磁滞回线数据表

合集下载

实验十二 铁磁材料的磁滞回线和基本磁化曲线

实验十二   铁磁材料的磁滞回线和基本磁化曲线

实验十二铁磁材料的磁滞回线和基本磁化曲线一、实验目的1.认识铁磁质的磁化规律,比较两种典型的铁磁质的动态磁特性。

2.测定样品的基本磁化曲线,作μr-H 曲线。

3.测定样品的HD、Br、Bm和[H〃B]max等参数。

4.测绘样品的磁滞回线,估算其磁滞损耗。

二、实验原理1.铁磁物质及其磁滞曲线根据介质在磁场中的表现,一般将磁介质分为顺磁质、抗磁质和铁磁质。

B设想在真空中有一磁场的磁感应强度是0,其大小是B0。

将磁介质放入这个磁场中,若磁介质中的磁感应强度比B0小一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B0大一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B0大得多,甚至数百数万倍的增长,那末这个介质是铁磁质。

实验表现是铁磁质移近磁极时被吸住,顺磁质稍微有被磁极吸引,而抗磁质反而被磁极稍微推开。

下表是一些材料的相对磁导率,根据相对磁导率很容易区分顺磁质、抗磁质和铁磁质。

组别材料相对磁导率μr 铋银铅抗磁性物质铜水真空非磁性物质 1 顺磁性物质空气铝钯 2-81坡莫合金钴镍锰锌铁淦氧 3 软钢铁硅钢 78坡莫合金纯铁导磁合金130 250 600 1,500 2,000 5,000 7,000 100,000 200,000 1,000,000铁磁质材料包含铁、钴、镍、某些稀有金属及其众多合金以及它们的许多氧化物的混合物等。

铁磁质是一种性能特异、用途广泛的材料,我们一铁磁性物质般情况提到磁介质均指铁磁质。

其特征是在外磁场作用下能被强烈磁化,磁导率μ很高;另一特征是磁滞,即磁化场消失后,介质仍保留磁性,即有剩磁。

图1为铁磁质的磁感应强度B与磁化场强度H之间的关系曲线。

S图1 铁磁质的B-H关系曲线图2 铁磁质的μ-H关系曲线图1中的原点O表示磁化之前铁磁质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至HS时,B到达饱和值BS,OabS称为起始磁化曲线。

铁磁材料的磁滞回线和基本磁化曲线的测量

铁磁材料的磁滞回线和基本磁化曲线的测量
填入自制的表格。描绘 曲线。
改变 观察不同的磁化曲线。
观察比较样品1、2的磁化性能。
将实验仪与DH4516A磁滞回线测试仪连接,测定不同电压下的Hm、Bm,做出样品的基本磁化曲线,和 中做出的基本磁化曲线相比较。同时可将测试仪采集的磁滞回线数据通过通讯口送给计算机,在计算机上显示磁滞回线,每次显示一条曲线,用磁滞回线操作软件观察和记录测量数据。
大学物理实验报告
实验名称
姓名学号____
实验类型(验证性、综合性)
指导教师________
上课时间年月日
实验名称:铁磁材料的磁滞回线和基本磁化曲线的测量
实验时间:
小组成员:
实验地点:
实验目的:
1、了解用示波器法显示磁滞回线的基本原理。
2、认识铁磁性材料的磁化规律,比较两种典型的铁磁物质动态磁化特性。
测试仪操作
显示和修改所测样品的N与L值
开机或复位后,液晶显示器显示“欢迎使用磁滞回线测试仪”,按功能键,显示“N=00150匝”、“L=075.0毫米”,如要修改参数值,可以按数字键,例如;依次按“00100”,修改完后,按确认键,N即修改为00100匝。
显示和修改所测样品的n与S值
按功能键,显示“n=0150匝”、“S=120.0毫米2”,“毫米2”表示平方毫米,如要修改参数值,可以按数字键对参数值进行修改,并按“确认”键确认。
3、学会用示波器法测绘磁化曲线和磁滞回线,并确定矫顽力、剩余磁感应强度、饱和磁感应强度等磁化参数。
4、测定样品的基本磁化曲线,描绘 -H曲线。
仪器、设备和材料:
三线摆实验仪、气泡水平仪、游标卡尺、米尺、电子秒表、天平、圆环
实验原理:
1、铁磁材料的磁滞现象
铁磁物质是一种性能特异、用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物均属于铁磁物质,其特征是在外磁场作用下能被强烈磁化,另一特征是磁滞,也就是在外磁场作用停止后,铁磁物质仍保留磁化状态,图4-26-1为铁磁物质磁感应强度B与磁场强度H之间的关系曲线。图中原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=0,当磁场从零开始增加时,磁感应强度B随之缓慢上升(曲线Oa),之后B随H迅速增长(曲线ab),其后B的增长又趋缓慢,当H增至Hm时,B达到饱和值,Oabs称为起始磁化曲线。当磁场从Hm逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到O点,而是沿另一条新曲线SR下降,比较线段OS和SR发现,B随着H的减小而减小,但B的变化滞后于H的变化,这种现象称为磁滞现象。把H=0时B的数值叫剩磁,用符号Br表示。

