城市 轨道交通跨座式独轨车轨道交通电力牵引系统

合集下载

城市轨道交通供电系统

城市轨道交通供电系统

城市轨道交通供电系统城市轨道交通供电系统由变电所、接触网(接触轨)和回流网三部分构成。

变电所通过接触网(接触轨),由车辆受电器向电动客车馈送电能,回流网是牵引电流返回变电所的导体。

供电系统的供电制式主要指电流制式、电压等级和馈电方式。

目前,城市轨道交通的直流牵引电压等级有DC 600 V DC 750 V和DC 1 500 V等多种。

我国国家标准《城市轨道交通直流牵引供电系统》(GB/T 10411—2005)规定了DC750 V和DC 1 500 V两种电压制式。

供电系统的馈电方式分为架空接触网和接触轨两种。

其中,电压制式和馈电方式是密不可分的。

一般架空接触网馈电方式电压等级采用DC1500V接触轨馈电方式电压等级主要采用DC750V但有向DC1500发展的趋势。

城市轨道交通作为城市电网的用户,直接从城市电网取得电能;城市电网也把城市轨道交通看成一个重要用户。

城市轨道交通供电系统由电源系统(城市电网、主变电所)、牵引供电系统、动力照明供电系统和电力监控系统组成。

其中,牵引供电系统包括牵引变电所和牵引网两大部分,动力照明供电系统包括降压变电所与动力照明配电系统。

一、电源系统我国电力生产由国家经营管理,因此无论是干线电气化铁路还是工矿电力牵引用电和城市轨道交通电力牵引用电均由国家统一电网供给OK5》-]…KEHG)城i:h电网高压供电系统i何流线<根据生产电能的发电厂所利用的能源不同,其可以分为火力发电厂(用煤、油为燃料)、水力发电厂、原子能发电厂及风力、地热、太阳能和潮汐发电厂等。

发电厂可能与其用户相距甚远,必须将输电电压升高,以减少线路的电压损失和能量损耗,因此在发电厂的输出端接入升压变压器以提高输电电压。

目前我国用得最普遍的输电电压等级为110~220 kV。

通常高压输电线到了各城市或工业区以后通过区域变电所(站)将电能转配或降低一个等级向附近各用电中心送电。

城市轨道交通牵引用电既可从区域变电所高压线路得电,也可以从下一级电压的城市地方电网得电,这取决于系统和城市地方电网具体情况及牵引用电容量大小。

城市轨道交通车辆基础电子课件第六章电力牵引系统

城市轨道交通车辆基础电子课件第六章电力牵引系统
13
城市轨道交通车辆电力牵引系统框图 14
城市轨道交通车辆电力牵引系统主电路
ห้องสมุดไป่ตู้15
五、 电力牵引系统的发展
随着电力电子器件和计算机技术的发展,城市轨道交通车辆的电力牵引传动 技术由最初的变阻调速发展到斩波器调速,并不断进一步发展,在采用三相异步 牵引电动机的动车中应用了变压变频技术。目前,逆变器技术已在城市轨道交通 动车组上得到了非常广泛的应用。
40
转子结构如图所示, 由电气绝缘钢片叠装而成的铁芯组件被冷缩装配到由高强 度热处理钢制成的转子轴上,同时配以分别布置于其左右的转子止推环。转子配有 通风用的轴向风道。铜制转子线排位于铁芯组件的槽中。
41
(2)牵引电动机的工作原理 受流装置从接触网上获得直流电流,经过列车牵引逆变器转换成三相交流电,输 送给交流牵引电动机(三相异步电动机)定子上空间位置相差120°的三相绕组,使 定子三相绕组中有对称的三相电流流过,从而在气隙中产生旋转磁场。转子绕组在这 个旋转磁场中感应出电动势,使转子绕组中产生电流。转子电流与旋转磁场相互作用, 产生电磁力,形成使转子旋转的电磁转矩,转轴通过联轴器和齿轮箱把转矩传送给车 辆转向架的车轴,带动车轮滚动,驱动列车运行。
因此,城市轨道交通车辆的电力牵引系统大致经历了20世纪80年代前的凸轮 变阻调压直流传动系统、20世纪80年代的斩波调压直流传动系统和20世纪90年代 的变压变频交流传动系统三个阶段。
16
在城市轨道交通车辆电力牵引传动系统中,牵引变流器(包括斩波器、逆变器 等)广泛采用了门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT)模块或智能 功率(IPM)模块作为主开关器件,尤其是IGBT模块或IPM模块对于较高频率工作具 有良好的适应能力。微电子技术在城市轨道交通车辆的牵引、制动、辅助控制、信 息显示与储存、防滑与防空转控制及行车安全等方面也得到了广泛应用。城市轨道 交通车辆除了采用摩擦制动外,还采用了电气制动技术,如再生制动、电阻制动及 磁轨制动等,提高了车辆运行过程中的节能效果与安全性。

