Matlab快速傅里叶变换讲解
matlab中的傅里叶变换

matlab中的傅里叶变换Matlab中的傅里叶变换是一种数学工具,用于将一个信号从时域转换到频域。
它是一种广泛应用于信号处理、图像处理、通信系统等领域的重要技术。
在Matlab中,傅里叶变换可以通过内置函数fft和ifft来实现。
fft函数用于计算离散傅里叶变换(DFT),而ifft函数用于计算离散傅里叶逆变换(IDFT)。
傅里叶变换在Matlab中的使用步骤如下:1. 准备信号数据,将待变换的信号存储在一个向量中,可以是时间域的信号序列。
2. 应用fft函数,使用fft函数对信号进行傅里叶变换,得到频域表示。
3. 可选操作,对频域表示进行幅度谱和相位谱的计算,以及其他的频谱分析操作。
4. 应用ifft函数,如果需要,可以使用ifft函数对频域表示进行逆变换,将信号恢复到时域。
需要注意的是,傅里叶变换得到的频域表示是对称的,通常只需要使用一半的频域数据进行分析。
此外,Matlab中还提供了其他相关的函数,如fftshift和ifftshift,用于对频域数据进行平移操作。
傅里叶变换在信号处理中有广泛的应用,例如:1. 频谱分析,可以通过傅里叶变换将信号从时域转换到频域,进而分析信号的频谱特性,如频率成分、频谱密度等。
2. 滤波器设计,可以在频域上设计滤波器,通过傅里叶变换将滤波器的频率响应转换到时域,实现对信号的滤波操作。
3. 图像处理,可以利用傅里叶变换对图像进行频域滤波、图像增强等操作,如去除噪声、边缘检测等。
总结起来,Matlab中的傅里叶变换是一种强大的信号处理工具,通过将信号从时域转换到频域,可以实现频谱分析、滤波器设计、图像处理等应用。
matlab中fft快速傅里叶变换

matlab中fft快速傅⾥叶变换视频来源很好的解释了:1 .傅⾥叶变换过程,经过傅⾥叶变化得到了,频率w,振幅a0,相位⾓φ;2. 傅⾥叶变换主要应⽤领域:声⾳,图像处理;博⽂则很好的解释了:1. 傅⾥叶变换在matlab软件中怎样应⽤2.. 傅⾥叶变换的作⽤效果的展⽰,从时域到频域的变化,时域难以解决的问题到频域中却很清晰。
语法说明= fft()⽤快速傅⾥叶变换 (FFT) 算法计算X的 (DFT)。
如果X是向量,则fft(X)返回该向量的傅⾥叶变换。
如果X是矩阵,则fft(X)将X的各列视为向量,并返回每列的傅⾥叶变换。
如果X是⼀个多维数组,则fft(X)将沿⼤⼩不等于 1 的第⼀个数组维度的值视为向量,并返回每个向量的傅⾥叶变换。
= fft(,)返回n点 DFT。
如果未指定任何值,则Y的⼤⼩与X相同。
如果X是向量且X的长度⼩于n,则为X补上尾零以达到长度n。
如果X是向量且X的长度⼤于n,则对X进⾏截断以达到长度n。
如果X是矩阵,则每列的处理与在向量情况下相同。
如果X为多维数组,则⼤⼩不等于 1 的第⼀个数组维度的处理与在向量情况下相同。
= fft(,,)返回沿维度dim的傅⾥叶变换。
例如,如果X是矩阵,则fft(X,n,2)返回每⾏的 n 点傅⾥叶变换。
⽰例噪声信号使⽤傅⾥叶变换求噪声中隐藏的信号的频率分量。
指定信号的参数,采样频率为 1 kHz,信号持续时间为 1.5 秒。
Fs = 1000; % Sampling frequencyT = 1/Fs; % Sampling periodL = 1500; % Length of signalt = (0:L-1)*T; % Time vector构造⼀个信号,其中包含幅值为 0.7 的 50 Hz 正弦量和幅值为 1 的 120 Hz 正弦量。
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);⽤均值为零、⽅差为 4 的⽩噪声扰乱该信号。
谱表示法随机场matlab快速傅里叶变换(fft)与逆变换(ifft)

