下,作∠AGH 的角平分线交CD 于点Q ,若物理常识:开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为:开水的体积×开水降低的温度=温水的体积×温水升高的温度.3∠FEN =4∠HFM,直接写出的值.27.对平面直角坐标系xOy 中,给出如下定义:对于任意两个点M (x 1,y 1),N (x 2,y 2),M 与N 的“直角距离”记为d MN ,d MN =|x 1﹣x 2|+|y 1﹣y 2|.例如:点M (1,5)与N (7,2)的“直角距离”d MN =|1﹣7|+|5﹣2|=9.(1)已知点A (4,﹣1).①点A 与点B (1,2)的“直角距离”d AB = ;②若点A 与点C (﹣2,m )的“直角距离”d AC =7,则m 的值为 .(2)已知D (﹣1,﹣1)和E (1,2).①在点G (﹣1,1),H (,),K (2,﹣1)中,到D ,E 两个点的“直角距离”之和最小的是 ;②若点F (4,﹣3),若平面直角坐标系中的点P 满足d PD +d PE +d PF 最小,直接写出点P 的坐标: ;③若点Q 在平面直角坐标系中,满足 (d QD +d QE )最小且|d QD ﹣d QE |最小,请在右侧平面直角坐标系中直接画出所有符合条件的点Q 所组成的图形.第MPN GQH∠∠Ⅱ卷(附加卷部分,共10分)一.填空题(本题共10分, 第1题2分,第2题3分,第3题5分)1.如图,在四边形ABCD纸片中AD∥BC,AB∥CD,将纸片折叠,点A、D分别落在E、F 处,折痕为MN,EM与BC交于点P.若∠D+∠CNF=140°,则∠BPM的度数为 °.2.某日小王驾驶一辆小型车到某地办事,上午9:00到达,在路边的电子收费停车区域内停车.收费白天(7:00~19:00)首小时内小型车:1.5元/15分钟大型车:3元/15分钟首小时后小型车:2.25元/15分钟大型车:4.5元/15分钟夜间(19:00(不含)~次日7:00(不含))小型车:1元/2小时大型车:2元/2小时不足一个计时单位按一个计时单位收取费用(1)如果他9:50离开,那么应缴费 元;(2)如果他离开时缴费15元,那么停车的时长t(单位:分钟)的取值范围是 .3.在平面直角坐标系中,对于与原点不重合的两个点和,关于,的方程称为点的“照耀方程”.若是方程的解,则称点“照耀”了点例如,点的“照耀方程”是,且是该方程的解,则点“照耀”了点.(1)下列点中被点“照耀”的点为____________.,,(2)若点同时被点和点“照耀”,则可求出 , 。