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告

电磁学综合设计性实验报告实验名称:铁磁材料磁滞回线的研究班级:姓名: 学号:同组同学:实验地点:宁夏大学基础物理实验中心实验时间:2014-6-8 指导教师:实验成绩:目录摘要 (2)关键字 (2)实验目的 (2)实验仪器 (2)实验原理 (2)实验内容与步骤 (5)数据记录及处理 (6)误差分析 (9)实验结论 (9)心得体会 (10)参考文献 (10)铁磁材料磁滞回线的研究摘要:铁磁物质是一种性能特异,用途广泛的材料。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态。

研究铁磁材料的特性有着重要的意义,它在传统工业、生物医学中磁应用、军事领域以及考古天文地址采矿界领域都有着广泛的应用。

研究铁磁材料重要的方法是测量和分析磁滞回线和基本磁化曲线。

关键词:铁磁材料;磁滞回线;基本磁化曲线一,实验目的1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的基本磁化曲线,作μ-H曲线。

3. 测定样品的H D、B r、B S和(H m·B m)等参数。

4. 测绘样品的磁滞回线,估算其磁滞损耗。

二,实验仪器DH4516型磁滞回线实验仪,数字万用表,示波器。

三,实验原理铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。

图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的基本磁化曲线,作μ-H 曲线。

3. 测定样品的H D、B r、B S 和(H m·B m)等参数。

4. 测绘样品的磁滞回线,估算其磁滞损耗。

【实验仪器】DH4516 型磁滞回线实验仪,数字万用表,示波器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段o a 所示,继之B随H迅速增长,如a b 所示,其后B的增长又趋缓慢,并当H增至H S 时,B 到达饱和值B S,oabs 称为起始磁化曲线。

图1表明,当磁场从H S 逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线S R 下降,比较线段O S 和S R 可知,H 减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O 时,B不为零,而保留剩磁B r。

当磁场反向从O逐渐变至-H D 时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段R D 称为退磁曲线。

图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S 次序变化,相应的磁感应强度B则沿闭合曲线SRDS' R'D'S 变化,这闭合曲线称为磁滞回线。

