高中数学奥赛辅导 第九讲 组合恒等式、组合不等式
高三复习专题组合恒等式(共三课时)

第一课时:简单的组合恒等式的证明【教学目标】1.掌握基本的组合数公式,能较为熟练的运用组合数公式.2.了解组合恒等式的基本的证明方法,会证明较为典型的组合恒等式. 【教学过程】 一、课堂引入同学们了解以下的组合数公式吗?解决组合恒等式问题需要对组合数公式比较熟悉,所以要掌握一些最基本的公式和常用的组合恒等式. 1.基本组合数公式(1)k n n k n C C -= (2)11-++=k n k n k n C C C (3)11--=k n k n nC kC 或11--=k n kn C kn C (4)mm k n m k n m k m n m n m k k n C C C C C C +----==(n k m ≤≤).2.常见的组合恒等式(1)nn n n n n C C C C 2...210=++++; (2)0)1(...10=-++-nn n n n C C C ;(3)11121...++-++=+++++m n m n m n m m m m m m C C C C C C .以上的恒等式可以通过赋值法进行证明. 二、例题精讲例1.证明:11121...++-++=+++++m n m n m n m m m m m m C C C C C C 证法一组合数公式法: 有组合数性质11n -++=k nk n k C C C 可得: 左边=m n m n m m m m m m C C C C C +++++-++++12111...)(=mnm n m m m m m m C C C C C +++++-++++13212...)( =m n m n m m m m m m C C C C C +++++-++++14313...)(=......=mnm n m n C C C ++-+-111 ===++++111m n m n m n C C C 右边证法二组合数实际意义: 设有n+1个不同元素,,,...,,,1321+n n a a a a a 从这n+1个元素中取出m+1个不同元素的取法有11++m n C 种。
高中竞赛不等式公式大全

高中竞赛不等式公式大全摘要:一、前言二、高中竞赛不等式公式简介1.基本不等式2.柯西不等式3.排序不等式4.切比雪夫不等式5.赫尔德不等式6.闵可夫斯基不等式7.伯努利不等式8.拉格朗日不等式9.詹森不等式10.其他不等式三、高中竞赛不等式公式应用举例1.基本不等式应用2.柯西不等式应用3.排序不等式应用4.切比雪夫不等式应用5.赫尔德不等式应用6.闵可夫斯基不等式应用7.伯努利不等式应用8.拉格朗日不等式应用9.詹森不等式应用10.其他不等式应用四、结论正文:一、前言在高中数学竞赛中,不等式问题常常出现在各个章节中,解决不等式问题需要掌握一定的技巧和方法。
为了更好地应对这类问题,我们整理了高中竞赛中常见的不等式公式大全,希望能为同学们提供帮助。
二、高中竞赛不等式公式简介1.基本不等式基本不等式(Fundamental Inequality)是最常见的不等式之一,形式为:(a^2 + b^2) / 2 >= ab。
当且仅当a = b 时,等号成立。
2.柯西不等式柯西不等式(Cauchy Inequality)是一种特殊的平方和不等式,形式为:(a_1^2 + a_2^2 + ...+ a_n^2) * (b_1^2 + b_2^2 + ...+ b_n^2) >=(a_1b_1 + a_2b_2 + ...+ a_nb_n)^2。
当且仅当存在一个标量k 使得a_i = kb_i 时,等号成立。
3.排序不等式排序不等式(Sorting Inequality)是一种关于排序的数学不等式,形式为:对于任意的实数a_1, a_2, ..., a_n,有(a_1 + a_n) * n / 2 >= (a_2 +a_(n-1)) * n / 2 >= ...>= (a_n + a_1) * n / 2。
4.切比雪夫不等式切比雪夫不等式(Chebyshev"s Inequality)是一种概率论中的不等式,形式为:对于任意的实数k > 0,有P(|X - μ| >= k) <= 1 / k^2。
高中竞赛不等式公式大全

高中竞赛不等式公式大全摘要:一、前言二、高中竞赛不等式公式简介1.基本不等式2.柯西不等式3.排序不等式4.切比雪夫不等式5.其他常见不等式三、应用举例1.基本不等式应用2.柯西不等式应用3.排序不等式应用4.切比雪夫不等式应用5.其他常见不等式应用四、结论正文:一、前言不等式是数学中的一个重要概念,广泛应用于各个领域。
在高中竞赛数学中,掌握不等式的运用尤为重要。
本文将介绍一些高中竞赛中常见的不等式公式及其应用。
二、高中竞赛不等式公式简介1.基本不等式基本不等式是最常见的不等式之一,形式为:对于任意实数a1, a2, ..., an 和b1, b2, ..., bn,有(a1^2 + a2^2 + ...+ an^2)(b1^2 + b2^2 + ...+bn^2) >= (a1b1 + a2b2 + ...+ anbn)^2。
当且仅当a1/b1 = a2/b2 = ...= an/bn时,等号成立。