初一第二学期期中考试数学试题

初一第二学期期中考试数学试题

初一第二学期期中考试数学试题一、精心..选一选(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请选出你认为唯一正确.......的答案,每小题3分,计36分). 1.下列事件中,属于不确定事件的是( )(A) 海南省的年平均气温比黑龙江省的年平均气温高(B) 从装有50个黄球的袋子中随机取出2个球,这两个球都是白色的 (C) 每晚7时,中央电视台1套播出“新闻联播”节目(D) 从装有10个黄球,4个白球的袋子中,随机取出2个球,1个黄球,1个是白球 2.两个角的比为25:ll ,它们的差是70°,则这两个角的关系是 ( )(A) 互为补角(B) 互为余角 (C) 其和为170°(D) 对顶角3.单项式8522p n m -的系数、次数依次为 ( )(A) 85-,5(B )85-,6(C) 81-,5 (D) 81-,6 4.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,则∠2等于 ( )(A)55°(B) 45°(C)35°(D)25°5.计算223)3(a a ÷-的结果是 ( )(A)49a -(B) 46a(C)39a(D)49a6.如上图,给出了过直线外一点作已知直线的平行线的方法,其依据是 ( )(A)两直线平行,同位角相等 (B)同位角相等,两直线平行 (C)内错角相等,两直线平行(D)同旁内角互补,两直线平行7.已知232312xy z y x M -=,23xy N -=,则)2(N M ÷的结果为 ( ) (A)18131+-xyz (B)9132+-xyz (C)18131--xyz(D)9132--xyz8.一个袋子中,装有4个红球,3个白球和2个黑球,每个球除颜色外其余都相同,任意摸出一个球,哪种颜色的球被摸到的可能性最大 ( )(A)白球(B)黑球(C)红球(D)无法确定9.如图,点D ,E ,F 分别在直线AB ,BC ,AC 上,且EF ∥AB ,要使DF ∥BC ,只需再有下列条件中的( )即可.(A)∠l=∠2(B)∠1=∠DFE (C)∠l=∠AFD(D)∠2=∠AFD10.下列运算正确的是( )(A) 10552a a a =+(B) 2342233412)1944(3a a a a a a -+=+-- (C) 0273515=÷(D) 22941)321)(321(y x y x y x +-=--- 11.有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成边长为)(b a +的正方形的方案是 ( )(A)①(B)②(C)③(D)④12.计算:220072007])5[()04.0(-⨯得 ( )(A)200751(B) 200751-(C) l (D)-l二、细心..填一填(本题共8小题,满分24分,只要求填写最后结果,每小题填对得3分). 13.用10个球设计一个摸球游戏,使摸到白球与摸不到白球的可能性一样大;摸到红球的可能性比摸到黄球的可能性大.则符合上述游戏条件的白、红、黄球的个数依次分别为_________________ (只填一组符合条件的数即可).14.两个单项式4375y x m +与1355--n y x 是同类项,则这两个单项式的和为_______________。

七年级上期中试卷--数学 (2)