城轨车辆工作原理

城轨车辆工作原理

城轨车辆工作原理
城轨车辆是指在城市轨道交通系统中运行的车辆。

城轨车辆的工作原理主要涉及三个方面:电力系统、牵引系统和控制系统。

1. 电力系统:城轨车辆采用电力供能,通常是通过接触轨以及架设在轨道上的供电设备,如电网供电或第三轨供电系统,提供电能给车辆。

电能被转化为机械能,用于驱动车辆的运行。

城轨车辆通常采用直流电供能,但部分地区也有采用交流电供能的城轨车辆。

2. 牵引系统:城轨车辆的牵引系统负责将电能转化为机械能,实现车辆的运动。

通常采用电动机作为牵引系统的核心部件。

电动机由电能驱动,通过转动车轮实现车辆的推进。

不同型号的城轨车辆可能采用不同类型的电动机,如直流电动机或三相异步电动机。

3. 控制系统:城轨车辆的控制系统用于控制车辆的启动、停止、速度调节等功能。

控制系统通常由多个子系统组成,包括主控制器、牵引变流器、制动系统和辅助电源等。

主控制器负责接收车辆驾驶员的指令,控制车辆的运行状态。

牵引变流器将电力系统提供的直流电转换为适合电动机驱动的交流电。

制动系统用于控制车辆的刹车,通常包括电子制动和机械制动两种方式。

辅助电源提供车辆其他系统的电能需求,如照明和通信系统等。

综上所述,城轨车辆的工作原理是通过电力系统提供电能,牵
引系统将电能转化为机械能,控制系统实现对车辆的控制和管理,从而实现车辆的运行。

城市轨道交通列车牵引传动系统

城市轨道交通列车牵引传动系统

城市轨道交通列车牵引传动系统城市轨道交通列车牵引传动系统城市轨道交通列车的牵引⼒是由城市轨道交通列车的牵引系统产⽣的,因此要掌握城市轨道交通列车牵引⼒的知识,就必须先掌握列车牵引传动系统的基础知识。

⽬前城市轨道交通列车的牵引传动系统基本都是电⼒牵引传动系统,其基本的⼯作过程是:电能经过列车牵引供电系统传输和相应的转换,提供给列车的牵引电动机,电能转换成机械能,从⽽驱动列车运⾏。

城市轨道交通列车牵引供电的电源是城市电⽹,城市电⽹提供的电能经过牵引变电所的降压、整流变成DC 1 500 V(或DC 750 V),再通过馈电线传递给接触⽹,然后通过受流装置,由钢轨和回流线流回牵引变电所形成回流。