所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

【大学物理】磁滞回线讲义

【大学物理】磁滞回线讲义

实验43 用示波器观测铁磁材料的磁化曲线和磁滞回线铁磁材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存储用的磁带、磁盘等都采用各种特性的铁磁材料.铁磁材料多数是铁和其它金属元素或非金属元素组成的合金以及某些包含铁的氧化物(铁氧体),他们除了具有高的磁导率外,另一重要的磁性特点就是磁滞.铁磁材料的磁滞回线和磁化曲线表征了磁性材料的基本磁化规律,反映了磁性材料的基本磁参数,对铁磁材料的应用和研制具有重要意义.根据磁滞回线的不同,可将铁磁材料分为硬磁和软磁两大类,其根本区别在于矫顽磁力Hc的大小不同.硬磁材料的磁滞回线宽,剩磁和矫顽磁力大(大于102A/m),因而磁化后,其磁感应强度可长久保持,适宜做永久磁铁.软磁材料的磁滞回线窄,矫顽磁力Hc一般小于102A/m,但其磁导率和饱和磁感强度大,容易磁化和去磁,故广泛用于电机、电器和仪表制造等工业部门.本实验通过示波器来观测不同磁性材料的磁滞回线和基本磁化曲线,以加深对材料磁特性的认识.【实验目的】1. 掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解.2. 学会用示波器法观测基本磁化曲线和磁滞回线.3.根据磁滞回线确定磁性材料的饱和磁感应强度B s、剩磁B r和矫顽力H c的数值.4.研究不同频率下动态磁滞回线的区别.5.观测不同磁性材料的磁滞回线,比较磁滞回线的变化.【实验仪器】DH4516N型动态磁滞回线测试仪,示波器.【实验原理】1.磁化曲线如果在电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上.铁磁物质内部的磁场强度H与磁感应强度B有如下的关系:B=μH1对于铁磁物质而言,磁导率μ并非常数,而是随H 的变化而改变的物理量,即μ=ƒ(H ),为非线性函数, 所以B 与H 也是非线性关系,如图9-1所示.铁磁材料未被磁化时的状态称为去磁状态,此时磁场强度和磁感应强度均为零.随着磁场强度H 的增加,磁感应强度B 也随之增加.当H 增加到一定值(H s )后,B 几乎不再随H 的增加而增加,说明磁化已达饱和,从未磁化到饱和磁化的这段磁化曲线称为材料的起始磁化曲线,如图9-1中的oa 曲线.图 9-1 磁化曲线和μ~H 曲线2.磁滞回线当铁磁材料的磁化达到饱和之后,如果将磁化场减少,磁感应强度B 也随之减少,但其减少的过程并不沿着磁化时的oa 段退回,而且当磁化场撤消,H =0时,铁磁材料仍然保持一定的磁性,此时的B 称为剩磁(剩余磁感应强度),用B r 表示,如图9-2所示.图9-2 起始磁化曲线与磁滞回线若要使被磁化的铁磁材料完全退磁,必须加上一个反向磁场并逐步增大.当反向磁场强度增加到H =-H c 时(图9-2上的c 点),磁感应强度B =0,达到退磁.图9-2中的的bc段曲线为退磁曲线,H c为矫顽磁力.继续增加反向磁场,铁磁材料将沿反向被磁化,达到反向饱和.如果减小反向磁场强度至0,同样出现剩磁现象,再正向增加磁场强度,得到图9-2所示的封闭曲线abcdefa,称为铁磁材料的磁滞回线.这种B的变化始终落后于H的变化的现象,称为磁滞现象. 实验表明,经过多次反复磁化后,铁磁材料达到稳定的磁化状态,B-H的量值关系形成一个稳定的闭合的“磁滞回线”,通常以这条曲线来表示该材料的磁化性质.这种反复磁化的过程称为“磁锻炼”. 本实验使用交变电流,所以每个状态都是经过充分的“磁锻炼”,随时可以获得稳定的磁滞回线.当从初始状态(H = 0,B = 0)开始周期性地改变磁场强度的幅值时,在磁场由弱到强单调增加过程中,可以得到面积由小到大的一簇磁滞回线,如图9-3所示.其中最大面积的磁滞回线称为极限磁滞回线.把图9-3中原点O和各个磁滞回线的顶点a1,a2,…a所连成的曲线,称为铁磁性材料的基本磁化曲线.不同的铁磁材料其基本磁化曲线是不相同的.在测量基本磁化曲线时,每个磁化状态都要经过充分的“磁锻炼” .否则,得到的B-H 曲线即为开始介绍的起始磁化曲线,两者不可混淆.由于铁磁材料磁化过程的不可逆性及具有剩磁的特点,在测定磁化曲线和磁滞回线时,必须将铁磁材料预先退磁,消除样品中的剩余磁性,以保证外加磁场H = 0时,B = 0.在理论上,要消除剩磁B r,只需通一反向励磁电流,使外加磁场正好等于铁磁材料的矫顽磁力即可.实际上,矫顽磁力的大小通常并不知道,因而无法确定退磁电流的大小.我们从磁滞回线得到启示,如果使铁磁材料磁化达到磁饱和,然后不断改变励磁电流的方向(如采用交变电流),与此同时逐渐减小励磁电流,直到为零.则该材料的磁化过程就是一连串逐渐缩小而最终趋于原点的环状曲线,如图9-4所示.当H减小到零时,B亦同时降为零,达到完全退磁.图 9-3 图 9-4233.示波器法观测磁滞回线原理用示波器测量B —H 曲线的实验线路如图9-5所示.图 9-5 示波器法观测磁滞回线原理电路图在圆环状磁性样品上绕有励磁线圈N 1匝(原线圈)和测量线圈N 2 匝(次线圈),当N 1 通以交变电流i 1 时,样品内将产生磁场,其磁力线在罗兰环内呈闭合回路.根据安培环路定律有:11H L i N = (9-1) 式中L 为的环状样品的平均磁路长度.R 1两端的电压U R 1为:111R LR U H N = (9-2) 上式表明磁场强度H 与U R 1成正比,将R 1两端的电压送到示波器的X 输入端,即1X R U U =,则示波器X 方向偏转量的大小反映了磁场强度H 的大小.为了测量磁感应强度B ,在次级线圈N 2上串联一个电阻R 2与电容C 构成一个回路,同时R 2与C 又构成一个积分电路.线圈N 1中交变磁场H 在铁磁材料中产生交变的磁感应强度B ,因此在线圈N 2中产生感应电动势,其大小为:22d dB N S dt dtεΦ== (9-3) 式中S 为线圈N 2的横截面积.R 2C 积分电路中的电流为:2i =(9-4)4式中ω为电源的角频率.若R 2和C 都选择的足够大,使21R Cω ,则: 222i R ε≈(9-5) 电容C 两端的电压为:2221C N S Q U i dt B C C CR ===∫ (9-6) 将电容C 两端电压送至示波器的Y 轴输入端,即Y C U U =,则示波器Y 方向偏转量的大小反映了磁感应强度B 的大小.可见,只要通过示波器测出U X 、 U Y 的大小,即可得到相应的H 和B 值.这样,磁化电流变化一个周期,示波器的电子束径迹将描出一条完整的磁滞回线.以后每个周期都重复此过程,在示波器荧光屏上即可看到一稳定的磁滞回线图形.如果由小到大调节信号发生器的输出电压,则能在荧光屏上观察到由小到大扩展的磁滞回线图形,如果逐次记录其正顶点的坐标,并在座标纸上把它连成光滑的曲线,就得到样品的基本磁化曲线.【实验内容与步骤】1.实验前先熟悉实验仪器的构成.本实验所用DH4516N 型动态磁滞回线测试仪由测试样品、功率信号源、可调标准电阻、标准电容和接口电路等组成.仪器面板如图9-6所示.测试样品有两种,一种是圆形罗兰环,材料是锰锌功率铁氧体,磁滞损耗较小;另一种是EI 型硅钢片,磁滞损耗较大些.信号源的频率在20~200Hz 间可调;可调标准电阻R 1、R 2均为无感交流电阻,R 1的调节范围为0.1~11Ω;R 2的调节范围为1~110k Ω。