2.柯西不等式柯西不等式是一种特殊的不等式,形式为:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有(a1^2 + a2^2 + ...+ an^2)(b1^2 + b2^2 + ...+bn^2) >= (a1b1 + a2b2 + ...+ anbn)^2。
当且仅当存在常数k,使得a1 = kb1, a2 = kb2, ..., an = kbn时,等号成立。
3.排序不等式排序不等式是一种关于排序的不等式,形式为:对于任意实数a1, a2, ..., an,有(a1 + a2 + ...+ an)^2 <= (a1^2 + a2^2 + ...+ an^2)(1 + 1/2 + 1/3 + ...+ 1/n)。
当且仅当a1 = a2 = ...= an时,等号成立。
4.切比雪夫不等式切比雪夫不等式是一种关于方差的不等式,形式为:对于任意实数x1,x2, ..., xn,有(x1 - x平均值)^2 + (x2 - x平均值)^2 + ...+ (xn - x平均值)^2 <= n * (x1^2 + x2^2 + ...+ xn^2) / (n - 1)。
第9讲 基本不等式9种常见题型(解析版)高一数学同步教学题型(人教A版2019必修第一册)

第9讲基本不等式9种常见题型【考点分析】考点一:重要不等式若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号;考点二:基本不等式若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.考点三:几个常见重要的不等式①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)2,112a ba b R a b++≤≤≤∈+即调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件).【题型目录】题型一:直接利用基本不等式求最值题型二:“1”的代换,乘1法题型三:常规凑配法题型四:换元法题型五:消参法题型六:双换元题型七:齐次化题型八:和、积、平方和的转化题型九:多选题【典型例题】题型一直接利用基本不等式求最值【例1】(2021·湖南邵阳市)若正实数y x ,满足12=+y x .则xy 的最大值为()A .14B .18C .19D .116【答案】B【解析】1218x y xy +≥≥≤ 当且仅当122x y ==时取等号,即xy 的最大值为18故选:B 【例2】(2021·六安市裕安区新安中学)已知01x <<,则)(33x x -的最大值为()A .12B .14C .23D .34【答案】D【解析】因为01x <<,所以10,0x x ->>,所以()1x x +-≥,当且仅当1x x =-,即12x =时,等号成立,所以1≤,整理得()114x x -≤,即3(33)4x x -≤.所以(33)x x -的最大值为34.故选:D.【题型专练】1.(2022·甘肃酒泉·模拟预测(理))若x ,y 为实数,且26x y +=,则39x y +的最小值为()A .18B .27C .54D .90【答案】C【解析】由题意可得2393322754x y x y +=+≥=⨯=,当且仅当233x y =时,即2x y =等号成立.故选:C .2.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为()A .4-B .4C .8D .8-【答案】B【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a=即12,2a c ==时等号成立.故选:B 题型二“1”的代换,乘1法1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.【例1】(2021·上海市大同中学)设b a ,为正数,且1a b +=,则ba 11+的最小值为_______.【答案】4【解析】因为b a ,为正数,且1a b +=,所以11111111124a b a b a b a b a b b a +=+⨯=+⨯+=+++≥+=()()(),当且仅当a=b=1时取等号即11a b+的最小值为4.故答案为:4【例2】(2021·河北石家庄市)已知0,0x y >>,且350x y xy +-=,则34x y +的最小值是()A .4B .5C .6D .9【答案】B【解析】由350x y xy +-=,得135y x+=,所以1131312134(34)13(135555x y x y x y y x y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,2x y ==,取等号.故选:B.【例3】(2021·北京师范大学万宁附属中学)已知0,0a b >>,122a b+=,则a b +的最小值为()A .3222-B .3222+C .3-D .3+【答案】B【解析】因为0a >,0b >,且122a b+=,所以()112121322332222b a a b a b a b a b ⎛+⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当b =即212a +=,222b +=时,a b +有最小值3222+.