第一学期期中考试 初 一 数 学(考试时间:100分钟 满分:120分)一、选择题:本大题共10小题;每题4分;共40分. (下列每小题中有四个备选答案;其中只有一个....是符合题意的;请将正确选项前的字母填在表格中相应的位置上)1. 1.-2的绝对值是(A) 2(B) -2 (C)21(D) ±22. 2.下列各式结果为负数的是(A)-(-2)(B) +2–3 (C)︱-2︱(D) (-2)23. 3.2008年9月25日;神舟七号飞船发射升空; 26日航天员成功出舱.舱外航天服每套造价约32 000 000元人民币;则数字32 000 000用科学记数法表示为 (A)3200×104(B) 32×106(C) 3.2×107(D) 0.32×1084. 4.如图表示负数集合与整数集合;则图中重合部分A 处可以填入的数是(A) 3(B) 0 (C) -2.65. 5.单项式 -5x 2y 的系数和次数分别是(A) 5;3 (B) -5;3 (C) 5;2 (D)-5;2 6. 6.若321b ax 与7y b a 6是同类项;则x 、y 的值分别是(A)x =1;y =6 (B)x =3;y =6(C) x =5;y =2(D) x =7;y =27. 7.一斤苹果a 元;一斤梨b 元;买5斤苹果和4斤梨共需(A) 9元(B)(a + b )元(C) (5a +4b )元 (D)9ab 元8. 8.方程5x + 1 = 3x 的解是(A)2(B) -2(C) -21(D)21负数集整数集9. 9.有理数a 、b 、c 在数轴上的位置如图所示;则下列结论错误..的是(A) b <a(B) ac <0 (C) a + b <0 (D)︱b ︱<︱c ︱10. 10.若四个不同的整数m 、n 、p 、q 满足4)7)(7)(7)(7(=----q p n m ;则qp n m +++等于 (A) 28 (B) 24 (C) 10 (D) 0二、填空题:本大题共6小题;每题4分;共24分. 11. 数字7.3482精确到0.01的近似数是_______________. 12. 已知︱m +2︱+ (3 -n )2=0;那么m =________;n=________. 13. 比较大小:109-98-.(用“>”、“=”或“<”连接) 14. -3的立方是___________;平方是81的数是 . 15. 已知a –b =–31;那么代数式1 + 2a –2b =__________________. 16. 按下图规律;在第四个方框内填入的数应为_________________.三、解答题:本大题共7小题;共56分.17. (10分)计算:(1)-–2 + 4.2 ; (2)22128(2)2⎛⎫-⨯-+÷- ⎪⎝⎭.18. (6分)计算:)1574365(60-+-⨯.-1 -2 -2 -3 -3 -4 -4 -5 -4 -3 -5 -4 -6 -5 -7 -6-14-54-132?19. (12分)化简下列各式:(1)7ab -12a -5ab ; (2)(4x 2y -5xy 2)-(7x 2y -4xy 2).20. (6分)先化简;再求值:)2(3322222y xy x y xy x -+---;其中23=x ;21-=y .21.(6分)若b a ,互为相反数;d c ,互为倒数;m 的绝对值是2;求mba ++cd m -的值.21. 22.(9分)如图;数轴上有三个点A 、B 、C ;表示的数分别是-4、-2、3;请回答:(1)若将点B 向左移动3个单位后;三个点所表示的数中;最小的数是 ; (2)若使点B 所表示的数最大;则需将点C 至少向 移动 个单位; (3)若使C 、B 两点的距离与A 、B 两点的距离相等;则需将点C 向左移动 个单位; (4)若移动A 、B 、C 三点中的两个点;使三个点表示的数相同;移动方法有 种;其中移动所走的距离和最少的是_____________个单位;(5)若在原点处有一只小青蛙;一步跳1个单位长. 小青蛙第1次先向左跳1步;第2次再向右跳3步;然后第3次再向左跳5步;第4次再向右跳7步;…;按此规律继续跳下去;那么跳第101次时;应跳 步;落脚点表示的数是 ;跳了第n 次(n 是正整数)时;落脚点表示的数是 . 23.(7分)阅读下列材料:点A 、B 在数轴上分别表示两个数a 、b ;A 、B 两点间的距离记为︱AB ︱;O 表示原点. 当A 、B 两点中有一点在原点时;不妨设点A 为原点; 如图1;则︱AB ︱=︱OB ︱=︱b ︱=︱a -b ︱;当A 、B 两点都不在原点时;① 如图2;若点A 、B 都在原点的右边时;︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱= b –a =︱a -b ︱; ② 如图3;若点A 、B 都在原点的左边时;︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱=–b –(–a ) =︱a -b ︱;③ 如图4;若点A 、B 在原点的两边时;︱AB ︱=︱OB ︱+︱OA ︱=︱b ︱+︱a ︱=–b + a =︱a -b ︱. 回答下列问题:(1)综上所述;数轴上A 、B 两点间的距离为︱AB ︱= .(2)若数轴上的点A 表示的数为2;点B 表示的数为 -3;则A 、B 两点间的距离为 ; (3)若数轴上的点A 表示的数为x ;点B 表示的数为 -1;则︱AB ︱= ;若︱AB ︱= 3;则x 的值为 ;(4)代数式32++-x x 的最小值为 ;取得最小值时x 的取值范围是 .(5)满足341>+++x x 的x 的取值范围是 .图3图4图1图2初 一 数 学 答 案(考试时间:100分钟 满分:120分)一、选择题:本大题共10小题;每题4分;共40分. 题号 1 2 3 4 5 6 7 8 9 10 答案 ABCDBDCCAA二、填空题:本大题共6小题;每题4分;共24分. 题号 11 12 13 14 15 16 答案 7.35-2;3<-27;±9132 -260二、解答题:本大题共7小题;共56分.20. (6分)解:)2(3322222y xy x y xy x -+--- = )633(322222y xy x y xy x -+--- …………………1′ = 222263332y xy x y xy x +---- …………………2′ = -2x 2-5xy +3y 2. ………………………………………4′当23=x ;21-=y 时; 原式= 0.…………………………6′21. (6分)解:因为b a ,互为相反数;所以a + b = 0. ……………1′因为d c ,互为倒数;所以cd =1. ………………………………2′ 因为m 的绝对值是2;所以m =±2. …………………………3′ 原式=m+1-m =±2-1. …………………………………5′ 所以m 的值为1或-3. ………………………………………6′22.(9分;每空1分)(1)-5;(2)左;5;(3)3或7;(4)3;7;(5)201;-101;(-1)nn .23.(7分;每空1分)(1)︱a -b ︱;(2)5;(3)1+x ;2或-4;(4)5;-3≤x ≤2;(5)x <-4或x >-1.。