城市轨道交通列车牵引传动系统的基本特点是牵引功率⼤、传动效率⾼、能源利⽤率⾼、绿⾊环保、产⽣的污染很少、容易实现⾃动化控制。

城市轨道交通列车的牵引电动机为列车提供动⼒,牵引电动机按⼯作原理可分为直流电动机、交流异步电动机、交流同步牵引电动机三种。

由于交流电动机与直流电动机相⽐不需要换向器,结构简单,可靠性⾼,维护量少,重量⼩,并能获得较⼤的单位重量功率,具有良好的牵引性能,同时三相交流牵引电动机的调频、调压特性如果设计合理,可以实现⼤范围的平滑调速,还具有防空转的性能,使黏着利⽤率提⾼;三相交流牵引电动机对瞬时过电压和过电流很不敏感,在启动时能在更长的时间内产⽣较⼤的起动⼒矩。

因此,交流异步电动机有取代直流电动机的趋势。

⼀、牵引传动系统的⼯况城市轨道交通列车的牵引传动系统有两个⼯况:牵引⼯况和制动⼯况。

1、在牵引⼯况下,列车牵引传动系统为列车提供牵引动⼒,将供电接触⽹上的电能转换为列车在轨道上运⾏的机械能。

2、制动⼯况可以分为再⽣制动⼯况和电阻制动⼯况。

再⽣制动就是将列车的机械能转换成电能反馈到接触⽹再供给其他列车或车站设备使⽤,这种⽅式能最⼤限度地降低电能的损耗。

列车制动过程中牵引传动系统反馈的电能超过了接触⽹上的限值(达到DC 1 800 V)时,列车电制动产⽣的电能将会消耗在制动电阻上,通过制动电阻发热⽽消耗到⼤⽓中去,这种通过制动电阻消耗电能的电制动⼯况称为电阻制动⼯况。

单轨跨座式交通工程供电系统的特点

单轨跨座式交通工程供电系统的特点

单轨跨座式交通工程供电系统的特点内容摘要:摘要:介绍了国内第一条单轨跨座式交通工程——重庆轻轨较新线的供电系统构成,论述了牵引网、再生制动能量吸收装置及综合接地系统等各子系统与双轨交通工程不同的技术特点、设计方案,并对中压环网电缆的特殊施工方法进行了比较详尽的介绍。

关键词:单轨跨座式;供电系统;技术特点0前言重庆轻轨较新线(较场口至新山村线)是我国第一条单轨跨座式交通工程,车辆的供电制式为DC1500V。

线路全长17.4km,共设17座车站。

一期工程线路正线长度为14.35km,共设车站14座,车辆段及维修基地1处。

较新线的供电系统同一般的城市轨道交通一样,主要由主变电所、中压环网、牵引供电、变配电、电力监控、低压照明、再生制动能量吸收装置及综合接地系统等子系统构成,但其各子系统又有一些与双轨城市轨道交通不同的特点。

1各子系统的设计方案及技术特点1.1主变电所主变电所是为轻轨交通系统建设的专用变电站,其主要作用是从城市电网受电,将城市电网的高压电变成轻轨供电系统所需要的电压,进而向轻轨内部供电系统供电。

较新线采用集中供电方式。

全线共设置2座主变电所,采用线路变压器组的接线型式。

由于每路电源进线及每台主变压器的容量均考虑了独立承担本变电站供电范围内的一、二级负荷的供电,且对相邻主变电所在紧急情况下尚有支援能力,可满足(N-2)备用方式的要求,因此线路变压器组接线型式完全满足轻轨交通系统的正常运行和可靠供电,且简化了主变电所的主接线并节约了投资。