故选:B.【例4】(2021·浙江高一期末)0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.【答案】32m ≤【解析】因为21a b +=,所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭1122a b b b a b +=++++322a b b b a b+=+++333222≥+=+=当且仅当2a b bb a b+=+,即1)a b =-时,取等号,因为不等式1102m b a b +-≥+恒成立,所以m 小于等于112b a b++最小值,所以32m ≤【例5】(2021·浙江)当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为()A .7B .8C .9D .10【答案】C 【解析】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立,因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9.故选:C【例6】若1,0m n >>,3m n +=,则211m n+-的最小值为__________.【答案】232+【解析】因为3=+n m ,所以21=+-n m ,所以1221=+-nm ,所以232232112212111221112112+=+⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-≥+-+-+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=+-n m m n n m m n n m n m n m 当且仅当⎪⎩⎪⎨⎧=+-=-3211n m n m m n,等号成立.【例7】若b a ,是正实数,且1a b +=,则11a ab+的最小值为.【答案】322+【解析】因为1=+b a ,所以()b a b a b a a b a ab b a a ab a +⎪⎭⎫ ⎝⎛+=+=++=++=+1212111111322322122+=+⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛≥+++=b a a b b a a b ,当且仅当⎪⎩⎪⎨⎧=+=12b a b aa b ,等号成立.【例8】设2=+b a ,0>b ,则ba a ||||21+的最小值是.【答案】43【解析】因为2=+b a ,所以14412444421+=+≥++=++=+aa a ab a a b a a b a a b a b a a ,当0>a 时,45141||||21=+≥+b a a ,当当0<a 时,43141||||21=+-≥+b a a 【题型专练】1.(2022·辽宁·模拟预测)已知正实数x ,y 满足211x y+=,则436xy x y --的最小值为()A .2B .4C .8D .12【答案】C 【解析】【分析】依题意可得2xy x y =+,则4362xy x y x y --=+,再由乘“1”法及基本不等式计算可得;【详解】解:由0x >,0y >且211x y+=,可得2xy x y =+,所以43648362xy x y x y x y x y--=+--=+()2142448y x x y x y x y ⎛⎫=++=+++ ⎪⎝⎭,当且仅当4y x x y =,即4x =,2y =时取等号.故选:C2.(2022·安徽·南陵中学模拟预测(理))若实数a ,b 满足123,12a b a b ⎛⎫+=>> ⎪⎝⎭,则2211a ba b +--的最小值为()A .6B .4C .3D .2【答案】A 【解析】【分析】对已知条件和要求最值的代数式恒等变形之后应用均值不等式即可求解【详解】()()232111a b a b +=⇒-+-=因为12a >,1b >,所以210a ->,10b ->又221111112211211211a b a b a b a b a b -+-++=+=++------所以()()1111211211211a b a b a b ⎛⎫+=+-+-⎡⎤ ⎪⎣⎦----⎝⎭21122224121a b b a --=++≥+=+=--当且仅当23211121a b a b b a +=⎧⎪--⎨=⎪--⎩即34a =,32b =时,取等号所以21126211211a b a b a b +=++≥----故选:A3.(2022·四川·石室中学三模(文))已知0a >,0b >且1a b +=,则1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是()A .49B .50C .51D .52【答案】B 【解析】【分析】将1a 中分子1替换为a +b ,将8b中分子8替换为8(a +b ),化简即可利用基本不等式求该式子的最小值.