【压轴卷】初一数学上期中第一次模拟试题含答案 (2)

【压轴卷】初一数学上期中第一次模拟试题含答案 (2)一、选择题1.计算:1252-50×125+252=( )A.100B.150C.10000D.225002.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A.甲B.乙C.相同D.和商品的价格有关3.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 34.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>05.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2C.2a2-a D.2a2+a6.如图,从左面看该几何体得到的形状是()A.B.C.D.7.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.768.下列图形经过折叠不能围成棱柱的是().A.B.C.D.9.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④10.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.4012.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=330二、填空题13.在-2,0,1,−1这四个数中,最大的有理数是________.14.23的相反数是______.15.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a、b代数式表示).17.在下列方程中①x+2y=3,②139xx-=,③2133yy-=+,④212x=,是一元一次方程的有_______(填序号).18.太阳半径约为696000千米,数字696000用科学记数法表示为千米.19.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价为_________元.20.将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第_____行.三、解答题21.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.22.某公园门票价格规定如下表:购票张数1—50张51—100张100张以上单张票价13元11元9元某校七年级(一)(二)班共104人去游园,其中(一)班有40多人,不足50人.经估算,如果两个班以班为单位购票,则一共应付1240元.(1)问两个班各有多少名学生?(2)如果两个班联合起来作为一个团体购票,可省多少钱?(3)如果七年级(一)班单独组织去游园,作为组织者的你应如何购票?23.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?24.将一副三角板中的两块直角板中的两个直角顶点重合在一起,即按如图所示的方式叠放在一起,其中∠A=60°,∠B=30,∠D=45°.(1)若∠BCD=45°,求∠ACE的度数.(2)若∠ACE=150°,求∠BCD的度数.(3)由(1)、(2)猜想∠ACE与∠BCD存在什么样的数量关系并说明理由.25.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。

七年级数学期中模拟卷【测试范围:七上第1_3章】(冀教版2024)