1.2中压环网1.2.1中压环网的构成中压网络是主变电所与轻轨变电所间的联系纽带,采用电缆连接,将城市电网的电能通过主变电所传送至轻轨变电所。

较新线采用2级电压制供电。

其中压网络采用10kV分区环网的方式对各变电所进行供电。

每个供电分区最多3个变电所,在合适的车站设置2个主变电所间的环网分段开关。

正常时环网开关断开,而故障时环网开关闭合,形成相互支援。

分区环网方式供电可靠、损耗较低、投资较少(电缆较少)、接线统一简单、运营管理方便、维护工作量少、主变电所馈线开关柜数量少、便于对续建工程电源预留。

跨座式单轨车辆概述

跨座式单轨车辆概述

第2章 跨座式单轨车辆概述2.1 跨座式单轨车辆的特点、组成和主要技术参数2.1.1 跨座式单轨车辆的特点作为一种特殊的城市轨道交通模式,与普通城轨交通相比,跨座式单轨交通有着一定的特殊性,这种特殊性主要体现在线路和车辆系统上。

跨座式单轨交通线路上的特殊性主要体现在轨道梁和道岔上。

跨座式单轨交通的轨道梁不仅是承重的桥梁结构,约束列车行驶的轨道,同时也是牵引电网,信号系统等设备的载体,是集多种功能为一体、高精度的建筑结构;跨座式单轨道岔是集导向和承重与一体的结构,由可移动的钢制轨道梁、机电控制系统、梁上供电、信号设施等集成。

跨座式单轨车辆一般为4辆、6辆或8辆编组,两头设司机室。

车体采用铝合金大断面挤压型材及板材制造,可以有效减轻车辆自重。

采用防火性能好的材料制造座椅、地板等。

为降低车内噪声,并保持车内温度,在车体四周增加隔热隔声材料,在转向架周围车体下部的裙板上设置隔音壁。

列车采用直流供电,牵引系统与普通城轨列车并无较大差异。

最能体现单轨车结构的特别之处的设计为车体的转向架。

跨座式单轨车辆转向架(见图2-1-1)为无摇枕特殊结构的跨座式2轴转向架,车轴为单悬臂固定在转向架上,每根轴上装有2条走行轮,该走行轮为充入氮气的橡胶轮胎。

转向架两侧上方各有2条导向轮,下方各有1条稳定轮,均为充入空气的橡胶轮胎。

图2-1-1 跨座式单轨车辆转向架每辆车有2台转向架,动力转向架的每根轴由2台交流牵引电机驱动,转向架采用中心牵引装置,采用两级减速直角齿轮传动方式,电机到齿轮箱的联轴节为弹性联轴节,齿轮采用飞溅润滑方式,基础制动采用盘形制动。

转向架构架由侧梁、横梁、端梁及导向、稳定车轮的支撑架构成,构架采用钢板焊接结构,有足够的强度和刚度。

转向架与车体间的悬挂装置为空气弹簧,并装有横向减振器,具有良好的动力性能及乘坐舒适度。

由于跨座式单轨车辆的转向架装有3种轮胎:走行轮、导向轮及稳定轮,因此它的走行机理与传统的钢轮-钢轨系统完全不同。

跨座式单轨交通简介

跨座式单轨交通简介

跨座式单轨交通简介跨座式单轨交通简介组员:郭太宇周延张杰李彦君目录第一章跨座式单轨铁路 (1)第二章跨座式单轨交通的特色 (3)第三章重庆跨座式单轨交通系统实例解说.. 4工程简介 (4)主要技术标准 (5)转向架 (7)轨道梁桥系统 (8)道岔 (12)供电接触网 (12)重生制动汲取装置 (13)控制中心及车辆段 (14)信号 (15)参照文件 (16)第一章跨座式单轨铁路跨座式单轨铁路( Straddle-beam Monorail ),就是经过单根轨道梁来支承、稳固和导向,车体骑跨在轨道梁上运转的铁路。