【详解】由已知,得188********a b a b b a a b a b a b ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭916262650b a a b =++≥+=,当且仅当916b a a b =,即37a =,47b =时等号成立.因此,1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是50.故选:B .4.(2022·河南·宝丰县第一高级中学模拟预测(文))已知正数a ,b 满足0ab a b --=,则4a b +的最小值为___________.【答案】9【解析】【分析】由0ab a b --=得111a b +=,则()4141a a b b a b ⎛⎫+=+ ⎪⎝⎭+,展开利用基本不等式可求得最值.【详解】由0ab a b --=得111a b +=,所以()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,即32a =,3b =时取等号,故4a b +的最小值为9.故答案为:95.(2022·天津·南开中学模拟预测)设0x >,0y >,1x y +=,则212x xy+的最小值为______.1.【解析】【分析】两次运用“1”进行整体代换,结合基本不等式,即可得结果.【详解】因为1x y +=,所以2211122222222x x x y x x x y x yxy xy y y x y y x+++++==++=++1122222x x y y y x =++++1112x y y x =++≥=当且仅当1,2x y ==212x xy+1,1.6.(2022·重庆·三模)已知0a >,0b >,且2233a b ab a b +=+,则3a b +的最小值为___________.【答案】4【解析】【分析】由题得313a b b a+=+,再利用基本不等式求出2(3)a b +的最小值即得解.【详解】解:由题得331(3)3,3a b ab a b a b a b ab b a++=+∴+==+,所以23133(3)()(3)101016a b a b a b b a b a +=++=++≥+=.(当且仅当1a b ==时取等)因为34a b +≥,所以3a b +的最小值为4.故答案为:4题型三常规凑配法【例1】(2021·云南文山壮族苗族自治州)已知(3,)x ∈+∞,函数43y x x =+-的最小值为()A .4B .7C .2D .8【答案】B【解析】因为3()x ∈+∞,,所以43003x x ->>-,,44(3)33=733y x x x x =+=-++≥+--当且仅当43=3x x --即5x =时取等号,所以43y x x =+-的最小值为7.故选:B 【例2】(2021·安徽省泗县第一中学)函数19()(1)41f x x x x =+>-的最小值为()A .134B .3C .72D .94【答案】A【解析】因为1x >,所以10x ->,所以9191113()(1)4141444x f x x x x =+=-+++=-- ,当且仅当1941x x -=-,即7x =时等号成立,所以()f x 的最小值为134.故选:A .【例3】若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是__________.【答案】51≥a 【解析】max221313⎪⎭⎫ ⎝⎛++≥⇔++≥x x x a x x x a ,因51131132≤++=++xx x x x ,所以51≥a 【例4】设0abc >>>,则221121025()a ac c ab a a b ++-+-的最小值是(A )2(B )4(C)(D )5【答案】4【解析】原式()()()()()22251212251011c a b a a b a a ab ab c ac a b a a b a a ab ab -+-⋅-+⋅≥+-+-+-++=4022=++=【例5】(2022·全国·高三专题练习(理))若11x -<<,则22222x x y x -+=-有()A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】【分析】将给定函数化简变形,再利用均值不等式求解即得.【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x -=-,即0x =时取“=”,所以当0x =时,22222x x y x -+=-有最大值1-.故选:A 【题型专练】1.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是()A .4B .3C .D .3【答案】D 【解析】由()13131y x x =-++-,利用基本不等式求最小值即可.【详解】因为1x >,所以()131331y x x =-++≥+-3=,当且仅当()1311x x -=-,即13x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3.故选:D.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.2.