32024-2025学年七年级数学上学期期中模拟卷(冀教版2024)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版2024七年级上册第一章~第三章。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数:0.01,10,-6.67,+1,0,-(-3),--2,-(-42),其中属于非负整数的有()A .2个B .3个C .4个D .5个2.“愚公移ft ”是我国著名的寓言故事,它告诉了我们坚持不懈的道理.如图,假设愚公在运输ft石等杂物时(从点A 运输到点B ),有4条路可行,线路1:折线AD -DB .线路2:折线AC -CB .线路3:‸AB .线路4:线段B .如果仅从距离最短考虑,愚公选取的线路应是()A .线路1B .线路2C .线路3D .线路43.下列式子中:①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a ≠1;⑧x ≤3.属于代数式的有()A .4个B .5个C .6个D .7个4.如图,数轴上有A 、B 、C 、D 四个点,其中绝对值最小的数对应的点是()A.点A B.点B C.点C D.点D5.已知线段AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=56︒,∠COD=100︒,则∠BOC 与∠AOD的平分线的夹角为()A.125︒B.130︒C.135︒D.140︒6.在我国古书《易经》中有“上古结绳而治”的记载,它指“结绳记事”或“结绳记数”.如图,一远古牧人在从右到左依次排列的绳子上打结,满6进1,用来记录他所放牧的羊的只数,由图可知,他所放牧的羊的只数是()A.1234B.310C.60D.107.数轴上表示整数的点叫整点,某数轴单位长度为1cm,若在数轴上随意画一条长为100cm线段AB,则线段盖住的整点的个数为()A.100B.99C.99或100D.100或1018.已知a=1,b=2,且a+b=a+b,则a-b的值为()A.-3B.-1C.-3或-1D.-1或39.如图,∠AOB=90︒,∠AOC为∠AOB外的一个锐角,且∠AOC=40︒,射线OM平分∠BOC,ON平分∠AOC,则∠MON的度数为()A.25︒B.45︒C.50︒D.60︒10.按如图所示的运算程序进行计算,则能使输出的y值为1的是()A .m =1,n =0C .m =-1,n =-1B .m =1,n =-1D .m =-1,n =011.如果三个连续整数n 、n +1、n +2的和等于它们的积,那么我们把这三个整数称为“和谐数组”,下列n的值不满足“和谐数组”条件的是()A.-1 B.-3C .1D .312.如图,直线AB 与CD 相交于点O ,∠AOC =60︒,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分∠AOC ,现将三角尺EOF 以每秒3︒的速度绕点O 顺时针旋转,同时直线CD 也以每秒9︒的速度绕点O 顺时针旋转,设运动时间为t 秒(0≤t ≤40),当CD 平分∠EOF 时,t 的值为()A .2.5B .30C .2.5或30D .2.5或32.513.如图,正方体的12条棱上放置相同数目的小球,设每条棱上的小球数为m (m ≥2),甲、乙、丙、丁四人用不同的方式表示出正方体上小球的总数.下列判断正确的是()甲:12(m -1);乙:4m +8(m -2);丙:12(m -2)+8;丁:12m -8⨯2A.甲对,乙错B .乙对,丁对C .甲错,丙错D .乙错,丙对14.下列各图均是由大小相等的正方形按一定规律进行排列的,若按此规律排列,则图n 中正方形的个数是()A.n+3B.2n+2C.3n+1D.n2+n15.有公共端点P的两条线段MP,NP组成一条折线M-P-N,若该折线M-P-N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”.已知点D是折线A-C-B的“折中点”,点E为线段AC的中点,CD=3,CE=4,则线段BC的长是()A.2B.4C.2或14D.4或1416.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字-2所对应的点重合,若将圆沿着数轴向右滚动(无滑动),那么数轴上的数2023所对应的点将与圆周上的字母()重合.A.字母A B.字母B C.字母C D.字母D第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图所示,由济南始发终点至青岛的某一次列车,运行途中停靠的车站依次是:济南—淄博—潍坊—青岛,那么要为这次列车制作的单程火车票种.18.石家庄市出租车的收费标准是:起步价(3千米以内,包括3千米)8元,路程超过3千米的部分,每千米收费 1.6元.若小华乘坐了2千米,他应付车费元;若他乘坐了a千米(a>3),应付车费元.19.如图,线段AB的长为a,点C为线段AB的中点,D为线段AB上一点,且AD=1BD.图中共有3条线段;若P为直线AB上一点,且PA+PB=11a,则PD的值为.10AB三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)计算:(1)(-7)-(+5)+(-4)-(-10);(2)3⨯(-5)-12⨯⎛-3⎫-0.75⨯3;4 4⎪⎝⎭(3)⎛13+21-0.75⎫⨯(-24); 83⎪⎝⎭(4)-14-1⨯⎡3-(-3)2⎤.3⎣⎦21.(本小题满分9分)已知x =6,y =1,且xy >0,x +y <0.4(1)求x 、y 的值;(2)求x 2-4y 的值.如图是由边长相同的灰、白方块拼成的图形.(1)请观察图形,并填写下列表格;图形标号第1个第2个第3个…第n个灰色方块的个数51015…白色方块的个数4…(2)第100个图形中的灰色方块和第102个图形中的白色方块共有多少个?(3)第(n+1)个图形中的灰色方块比第(n-1)(n>1)个图形中的白色方块多多少个?(用含n的式子表示)阅读:已知在纸面上有一个数轴(如图),折叠纸面,若数轴上表示数1的点与表示数-1的点重合,则数轴上表示数-2的点与表示数2的点重合.折叠纸面,使数轴上表示数-4的点与表示数0的点重合,解答下列问题:(1)数轴上表示数3的点与表示数的点重合;(2)若点A到原点的距离是5个单位长度,并且A,B两点经折叠后重合,求点B表示的数;(3)若数轴上M,N两点之间的距离为2024,并且M,N两点经折叠后重合,如果点M表示的数比点N表示的数大,直接写出点M,N表示的数.举世瞩目的青藏铁路现已通车,实现了几代中国人梦寐以求的愿望,它是世界上海拔最高,线路最长的高原铁路.青藏铁路线上,在西宁、格尔木到拉萨(如图)之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度是120千米/小时.(1)列车在冻土地段行驶3小时的路程为千米,行驶a小时的路程为千米(用含a的代数式表示);(2)在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要a小时,西宁到拉萨路这段铁路的长为多少千米?(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要b 小时,在(2)的条件下,若取a=5,b=4,求西宁到格尔木这段铁路长为多少千米?已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120︒,∠DOE=80︒.(1)如图1,当OD平分∠AOC时,求∠EOB的度数;(2)点F在射线OB上,若射线OF绕点O逆时针旋转n︒(0<n<180且n≠60),∠FOA=3∠AOD.当∠DOE在∠AOC内部(图2)和∠DOE的两边在射线OC的两侧(图3)时,∠FOE和∠EOC的数量关系是否改变,若改变,说明理由,若不变,求出其关系.【感悟体验】如图1,A、B、C三点在同一直线上,点D在线段AC的延长线上,且AB=CD,请仅用一把圆规在图中确定D点的位置.【认识概念】在同一直线上依次有A、B、C、D四点,且AB=CD,那么称AB与CD互为“对称线段”,其中AB为CD的“对称线段”,CD亦为AB的“对称线段”.如图2,下列情形中AB与CD互为“对称线段”的是(直接填序号).①AB=2,CD=3;②AB=1,BC=2,BD=4;③AC=2,BD=2.【运用概念】如图3,AB与CD互为“对称线段”,点M为AC的中点,点N为BD的中点,且AB=2.(1)若AD=12,求AM的长;(2)若AC=12,求MN的长;【拓展提升】如图4,在同一直线上依次有A、B、C、D四点,2AB=CD且AB=a(a为常数),点M 为AC的中点,点N在BD上且ND=mBD.是否存在m的值使得MN的长为定值?若存在,请求出m;若不存在,请说明理由.的值以及这个定值(用含a的代数式表示)13【答案】C【解析】解:10,0,-(-3)=3,-(-42)=16是非负整数;0.01,-6.67,+1是分数;3−−2=−2是负整数.故选C .2024-2025学年七年级数学上学期期中模拟卷(冀教版2024)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2022—2023学年人教版数学七年级下册期中考试模拟试卷