磁滞回线实验-实验说明

磁滞回线实验-实验说明
6.注意:为了保证示波器的量程是准确的,必须使量程微调旋钮处于校正位置。只有这样,
才能根据示波器的格数、选择的灵敏度(量程),代入公式计算 H和B 值。
6
型铁芯,两者的励磁绕组匝数 N 和磁感应强度 B 的测量绕组匝数 n 也完全相同。 N = 50T, n = 150T, L = 60mm, S = 80mm2 。
3.电路板:
该印刷电路板上装有样品1和样品2、励磁电源“ U 选择”和测量励磁电流(即磁场强度 H )的取样电阻“ R1 选择”、以及为测量磁感应强度 B 所设定的积分电路元件 R 2 , C2 等。
可以得到面积由小到大向外扩张的一簇磁滞回线,如图2所示,这些磁滞回线顶点的连线称
为铁磁材料的基本磁化曲线,由此可近似确定其磁导率 µ = B ,因 B 与 H 非线性,故铁 H
磁材料的 µ 不是常数而是随 H 而变化(如图 3 所示)。铁磁材料的相对磁导率可高达数千乃
至数万,这一特点是它用途广泛的主要原因之一。
当磁场反向从 0 逐渐变至 − H D 时,磁感应强度 B 消失,说明要消除剩磁,必须施加反 向磁场, H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段 RD 称为退磁
曲线。
图1还表明,当磁场按 HS → 0 → −HC → −HS → 0 → HC → HS 次序变化,相应的磁 感应强度 B 则沿闭合曲线 SRCS′R′C′S 变化,这闭合曲线称为磁滞回线。所以,当铁磁材料
=
C
• dU2 dt
∴ε2 = C

R2

dU 2 dt
由(2)、(3)两式可得:
(3)
B
=
C • R2 n•S

U2
(4)

磁滞回线

磁滞回线[引言]磁性材料应用很广,从常用的永久磁铁、变压器铁芯、到录音、录像、计算机存储用的磁带、磁盘等都采用。

磁滞回线和磁化曲线反映了磁性材料的主要特征。

用示波器法测量铁磁处理的磁特性是磁测量的基本方法之一,它具有直观、方便、迅速以及能够在不同的磁化状态下(交变磁化及脉冲磁化等)测量的优点,适用于一般工厂快速检测和对成品进行分类。