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A .3B .52+C .3D .3+【答案】D 【解析】【分析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得.【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >,由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=------,当且仅当2111x y =--,即112x y =+=+“=”,所以211x y x y +--的最小值为3+故选:D3.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3【解析】【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.题型四换元法【例1】(2021·永丰县永丰中学高一期末)函数21()1x x f x x ++=-(1x >)的最小值为()A .B .3+C .2+D .5【答案】B【解析】因为1x >,设01>-=x t ,所以1+=t x 所以()()332333311122+≥++=++=++++=tt t t t t t t t f ,当且仅当tt 3=,即3=t ,所以1x =+时取等号,所以函数21()1x x f x x ++=-(1x >)的最小值为3+B【例2】(2021·全国高一课时练习)函数2y =___________.【答案】4【解析】令1t =≥,则244y t t==+≥,当且仅当2t =,即x =时,min 4y =.所以函数2y =4.故答案为:4题型五消参法消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!【例1】已知22451()x y y x y +=∈R ,,则22x y +的最小值是.【答案】54【解析】因22451x y y +=,所以42215y x y-=,所以422222222211142425555555y y y x y y y y y y -+=+=-+=+≥=⨯=当且仅当221455y y =,即212y =时取等号【例2】若实数x ,y 满足133(0)2xy x x +=<<,则313x y +-的最小值为.【答案】8【解析】因33xy x +=,所以33x y =+,所以33y x=+,因此311133668333y y x y y y +=++=-++≥+=---当且仅当133y y -=-时取等号【题型专练】1.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,的最大值为___________.【答案】【解析】【分析】将点(1,1)-代入直线方程可得3a b +=.【详解】直线30ax by --=过点(1,1)-,则3a b +=又0,0a b >>,设t =,则0t >21262t a b =+++++由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立.故答案为:2.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z+-的最大值为()A .0B .3C .94D .1【答案】D 【解析】【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22114343xy xy x y z x xy y y x ==-++-,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+ ,当且仅当1y =时取等号,即212x y z+-的最大值是1.故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.3.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B.2C.2D .6【答案】B 【解析】【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842,用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解.【详解】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++88422224222 ,当且仅当,a b b b ==+++28222,即a b ==2取等号.故选:B.题型六双换元若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.【例1】若00a b >>,,且11121a b b =+++,则2a b +的最小值为.【答案】1【解析】设21a b x b y +=⎧⎨+=⎩,则121x y a b y --⎧=⎪⎨⎪=-⎩,所以111x y =+,因此21223a b x y y x y =--+-=+-+因()111124x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭所以2431a b ≥-=+【例2】已知0x y >,,求44x yx y x y+++的最大值.