它能有效利用城市道路空间,爬坡和曲线经过能力强,噪声和景观影响小,是一种独到的中等运量城市轨道交通系统。

单轨铁路往常为高架,高架单轨拥有成本低、工期短的长处。

而有关于高架的钢轨地铁而言,高架单轨占地少、污染小、能有效利用道路中央隔绝带,适于建筑物密度大的狭小街区的长处。

别的,单轨列车和轨道简单检查和维涵保养。

因此单轨不失为大城市客流中等的交通线路和中等城市主要交通线路的较好选择。

特别是在地形条件复杂,利用其余交通工具比较困难的状况下,能表现其优胜性。

单轨铁路依照走行模式和结构,主要分红两类——悬挂式单轨和跨坐式单轨。

悬挂式单轨铁路(也称空中轨道列车)的列车悬挂在轨道之下。

另一种较为常有的是跨座式单轨铁路,列车跨座在路轨之上,两旁盖过路轨。

1跨座式单轨铁路的发源,最早能够追忆到第二次科技革命,但真实达到适用仍是在二战以后,有关机电技术成熟的前提下。

1953 年,瑞典工业巨头 Axel Lennart Wenner-Gren 在德国科隆创办了一家名叫 ALWEG-Forschung,GmbH的子企业( ALWEG正是 Axel Lennart WEnner-Gren 姓名的缩写),从事跨座式单轨的设计, 1957 年建成科隆 - 菲林根试验线。

开通于 1959 年的加州迪斯尼单轨线( Disneyland Monorail System)、开通于1962 年的西雅图中央线(Seattle Center Monorail ),都是 ALWEG的早期作品,这两条线路到现在仍在营运。

城市轨道交通供电与牵引系统

城市轨道交通供电与牵引系统
机座:铸钢或铸铁
鼠笼转子
转子 铁心:由外周有槽的 硅钢片叠成。
(1) 鼠笼式转子
铁芯槽内放铜条,端 部用短路环形成一体; 或铸铝形成转子绕组。
(2) 绕线式转子
同定子绕组一样,也 分为三相,并且接成 星形。
城市轨道交通系统概论
3. 三相异步电机工作原理
旋转磁场的产生
I m i iA iB iC
定子三相绕组通入三
7 滤波电容器
8 凸轮调速变阻器
9 牵引电动机
10 信号发生器
11 控制电子装置
12 司机控制器
图 5.18 直 流 传 动 系 统 主 回 路 结 构 框 图
城市轨道交通系统概论
辅助电路(有两类) (1)交流辅助电路 功能:给主电路的通风、冷却辅助电机等; 特点:三相380V交流供电,功率较小; 包括:单/三相变换器、通风电机、压缩电机等
城市轨道交通系统概论
三相电流合成磁场
i
Im
iA
iB
iC
的分布情况
o
t
n0
A
YN
Z
C
SB
X
t 0
合成磁场方向向下
600
60
A Y
NZ
CS
X
B
t 60
合成磁场旋转60°
A Y
Z
S
N
C
B X
t 90
合成磁场旋转90°
城市轨道交通系统概论
转动原理 定子三相绕组通入三相交流电
A n0
Y v N FZ
引特性
速度与牵引力
牵引加速区 自然
恒力矩 恒功 特性
惰行区 速度
制动减速区
自然 特性 恒功 恒力矩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

跨座式单轨车轨道交通电力牵引系统报告名称:跨座式单轨车轨道交通电力牵引系统学生团队:101110129 黄彬 101110130 高伟 101110131 王耀 101110132 董其炜 101110133 陈豪 101110134 孙启原 101110135 张厉智 101110136 俞家凯指导老师:师蔚所在学院:城市轨道交通学院完成时间: 2013年10月9日1.概述城市单轨交通系统属于车轮运行模式,但与传统的钢轮钢轨、双轨线路有很大的区别,它占有的空间比传统的双轨线路要小。

就技术上的定义而言,跨座式独轨交通系统是指以单一轨道来支承车厢并提供导向作用而运行的轨道交通系统。

1952年,瑞典人格伦以其构想发展出新型的跨座式轨道系统,并以1:2.5的比例在德国科隆市附近的Fuhligen 进行模型试验,轨道梁系由钢筋混凝土制成。

据记录所载,在1.9KM 长的试验轨道上,车厢可达到130KM/H 的运行速度。

1957年,格伦再次在原地建造了一条1.8KM 长的实体轨道,测试结果与模型试验相近。

这种形式的独轨系统就以格伦的全名缩写命名为ALWEG型独轨系统。

ALWEG 型独轨系统很快成为世界独轨的风尚,它在发展成型后到20世纪70年代的10多年间,虽然进展较快,但似乎仅限于游乐园或展览会场区内的游客运输,尚未进入城市轨道交通系统的领域。