通过实验研究这些性质不仅能掌握用示波器观察磁化曲线和磁滞回线的基本测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。

[实验目的]1.掌握用感应法测量磁参量的原理、方法和技术2.了解应力、样品形状、测量频率等因素对磁性的影响3.了解交流磁化曲线的定义和测试方法[实验内容]1.观测样品形状对磁化的影响2.观测应力对磁滞回线的影响,估算磁致伸缩系数3.观测磁滞回线随外加磁场的变化,作换向磁化曲线4.观测磁滞损耗功率随磁场频率的变化[实验原理]一.原理及仪器结构磁滞回线是表达铁磁材料在磁场下磁化和反磁化行为,即描述磁感应强度(B)或磁化强度(M)与外加磁场强度(H)关系的闭合曲线,反映材料的基本磁特性,是M S应用磁性材料的基本依据。

图1是直流磁场下的磁化曲线和磁滞回线。

图中标出了磁性材料的三个重要参数Mr(Br)、Hc、Ms (饱和磁化强度,即当磁化到饱和时M的值)。

在交变磁场中表现出的磁特性—交流磁特性或称动态磁特性和在直流场下的磁特性— 静态磁性有很大不同。

它不仅与材料本征特性有关,而且与测试频率、磁场波形等测试条件有关。

图2表示在相同频率下外磁场幅值大小对磁滞回线的影响。

随磁场变化,磁滞回线大小、形状都在变化。

连接各回线的幅值(图中的Hm 、Bm )点得到一条通过原点的曲线,称换向磁化曲线或交流磁化曲线。

由图3可以看到,频率对磁滞回线形状有很大影响,矫顽力(H C )随频率增大而增大。

感应法是一种最基本和常用的磁参量测量方法。

依据法拉第电磁感应定律,在环绕试样的探测线圈内的感应电动势与其中磁通量随时间的变化率成正比,即为dtdB S N ⋅⋅-=ε (1) 其中N 为探测线圈的匝数,S 为样品的截面积,根据(1)式,将试样放在变化的磁场内磁化,则在探测线圈内有与dtdB 成正比的电动势产生。

实验4-7动态磁滞回线和磁化曲线的测量动态磁滞回线和磁化曲线的测量

实验4-7动态磁滞回线和磁化曲线的测量动态磁滞回线和磁化曲线的测量指南预习指南铁磁材料包括铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体),在外磁场的作用下,能被强烈磁化,磁导率很高并随磁场变化,当外磁场撤掉以后,铁磁材料仍具有一定的磁性,磁化规律复杂。

铁磁材料具有的这种保持原定磁化状态的性质称为磁滞。

研究铁磁材料的磁化规律,一般是通过测量磁化场的磁场强度H与磁感应强度B之间的关系来进行的。

实验中要了解示波器显示和观察动态磁滞回线的原理与方法,掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理与方法,学会根据磁滞回线确定铁磁材料的矫顽力、剩磁、饱和磁感应强度、磁滞损耗等磁化参数,学习测量磁性材料磁导率的一种方法,理解铁磁材料的磁化规律和主要特性。

该实验是一个综合物理实验,难度系数:1.00,适合自动化、电子信息工程、电气工程及其自动化、机械设计制造及其自动化、过程装备与控制工程、材料成型及控制工程、数学、信息、车辆工程、安全、计算机等专业以及对近代物理理论和实验感兴趣的同学选做。

实验内容1、线路连接选择测试样品,正确连接实验线路(实验室已连接好,只需选择好待测样品即可),调整好双踪示波器。

2、观测样品的磁滞回线(1)退磁。

顺时针方向转动励磁电压旋钮,使其从0V 增加到3V,再逆时针方向转动电压旋钮,从3V 降至0,消除剩磁,使样品处于磁中性状态。

(2)观察磁滞回线。

调节示波器各旋钮使光点处于坐标原点,选择Ω=5.21R ,励磁电压选取一个合适的值,调节示波器的X 轴和Y 轴灵敏度,使屏幕上显示大小合适的磁滞回线.若出现畸变,可适当降低励磁电压.(3)测绘磁滞回线。

使用智能磁滞回线测试仪采集B 和H 的数据,并记录磁滞损耗[]BH 和40组左右的B 、H 数据,注意在磁滞回线顶点、剩磁与矫顽力附近读取数据点间隔稍微密集一些。