【答案】1【解析】设4x y a x y b +=⎧⎨+=⎩,则343a b x b a y -⎧=⎪⎪⎨-⎪=⎪⎩,因此441453343333333a b b ax y b a b a x y x y a b a b a b --⎛⎫+=+=-+-=-+ ⎪++⎝⎭因2333b a a b +≥=所以421433x x y x y +≥-=++【例3】(2022·浙江省江山中学高三)设0a >,0b >,若221a b +=2ab -的最大值为()A.3B.C.1D.2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()124a b b -+=进而根据三角换元得5cos ,(062sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可.【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()124a b b -+=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩,由于0a >,0b >,故cos 02sin 0θθθ⎧+>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-+≤当且仅当4πθ=时取等号.故选:D.【题型专练】1.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+【解析】【分析】令2,,(0,0)c m c n m n -==>>,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。
组合数学-第四节:组合恒等式

2.4.3 组合恒等式有关二项式系数的恒等式至今已发现的就有上千个,而且还在不断地发展。
这些组合恒等式在许多算法分析中起着重要的作用,这里给大家介绍常用的几个。
等式1201n n n n n ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证明 方法1 其组合意义的证明见定理2.2.4 方法2 在二项式定理中令1x y ==即可。
等式2:024135n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2.4.9)证明 方法1 在二项式定理中令1,1x y =-=,得:0(1)0nk k n k =⎛⎫-= ⎪⎝⎭∑ (2.4.10)将(2.4.10)式整理一下即得(2.4.9)式。
方法2 等式(2.4.9)的组合意义是:在n 个元素的集合中取r 组合,r 为奇数的组合数目等于r 为偶数的组合数目(包含0组合在内)。
下面我们来建立r 为偶数的组合与r 为奇数的组合之间的一一对应,从而证明(2.4.9)式。
以4个元素,,,a b c d 构成的集合的一切组合为例,r 为奇数的组合有:,,,,,,,;a b c d abc abd acd bcdr 为偶数的组合有:,,,,,,,ab ac ad bc bd cd abcd φ其中,φ表示取零个元素的组合。
从n 个元素的集合中取r 组合,r 可以有不同的值,但就元素a 而言,只有含有元素a 和不含有元素a 两类。
若r 为奇数的组合中含有a ,去掉a 便得一个r 为偶数的组合。
例如,abc 去掉a 得bc 。
若r 为奇数的组合中不含有a ,加上元素a 便构成一个r 为偶数的组合。
例如,bcd 加上a 得abcd 。
见表2.4.1表2.4.1等式3112212n n n n n n n -⎛⎫⎛⎫⎛⎫⋅+⋅++⋅=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证明 对等式:0(1)nni i n x x i =⎛⎫+=⎪⎝⎭∑两边在1x =处求导数,得()()()1111112nn n x x x n x n --=='+=+=111011n n nj j x x i i i n n n x xi i i -====='⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑从而:112212n n n n n n n -⎛⎫⎛⎫⎛⎫⋅+⋅++⋅=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭等式4:0111n n k k k k +⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭证明,用数学归纳法很容易证明此结论,下面通过其组合意义来分析其正确性。
高中竞赛不等式公式大全

高中竞赛不等式公式大全【最新版】目录1.竞赛不等式的概念与意义2.高中竞赛不等式的分类3.常用的高中竞赛不等式公式4.竞赛不等式公式的应用案例5.如何灵活运用竞赛不等式公式正文一、竞赛不等式的概念与意义在高中数学竞赛中,不等式问题是一个重要的组成部分,它涉及到解决实际问题和理论研究的方方面面。