到了80我国第一条单轨交通于2000年在重庆开始修建。

东起重庆市区商业中心校场口,西至大渡口区钢铁基地新山村,沿途设置17座车站。

根据重庆市山城丘陵的地理特点,选择噪声低、爬坡能力强、转弯半径小的跨座式单轨交通系统,在我国尚属首次。

由此我们可以看到跨座式单轨交通有其自身的优缺点。

它的优势:(1)占地面积小、空间利用率高。

跨座式单轨交通轨道梁一般利用城市道路中央隔离带设置结构墩柱,圆墩柱直径约为1M-1.5M ,区间双线轨道结构宽度一般为5M 。

而普通城轨交通区间高架结构宽度为8—9M ,墩柱直径约为2M ,因此跨座式单轨交通具有占地面积少,空间利用率高的优势。

(2)建设周期短,由于跨座式单轨交通轨道梁一般采用标准轨道梁,可在工厂预制、现场拼装,且牵引电网刚性布置在轨道侧壁,比普通架空接触网以及第三轨受电施工方便,因此施工周期可大大缩短。

(3)舒适度高,噪声小,爬坡能力强,转弯半径小。

由于跨座式单轨车转向架采用充气橡胶轮胎作为走行轮,且转向架与车体间的悬挂装置为空气弹簧,因此车体震动小,乘坐舒适性高,跟普通城轨交通相比,具有噪声小,爬坡能力强,转弯半径小等优势。