谱表示法随机场matlab快速傅里叶变换(fft)与逆变换(ifft)在MATLAB中,可以使用FFT(Fast Fourier Transform)和IFFT(Inverse Fast Fourier Transform)函数进行快速傅里叶变换和逆变换。
首先,让我们看一个简单的例子,它演示了如何使用FFT和IFFT函数。
matlab% 创建一个简单的信号t = 0:0.001:1-0.001; % 时间向量x = sin(2*pi*50*t) + sin(2*pi*120*t); % 信号% 对信号进行FFTX = fft(x);% 对FFT结果进行对数变换,以便更好地显示高频分量X_log = log(abs(X));% 绘制FFT结果figure;plot(t, x);title('Original Signal');xlabel('Time (s)');ylabel('Amplitude');figure;plot(t, X_log);title('Spectrum of the Signal');xlabel('Frequency (Hz)');ylabel('Magnitude');在上面的代码中,我们首先创建了一个简单的信号,它由两个正弦波组成。
然后,我们对信号进行了FFT,得到了频谱。
最后,我们对频谱进行了对数变换,并绘制了频谱图。
要执行逆FFT,可以使用IFFT函数。
以下是一个简单的例子:matlab% 对FFT结果进行逆变换y = ifft(X);% 绘制逆变换后的信号figure;plot(t, y);title('Reconstructed Signal');xlabel('Time (s)');ylabel('Amplitude');在上面的代码中,我们对FFT结果进行了逆变换,得到了原始信号。
matlab快速傅里叶变换ppt课件

ylabel('Imaginary Axis');
傅里叶系数Y在
复平面上的分布
最新课件
17
画振幅相对于频率的周期
图
n=length(Y);
power = abs(Y(1:floor(n/2))).^2;
freq = (1:n/2)/n;
plot(freq,power)
f = 1000/256*(0:127);
plot(f,Pyy(1:128))
title('Power spectral density')
xlabel('Frequency (Hz)')
最新课件
13
例
t = 0:1/100:10-1/100;
x = sin(2*pi*15*t) +sin(2*pi*40*t);
§4.5 快速傅里叶变换
1
§4.5.1 离散傅里叶变换
最新课件
2
利用
得
最新课件
3
F4的逆矩阵为
以此类推,傅里叶变换的逆变换为
即
最新课件
4
说明
最新课件
§4.5.2 傅里叶级数与傅里叶积分(阅读)
5
傅里叶级数:将变量范围为无限的连续的周期函数变换成无限的离散的傅里叶频
谱序列。
傅里叶积分:对变量范围为无限的连续的非周期函数变换成无限的连续的傅里叶
最新课件
22
第四章完
最新课件
感谢亲观看此幻灯片,此课件部分内容来源于网络,
如有侵权请及时联系我们删除,谢谢配合!
最新课件
23
matlab二维快速傅里叶变换

matlab二维快速傅里叶变换二维快速傅里叶变换(2D FFT)是数字信号处理中一种重要的算法,它在图像处理、图像压缩、声音处理、视频编码等领域得到广泛应用。
本文将对二维快速傅里叶变换进行详细介绍,并重点讨论其在图像处理中的应用。
我们来了解一下什么是傅里叶变换。
傅里叶变换是一种将信号从时域转换到频域的方法,通过分解信号的频谱信息,可以得到信号的频率成分。
在一维傅里叶变换中,我们将信号分解为不同频率的正弦和余弦函数的叠加。
而在二维傅里叶变换中,我们将信号分解为不同频率的二维正弦和余弦函数的叠加。
二维快速傅里叶变换是对二维信号进行频域分析的一种方法。
它利用了快速傅里叶变换(FFT)算法的优势,将计算复杂度从O(N^2)降低到O(NlogN),使得计算速度大大提高。
在图像处理中,我们常常需要对图像进行频域滤波、图像增强、图像压缩等操作,而二维快速傅里叶变换正是实现这些操作的关键。
在二维快速傅里叶变换中,我们将二维图像看作是一个二维数组,其中每个元素表示图像的一个像素点的亮度值。
首先,我们对图像的每一行进行一维傅里叶变换,然后对变换结果的每一列再进行一维傅里叶变换。
这样,我们就得到了图像的二维傅里叶变换结果。
通过对这个结果进行逆变换,我们就可以将图像恢复到原来的状态。
二维快速傅里叶变换在图像处理中有着广泛的应用。
其中之一是频域滤波。
由于二维快速傅里叶变换可以将图像转换到频域,我们可以通过在频域对图像进行滤波来实现图像的模糊、锐化、边缘检测等操作。
例如,如果我们想要对图像进行低通滤波,可以将频域中高频部分设置为0,从而去除图像中的高频细节,使图像变得模糊。
同样地,如果我们想要对图像进行高通滤波,可以将频域中低频部分设置为0,从而去除图像中的低频背景,使图像的边缘更加清晰。
另一个应用是图像增强。
通过对图像的二维快速傅里叶变换,我们可以对图像进行频域增强,使得图像在某些特定频率上的细节更加突出。
例如,我们可以通过增强图像中的高频细节来使图像的纹理更加清晰,或者通过增强图像中的低频部分来使图像的整体亮度更加均匀。
快速傅里叶变换MATLAB