竞赛不等式是指在高中数学竞赛中出现的具有一定难度的不等式问题,通常需要运用一些特殊的方法和技巧来解决。
掌握高中竞赛不等式对于提高学生解决实际问题的能力,培养数学思维和技巧具有重要意义。
二、高中竞赛不等式的分类高中竞赛不等式可以分为以下几类:1.一元一次不等式:涉及一个未知数,未知数的次数是 1 的不等式。
2.一元二次不等式:涉及一个未知数,未知数的次数是 2 的不等式。
3.多元不等式:涉及多个未知数的不等式。
4.含有绝对值的不等式:包含绝对值符号的不等式。
5.其他特殊类型的不等式:如对数不等式、指数不等式等。
三、常用的高中竞赛不等式公式在解决高中竞赛不等式问题时,有一些常用的公式和方法可以帮助我们快速求解。
以下是一些常用的高中竞赛不等式公式:1.一元一次不等式的解法:同号得正,异号得负,移项,分式讨论等。
2.一元二次不等式的解法:判别式法,韦达定理,二次函数图像法等。
3.含有绝对值的不等式的解法:分段讨论,绝对值不等式的性质等。
4.多元不等式的解法:消元法,代入法,行列式法等。
四、竞赛不等式公式的应用案例以下是一些高中竞赛不等式公式在实际问题中的应用案例:1.利用一元一次不等式的解法求解实际问题中的不等式。
2.通过一元二次不等式的解法求解复杂的不等式问题。
3.运用含有绝对值的不等式的解法解决实际问题中的不等式。
4.多元不等式在解决组合优化问题中的应用。
五、如何灵活运用竞赛不等式公式在解决高中竞赛不等式问题时,要注意以下几点:1.仔细审题,分析问题的实际背景和需求。
2.根据问题的特点,选择合适的不等式公式和方法。
【4-组合】2.组合恒等式【讲师版】

课程类型 数学 “组合恒等式”讲义编号:组合数kn C 具有很多很好的性质,组合恒等式也是在竟在中我们必须掌握的一块。
在自招中则可以作为了解,记住几个基本的组合恒等式对解题也有很大帮助。
1. 组合数的基本性质应用公式()()!0!!kn n n C n k k k n k ⎛⎫==≥≥ ⎪-⎝⎭,很容易证明下面的等式● k n k n n C C -= (0n k ≥≥) ●111k k k n n n C C C ---=+ (1n k >≥)●11k k n n n C C k--=(1n k ≥≥) ●11k k n n n k C C k --+=(1n k ≥≥) ●1k kn n n C C n k-=- (0n k >≥) ● m k k m k n m n n k C C C C --= (n m k ≥≥)2. 多项式定理:● 多项式定理:设n 是正整数,12,,...,k x x x 是任意k 个实变数,则()()12121212...121,2,...,!...!!!k k i nn n n k k n n n n k n i k Z n x x x x x x n n n ++++==∈+++=⋅⋅⋅⋅⋅⋅∑二项式定理:设n 是正整数,x 和y 是任意实数,则()0nnk n k k n x y x y k -=⎛⎫+= ⎪⎝⎭∑3. 组合恒等式:以下组合恒等式都是基本组合恒等式,在这里希望同学能够记忆。
例1 证明:1201231...k k k kn n n n k n C C C C C -------++++=【解答】12012311001...kkk k k k i n n n n kn ii i n i CCCCCk i ----------==--⎛⎫++++== ⎪-⎝⎭∑∑例2 求证:()()1102nkk n k n k =⎛⎫-=≥ ⎪⎝⎭∑ 【解答】例3 求证:()10112111nn k n k k n +=⎛⎫=- ⎪++⎝⎭∑。
组合数和组合恒等式.ppt

C
0 n
1 2
C
1 n
1 3
C
2 n
n
1
1
C
n n
2n 1 1
n 1
1 1
C
0 n
1 2
C
1 n
1 3
C
2 n
(1)n
n
1
1
C
n n
1
n 1
7、范德蒙德(Vandermonde)恒等式
C
n0C
r m
C
n1C
r m
1
C
n2C
r m
2
C nrC
0
m
Cr nm
8、Cm0Cn0 Cm1 Cn1 Cm2Cn2 CmnCnn Cnnm (Cn0 )2 (Cn1 )2 (Cnn )2 C2nn
合的定义。
2、会计算重集 S 的 r 可重排列、
n 可重排列和 r 可重组合个数。
三、组合数和组合恒等式
1、二项式系数的四个基本性质及证 明。
2、八个组合恒等式及部分证明。
C r 1 n 1
2、对称关系式
C
r n
C nr n
3、递推关系式
C
r n
n r
C nr11(1
r
n)
4、单调性
1)C
0 2n
C
1 2n
C
2 2n
C 2nn(奇数项);
2)C
0 2n
1
C1 2n 1
C2 2n 1
C n 1 2n 1
C
n 2n
1(偶数项)。
二、组合恒等式
定义:组合恒等式是指含有组合数 的恒等式。