七年级下册数学期中模拟卷姓名___班级___考号___得分___一.选择题(共10小题,每小题3分,共30分)1.下列各数中,是无理数的是()A.2.5 B.C.D.02.下列各式正确的是()A.=±4 B.=﹣3 C.±=±9 D.=23.已知实数a、b在数轴上的对应点如图所示,则下列命题中正确的是()A.丨a+b丨=丨a丨+丨b丨B.丨a﹣b丨=丨a丨﹣丨b丨C.丨a+b丨=丨b丨﹣丨a丨D.丨a﹣b丨=丨b丨﹣丨a丨4.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短5.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为()A.15°B.10°C.20°D.25°6.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A. B.C. D.7.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°8.如果点M(a+b,ab)在第二象限,那么点N(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是8,则点P的坐标为()A.(8,﹣3)B.(3,﹣8)C.(8,3)D.(﹣8,3)10.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为()A.(1008,0)B.(1006,0)C.(2,2012)D.(2,1006)二.填空题(共6小题,每小题3分,共18分)11.的平方根为.12.已知,则x+y=.13.命题“若ac2>bc2,则a>b”的逆命题是命题.(填“真”或“假”)14.如图,将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,且∠AFM=∠EFM,则∠DEF=°.15.点P(2﹣m,3m﹣1)在直角坐标系的y轴上,则点P的坐标为.16.如图,AC∥BD,E、F分别是直线AB、CD之间的点,EP、FP分别平分∠AEF、∠EFB,若∠A=m°,∠B=n°,则∠P=°.(用含m,n的代数式表示)三.解答题(共72分)17.计算:(1)2+++|﹣2| (2)+﹣.18.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图(1)分别写出点B、B'的坐标:B ,B' ;(2)若点P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为;(3)求三角形ABC的面积.20.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.又∵∠1+∠2=90°,且∠2=∠3,∴=.理由是:.∴BE∥DF.理由是:.21.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.22.观察下列各式及其验证过程:验证:=;验证:===;验证:=;验证:===.(1)按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.23.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期中考试模拟试卷2
满分:100分 考试时间:90分钟 得分__________