用坐标纸或计算机绘出磁滞回线,从所绘制的磁滞回线上读取m B 、m H 、c H 。

铁磁材料的磁滞回线


铁磁材料在反复磁化的过程中, H----B之间的变化过程如图所示,图 中的原点o表示磁化前铁磁材料处于 B=H=0,当磁场H从零开始增加时,磁 感应强度B随之缓慢上升,如线段oa所 示,继之B随H迅速增长,如ab所示, 其后B的增长又趋缓慢,并当H增至Hm 时,B到达饱和值Bm,oabm称为起始磁 化曲线。
实验时采用导线将元件 连接成所需要的电路
同一点
交变电源 间隔0.3V
微机测试仪
附微机测试仪的使用
1 按【功能】直到显示【H B】, 【TEST】然后按【确认】,
2 两窗口显示【。。。。】稍等片刻, 如出现【GOOD】则表示正常,可以测量。
3 再按【功能】两窗口显示【H B】 【TEST】
4 接着按【功能】两窗口显示【HSHOW】 【BSHOW】
2、认识铁磁材料的磁化规律,比较两 种典型的铁磁物质的动态磁特性 .
3、掌握用示波器法观测磁滞回线的基 本原理。
二、实 验 原 理
若在由电流产生的磁 场中放入铁磁材料,铁磁 材料内部的磁场强度 H和 磁感应强度B 有以下关系:

B H
对铁磁材料来说,磁导率 µ不是一个常量,而是随
H的变化而改变的物理量, 即µ =f(H)为非线性函数, 所以,B与H的关系也是非 线性的。
hmbm逐渐减小至零磁感应强度b并不沿起始磁化曲线恢复到o点而是沿另一条新的曲线mr下降也减小但b的变化滞后于h的变化当h0时b不为零而保留剩磁b时磁感应强度b消失说明要消除剩磁必须施加反向磁小反映铁磁材料保持剩磁状态的能力线段rc称为退磁曲线
磁滞回线基本磁化曲线
¿ 电磁学系列 7
浙江大学物理实验中心
绕组n和R2、C2电路给定,S为样品绕组线的截面积

202 铁磁材料的磁滞回线

202.铁磁材料的磁滞回线在各类磁介质中,应用最广泛的是铁磁物质。

在20世纪初期,铁磁材料主要用在电机制造业和通讯器件中,如发电机、变压器和电表磁头,从20世纪50年代以来,随着电子计算机和信息科学的发展,应用铁磁材料进行信息的存储和记录,例如现以家喻户晓的磁带、磁盘,不仅可存储数字信息,也可以存储随时间变化的信息;不仅可用作计算机的存储器,而且也可用于录音和录像等领域。

目前,已发展成为引人注目的一系列新技术,预计新的应用还将不断得到发展。

因此,对铁磁材料性能的研究,无论在理论上或实用上都有很重要的意义。

磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。

本实验仪用交流电对铁磁材料样品1,2进行磁化,测绘的B-H曲线称为动态磁滞回线。

【实验目的】1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁特性;2.测绘样品的磁滞回线,估算其磁滞损耗;3.测定样品的Hc,Br,Bm和[Hm·Bm]等参数;4.测定样品的基本磁化曲线,作μ-H曲线。

【实验仪器】FB310C微机型磁滞回线组合实验仪、计算机、数据线、FB310A型磁滞回线实验仪【实验原理】1.铁磁物质与磁滞回线铁磁物质是一种性能特异、用途广泛的材料。

其在外部磁场的作用下磁化,即使外部磁场消失,依然能保持其磁化的状态而具有磁性,即所谓自发性的磁化现象。

铁磁物质种类很多,比如我们常见的铁、钴、镍及其众多合金以及含铁的氧化物等等。

图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图1中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=0,H=0。

当磁场H 从零开始增加时,磁感应强度B随之缓慢上升,而后急速增长,最后B的增长又趋于缓慢,并当H增至Hm时,B到达饱和值Bm,图1.O a曲线为起始磁化曲线。

然而,当磁场H从Hm逐渐降到零,磁感应强度B不会沿原路径返回。

而是,磁场H在减小图1.铁磁材料的起始磁化线而和磁滞回线的同时,磁感应强度B起初在缓慢下降,当磁场H减为0时,磁感应强度B并不为零(Br为剩磁值),而当磁场H沿相反方向增加至-Hc时,磁感应强度B降为零,这说明要消除剩磁,必须施加反向磁场,这种磁感应强度B滞后于磁场强度H的现象称为磁滞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档