线路最大坡度可达到6%,最小曲率半径为100M 。

但是跨座式单轨交通不足在于:(1)能耗较大,由于采用橡胶车轮造成车辆所受阻力较钢轮大,因此,单轨交通的能耗比普通城轨交通大。

(2)道岔结构复杂,由于道岔结构复杂,搬动时较普通城轨交通道岔费时,因此,限制了列车运行时间间隔不能低于2.5分钟。

下面以重庆市跨座式单轨交通来了解中国单轨轨道交通的发展现状。

2.转向架重庆“较-新”线跨座式单轨交通车辆转向架为无摇枕特殊结构的跨座式2轴转向架,每辆车有2台跨座式转向架,转向架的每根车轴由1台交流牵引电动机驱动。

转向架承载面为中心牵引装置和空气弹簧。

构架是钢板焊接结构,具有足够的刚度和强度。

转向架与车体之间的悬挂装置为空气弹簧,并装有横向减震器,有良好的动力性能,轴重小于11t。

走行轮,导向轮,稳定轮均为橡胶轮胎。

走行轮系无内胎钢丝橡胶轮胎,内充氮气,每台转向架有4个走行轮胎;导向轮、稳定轮内充压缩空气。

走行轮泄气时由安装在转向架两端梁上的实心轮胎做为辅助车轮。

水平车轮中,有位于上方的4个导向轮和位于下方的2个稳定轮,都是带尼龙丝的橡胶车轮。

转向架构架由侧梁、横梁、端梁及导向、稳定车轮的支承架构成,构架内部作空气弹簧辅助空气室。

走行轮轴和水平轮轴均为单悬臂式。

采用2级减速直角齿轮传动方式,电机到齿轮箱的连轴节为弹性连轴节,齿轮采用飞溅润滑方式。

基础制动机构采用盘形制动。

在传动轴端部设走行轮的内压检测装置。

当轮胎压力低于规定压力时,开关关闭,设有驾驶台上的监视器将显示轮胎内压警报。

在齿轮轴箱体上的安装感应式速度传感器。

车体支承装置中有空气弹簧、高度自动调节阀、压差动作阀、油压减震器、横向止档、防震橡胶等组成。

3.受电装置3.1车辆受电跨座式单轨车辆受电装置分正极和负极2种,2种受电装置安装在转向架上,采用侧面滑动受电。

在司机室车辆上,每辆车安装2台负极受电弓;在无司机室的车上,每辆车安装2台正极受电弓。

(1)正极受电装置。

开弓采用弹簧装置,收弓时采用压缩空气,这时使下降风缸动作,折叠式受电装置在折叠位置,由锁钩装置将受电弓锁住,使其与接触网脱离。

当需要受电装置升弓,可使电磁线圈得电,解开锁钩装置,弹簧装置将受电装置撑开与接触导轨接触受电。

(2)负极受电装置。

与正极受电装置相比,不设自动折叠装置,使负线受电装置经常与负线接触导轨接触。

在需要时可用手压到折叠位置,由锁钩装置锁住,解锁时用手动压缩解锁。

(3)滑板。

受电装置滑板为铜系粉末冶金制成。

车辆接地装置考虑到跨座式单轨车辆采用橡胶轮胎,每辆车有一接地装置,当车辆到达车站和车辆段时,与安装在轨道梁上的接地板接触,以保证乘客在车站和车辆段检修作业人员的生命安全。

3.2接触网受流跨座式单轨接触网受流模式不同于传统轮轨交通所采用的第三轨或架空接触网模式,是一种全新的城市轨道交通接触网受流模式,除了正极受流接触网外,设置专门的负极回流接触网(回流轨)。

电流经车辆负极受电弓再经回流轨回流,负极接触网和正极相同。

接触网位于轨道侧面中部并被车体包络,平行轨道梁中心线方向呈“之”字形布置,接触受流面相对轨道梁侧面向外,受电弓相对轨道侧面向内与接触网接触线摩擦受流。

3.2.1功能要求(1)满足传输电能的功能要求。

接触网除完成不间断给列车供电的功能,还承担着传输电能的功能。

作为跨座式单轨接触网传输电能的主要部件——汇流排,要具有良好的电气性能,达到减少电能损耗和接触网网压降的要求。

但受到建筑和车辆限界的限制,汇流排截面不可能做到很大,这就对汇流排材料和截面的选择、制造误差提出了很大的要求。

(2)满足良好的弓网关系要求。

控制受电弓离线率以及实现受电弓滑板与接触线的均匀磨耗,是满足良好的弓网关系要求的关键因素。

在跨座式单轨轨道交通中,由于受电弓和接触网完全被车体包络,空间狭小,受电弓行程短,跟随性差,这就对影响接触网离线率的因素提出了更高的要求;另外,跨座式单轨受电弓滑板与接触线的接触范围小,只有120MM,这就对接触网采用相应布置方法以解决弓网磨耗,延长受电弓滑板和接触线寿命提出更好要求。

(3)适合气候的功能。

接触网是无备用的室外供电设施,必须适应温度变化以及通过电流时引起的汇排流、接触线伸缩。

(4)电气分段的功能。

跨座式单轨触网在电气分段上与传统钢轮钢轨模式有2个截然不同:一是设置专门的负极回流接触网,二是道岔接触网随道岔一起双向转动。

这就要求在牵引变电所附近馈线上网处同时设置电分段,道岔开口处利用分段绝缘器实现局部无电区。

3.2.2结构组成跨座式单轨接触网主要功能性组成包括伸缩单元、典型支持结构、锚段关节、中心锚节、供电分道、道岔等。

(1)伸缩单元根据当地气候特点及载流量的要求,结合跨座式单轨接触网特点,设置现实接触网温度补偿的伸缩单元,包括伸缩单元的布置、最大允许长度和最小允许长度,锚段关节的结构、中心锚结和关节电连接的设置方法以及使汇流排在每个支持点处可自由滑动的措施。