一.选择题(30 分)
1.-a 表示的数一定是 ( )
A.负数 B.正数 C.正数或负数 D.a的相反数

2.在23124.0132523, , , , , 中,负数共有( )
A.2个 B.3个 C.4个 D.5个
3.某年我市一月份的平均气温为-3℃,三月份的平均气温为9℃,则三月份的平均气温比
一月份的平均气温高 ( )
A.6℃ B.-6℃ C.12℃ D.-12℃
4.若a+b<0,ab<0,则 ( )
A.a>0,b>0 B.a<0,b<0
C.a、b两数一正一负,且正数的绝对值大于负数的绝对值
D.a、b两数一正一负,且负数的绝对值大于正数的绝对值
5.在数轴上若点A到原点的距离为2个单位长度,则到点A的距离为3个单位长度且位于
点A右侧的点表示什么数? ( )
A.-1或5 B.-1或-5 C.1或-5 D.1或5
6.下列近似数中精确到千位的是 ( )

A.650 B.56.5010 C.46.5010 D.46.5110
7.下列语句中,正确的是 ( )
A.-1的倒数等于它本身 B.任何数的倒数都小于1
C.一个数的相反数必是负数 D.0的倒数是0
8.下列式子符合代数式的书写格式的是 ( )
A.a·40a B.)(41ba C.m3 D.ab312
9.321aa的值是 ( )
A.4 B.0 C.6 D.与a的值有关
10.已知m,n是自然数, 234mnmnxy多项式的次数应当是 ( )
A.m B.n C.m+n D.m、n中较大的数

二.填空题(30分)
11.将原价为a元的药品降价40%出售,则降价后此药品售价为________元。
12.绝对值等于5的数是________。
13.若x的相反数是3,y =5,则x+y的值为________
14.如图是一个运算程序,当输入-2时,输出的数值为________

15.如果x+y=5,那么10-2x-2y=________
16.已知三个数的平均值是a,其中一个数为b,则其余两个数的平均值是________ (用含
a、b的代数式表示)
17.①22xyyx与;②32233mnnm与;③2244baab与;④32236acbcba与分别是同类
项的是________________
18.近似数5.05×104有________个有效数字,精确到________位
19.若2(1)460xy,则7x+8y+4x-6y的值为________
20.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;
如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x立方米(x>60),则
该户应交煤气费________元。

三.解答题(21题每题3分,22-27题每题7分)
21.计算:

(1)1850.254 (2)311252525424
(3)(21—95+127)×(—36) (4)295(3)(2)4;
(5)x2x36()32aa (6)2a-[-4ab+(ab-2a)]-2ab
22.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来。
-2.5, 0, 2, 12, -1

23.小吃店一周中每天的盈亏情况如下(盈余为正):128.3元,-25.6元,-15元,27元,
-7元,36.5元,100元,一周总的盈亏情况如何?

24.化简求值:222234,1,1xyxyxyxyxyxy其中
25.一个代数式减去433xx2x1得425x3x7x2,求这个代数式。
26.如图,长方形ABCD的长是a,宽是b,分别以A,B为圆心作扇形,用代数式表示阴
影部分的周长L和面积S。

27.设a表示一个两位数,b表示一个三位数,把a放在b的左边,组成一个五位数x,把
b放在a的左边,组成一个五位数y,试问9能否整除x-y,并说明理由。

a b A B
C
D

相关文档
最新文档