快速傅里叶变换(MATLAB 版)DFT 是信号分析与处理中的一种重要变换。
但直接计算DFT 的计算量与变换区间长度N 的平方成正比,当N 较大时,计算量太大,直接用DFT 算法进行谱分析和信号的实时处理是不切实际的。
1965年库利和图基发现了DFT 的一种快速算法,使DFT 的运算效率提高1-2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了条件,推动了数字处理技术的发展。
它的思想是不断地把长序列的DFT 分解成几个短序列的DFT ,并利用旋转因子的周期性和对称性来减少DFT 的运算次数。
假设2MN =,全部计算分解为M 级,利用旋转因子W Nk 的周期性、对称性进行合并、归类处理,以减少DFT 的运算次数。
周期性:m m lN N NW W += 对称性:[]*m m N N W W -=,/2m N m N N W W +=- FFT 算法基本上分为两大类:时域抽取法FFT(简称DIT-FFT)和频域抽取法FFT(简称DIF―FFT)。
下面略去推导和证明,仅以长度为8的序列为例子说明这两种算法。
1. DIT-FFTN=8点DIT-FFT 运算流图x(0)x(4)x(2)x(6)x(1)x(5) x(3)(0)(1)(2)(3)(4)(5)(6)x(7)N L=1级L=2L=3X (7)相应的MA TLAB 程序:% 自编FFT% 基2时域抽取DIT-FFT% 输入x ,输出X 均为行向量function X = myfft1(x)if length(x) ~= 2^fix(log2(length(x))) % 如果长度超出,补足下一个幂的0。
x=[x,zeros(1,2^ceil(log2(length(x)))-length(x))];end% 时域序列倒序x=x(invertorder([0:length(x)-1]));N=length(x);K=log2(N);X2=zeros(1,N);X1=x;W_n=exp(-1j*2*pi/N); % 旋转因子for k=1:Kfor i=0:2^(K-k)-1for j=0:2^(k-1)-1if mod(k,2)==1 % 奇数X2(j+i*2^k+1) = X1(j+i*2^k+1) + W_n^(j*2^(K-k))*X1(j+i*2^k+2^(k-1)+1);X2(j+i*2^k+2^(k-1)+1) = X1(j+i*2^k+1) - W_n^(j*2^(K-k))*X1(j+i*2^k+2^(k-1)+1);else % 偶数X1(j+i*2^k+1) = X2(j+i*2^k+1) + W_n^(j*2^(K-k))*X2(j+i*2^k+2^(k-1)+1);X1(j+i*2^k+2^(k-1)+1) = X2(j+i*2^k+1) - W_n^(j*2^(K-k))*X2(j+i*2^k+2^(k-1)+1);endendendendif(mod(K,2) == 1)X=X2;elseX=X1;end2. DIF―FFTx(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)x(0)(0)(4)(2)(6)X(1)X(5)X(3)X(7)x(0)N相应的MA TLAB程序:% 自编FFT% 基2频域抽取DIF-FFT% 输入x,输出X均为行向量function X = myfft2(x)if length(x) ~= 2^fix(log2(length(x))) % 如果长度超出,补足下一个幂的0。
matlab中fft的用法