伸缩单元平行轨道梁中心线方向呈“之”字形布置,伸缩单元长度一般为70—150M,接触网拉出值距离中心位置距离为60MM。

伸缩单元两端设置温度补偿单元——锚段关节,实现对汇排流由温度变化引起的伸缩的补偿。

伸缩单元中部设置中心锚结,防止接触网向一侧滑动,并使汇流排在每个支持点处自由滑动。

(2)接触网典型支持结构接触网典型支持结构包括支持绝缘子、T型汇流排、接触线固定线夹和接触线等。

图7为跨座式单轨接触网的基本安装模式。

汇流排截面形状为T型,材料为铝合金,汇流排具备良好的电气性能,并满足建筑和车辆限界和载流量的要求。

图8为汇流排典型截面。

接触网采用梯形截面的硬铜接触线,有效延长受电弓滑板和接触线的寿命,接触线表面镀锡,有效解决金属之间电腐蚀的问题,图9为接触线断面。

支持绝缘子是跨座式单轨接触网专用绝缘子,除了实现绝缘和支持功能外,接触网拉出值也是通过绝缘子轴向转动使用绝缘子下金具有不同孔位安装在轨道梁上实现的,是接触网控制误差、实现接触网呈“之”字形布置,使受电弓滑板均匀摩擦,保持良好弓网关系的重要部件。

这是不同于其他形式接触网的极为特殊的地方。

4.驱动装置跨座式转向架的驱动装置与铁路转向架一样,由牵引电机、联轴器和齿轮减速箱等部件等成,所不同的是铁路转向架的驱动装置全部放在轮对的两个车轮之间,而跨座式则全部放在构架外侧。

重庆“较——新”线单轨车辆的牵引电机为三相鼠笼式异步电机。

电机输出功率105KW ,线电压1100V ,额定转速3439R/MIN ,电机绝缘等级为H 级,自然通风冷却,转子导条采用铸铝材料。

电动机固定在跨座式转向架上,电机通过弹性联轴结与齿轮箱连接,齿轮箱传动比6.55:1,有利于提高牵引电机转速,减小牵引电机体积,为解决牵引电机安装控件不足创造条件。

三相鼠笼式异步电动机,主要由定子和转子两个部分组成,定子、转子之间是间隙。

转子绕组是用作产生感应电势、并产生电磁转矩的,它的转子绕组是自己短路的绕组,在转子的每个槽中放有一根导体,导体比铁芯长,在铁芯两端用两个端环将导体短接,形成短路绕组。

若将铁芯去掉,剩下的绕组形状似松鼠笼子,故称鼠笼式绕组。

鼠笼式电动机结构简单、制造成本低、运行维护方便,被广泛地应用于工农业生产中,也作为电力拖动的原动机。

但是它的缺点是调速能力差,启动力矩小,因此在一些要求平滑调速和启动力矩大的工况下,常采用多种方式进行运作。

5.变流装置重庆单轨车主电路由受电装置、熔断器、避雷器/浪涌吸收器、高速断路器、输入滤波器、VVVF 逆变器、线路接触器等部件组成。

在受电装置附近装有一台避雷/浪涌吸收器,每个动力单元主逆变器受高速断路器(HSCB )保护,高速断路器可高效地保护由于短路、接地造成的过流,其保护特性与相对应牵引变电站64D 保护系统相匹配和协调。

输入滤波器有电抗器和电容器组成,故障情况下滤波器储存的能量当即被释放不会对车辆任何系统部件导致二次性损坏。

所有接触器均使用DC1500V 等级。

VVVF 逆变器通过输入过流、输出过流、低输入网压、过压、过热、相电流电压不平衡和牵引电机的过流保护等实施保护。

VVVF 逆变器包括输入滤波器、三相逆变器模块,VVVF 逆变器采用自然冷却。

相关文档
最新文档