matlab中fft的用法
在MATLAB中,FFT(Fast Fourier Transform)是一种常用的快速傅里叶变换算法,用于计算离散时间信号的频谱。
FFT是一种高效算法,可以快速计算信号在时域和频域之间的转换。
下面是在MATLAB中使用FFT的一些基本步骤:
1. 定义信号:首先需要定义一个离散时间信号。
可以使用向量或矩阵来表示信号。
2. 计算FFT:使用fft函数来计算信号的FFT。
例如,可以输入以下命令来计算信号x的FFT:
```matlab
y = fft(x);
```
3. 显示频谱:使用plot函数来显示FFT计算得到的频谱。
例如,可以输入以下命令来显示信号x的频谱:
```matlab
plot(abs(y));
```
4. 进行傅里叶变换:如果需要对信号进行傅里叶变换,可以使用fft2函数来计算二维FFT。
例如,可以输入以下命令来计算图像x的傅里叶变换:
```matlab
Y = fft2(x);
```
5. 进行逆傅里叶变换:如果需要对信号进行逆傅里叶变换,可以使用ifft函数来计算。
例如,可以输入以下命令来对信号x进行逆傅里叶变换:
```matlab
x_inv = ifft(Y);
```
以上是在MATLAB中使用FFT的基本步骤。
需要注意的是,在进行FFT计算时,需要将信号转换为复数形式。
此外,在进行傅里叶变换时,需要将信号转换为二维形式。
matlab怎么傅里叶变换

matlab怎么傅里叶变换
MATLAB是一种强大的计算机工具,用于处理数字信号和图像处理。
其中一个经典的数字信号处理技术是傅里叶变换(FFT)。
傅里叶变换可以将一个信号从时域转换到频域,以便更好地理解和处理它。
MATLAB中进行傅里叶变换有多种方式。
以下是其中两种常见的方法:
1. fft函数
使用MATLAB的fft函数可以快速计算信号的傅里叶变换。
该函数需要一个输入信号向量,并返回一个包含其频域表示的复数向量。
例如,如果有一个长度为N的信号向量x,则可以使用以下代码计算其FFT:
X = fft(x);
这将返回一个长度为N的复数向量X,其中每个元素都表示信号在对应频率上的振幅和相位。
2. fft2函数
如果需要对二维信号进行傅里叶变换,则可以使用MATLAB的
fft2函数。
该函数需要一个输入矩阵,并返回一个包含其二维频域表示的复数矩阵。
例如,如果有一个大小为M*N的信号矩阵A,则可以使用以下代码计算其FFT:
A_fft = fft2(A);
这将返回一个大小为M*N的复数矩阵A_fft,其中每个元素都表
示信号在对应频率上的振幅和相位。
总之,MATLAB的FFT函数是一种强大的数字信号处理工具,可
以帮助处理并分析各种信号类型的频谱。
无论是对一维还是二维数据,都可以使用MATLAB的FFT函数来计算其傅里叶变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab中快速傅里叶变换FFT结果的物理意义(转载)
2011-04-07 20:04:04| 分类: matlab|字号 订阅
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到
频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这
在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点
来做FFT。
现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告
诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT
运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。
这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结
果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际
上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,
这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以
看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样
率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号
并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间
是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,
就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频
率一半的结果。
下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交
流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:
S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两
个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第
50个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。
从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i
3点: -2.8586E-14 - 1.1898E-13i
50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i
75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,
我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:
1点: 512
51点:384
76点:192
按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为
192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。
然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧
度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角
度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,
它就是我们开始提供的信号。
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计
算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成
分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度
达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。
[附录:本测试数据使用的matlab程序]
clc;
clear;
Adc=2; %直流分量幅度
A1=3; %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50; %信号1频率(Hz)
F2=75; %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90; %信号相位(度)
N=256; %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻
%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
subplot(411);plot(S);
title('原始信号');
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
subplot(412);stem(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');
Ayy=Ayy/(N/2); %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值,Fn=(n-1)*Fs/N
subplot(413);stem(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果
title('幅度-频率曲线图');
Pyy=[1:N/2];
for i=1:N/2
Pyy(i)=angle(Y(i)); %计算相位
Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
subplot(414);stem(F(1:N/2),Pyy(1:N/2)); %显示相位图
title('相位-频率曲线图');