1.3 组合数和组合恒等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① ⑤②③ ④ ⑥ 数学奥赛辅导 第九讲 组合恒等式、组合不等式知识、方法、技能Ⅰ.组合恒等式竞赛数学中的组合恒等式是以高中排列组合、二项式定理为基础,加以推广、补充而形成的一类组合问题.组合恒等式的证明要借助于高中常见的基础组合等式.例如0)1(2321021011111=-++-+-=++++⋅==+==----+++-n n n n n n n nnn n n n mr mn m n m n r n r n r n r n r nr n rn nr n C C C C C C C C C C C C C C r n C C C C C C组合恒等式的证明方法有: ①恒等变形,变换求和指标; ②建立递推关系; ③数学归纳法; ④考虑组合意义; ⑤母函数. Ⅱ.组合不等式组事不等式以前我们见的不多,在其他一些书籍中组合不等式的著述也很少,但是近年来组合不等式的证明却出现在国内、国际大赛上.例如1993年中国高中数学联赛二试第二大题为:设A 是一个有n 个元素的集合,A 的m 个子集A 1,A 2…,A m 两两互不包含,试证: (1)∑=≤mi A nI C1||;11(2)∑=≥mi A nm CI 12||其中|A i |表示A i 所含元素的个数,||I A n C 表示n 个不同元素取|A i |的组合数. 再如1998年第39届国际数学奥林匹克竞赛中第二大试题为:在某一次竞赛中,共有a 个参赛选手与b 个裁判,其中b ≥3,且为奇数.每个裁判对每个选手的评分中只有“通过”或“不及格”两个等级,设k 是满足条件的整数;任何两个裁判至多可对k 个选手有完全相同的评分. 证明:.21bb a k -≥ 因此我们有必要研究组合不等式的证明方法.组合不等式的证明方法有: 1.在集合间建立单射,利用集合阶的不等关系定理,设X 和Y 都是有限集,f 为从X 到Y 的一个映射, (1)若f 为单射,则|X|≤|Y|; (2)若f 为满射,则|X|≥|Y|. 2.利用容斥原理例如:设元素a 属于集族{A 1,A 2,…,A n }的k 个不同集合k i i i A A A ,,,21 ,则在∑=ni iA1||中a 被计算了k 次,当k ≥2时,集合k i i i A A A ,,,21 两两的交集共有2k C 个.由于||,12)1(12j nj i i k A A a k k k C ∑≤≤≤-≥-=在故中至少少被计算了k -1次,这样我们得到下面的不等式:||||||111j nj i ii ni i ni A AA A ∑∑≤≤≤==-≥组合不等式(*)可由容斥公式:||)1(||||||1)1(111i ni n j nj i ii ni i ni A A AA A =-≤≤≤==-++-=∑∑ 删去右边第三个和式起的所有和式得到.采用这种办法,我们可以从容斥公式得到另外一些组合不等式,只是要注意这些不等式的方向的变化.3.利用抽屉原则由于抽世原则的结论本身就是组合不等式关系,所以我们利用抽屉原则,巧妙构造抽屉的方法证明组合不等式.4.利用组合分析在复杂的组合计数问题、离散极值问题等问题中,会出现一些组合不等式,这时可运用组合分析方法证明之.赛题精讲例1 证明:∑=-⋅+=nk n k n n n n C 0122!!2)!2(2【分析】 把∑∑∑∑+=+===-nn k k nnn k k nnk k nnk k nCC CC21221220202,而对于变形为,变换求和指标.【证明】k n j CCCCCnn k k nnn k k nnnn k k nnk k nnk k n-=-=-=∑∑∑∑∑+=+=+===2,,2212212221220202令对于和式,则.20202212212nn nk k n nj n nj nn j j nnn k k nC C CCCC-=-==∑∑∑∑==-=+= 所以.2202202nn nk k n nnk knC C C+-=∑∑== 即 nn n nk kn C C220222+=∑=,从而有∑=-⋅+=nk n k n n n n C 0122!!2)!2(2.例2 求证:.,)1(111)1(312111210N n C n m C n m C m C m C m nnm nn nnn n ∈++=++-+-+++-++其中 证明 设nnn n n n n C n m C m C m C m a 11)1(312111210++-+-+++-+=,则由基本恒等式r n r nr n r n r n C nr C C C C =+=----1111及得 .1)1()()1()(31)(211111122111112101110------------++-+++-+-+++++-+=n n n n n n n n n n n n n n C n m C C n m C C m C C m C m a.)1(1)1)(2())(1(!,)1)(2(12111,)3())(1(!))(1()1(1.1,1112111nn m n n n n n n n n n n C n m m m n m n m n a m m m m a a m n m n m n a n m n m n n a n m n a a a n m a a n m a a +----++=+++++=++=+-+=++++==+++-=++==+++-=从而有而所以即故 【说明】注意到a n 中各项的系数均与n 无关,且符号正负相同,由此想到a n 与a n -1之间必定存在着某些联系,且是递推关系.例3 求证:∑=+--+=⋅-nk kk n k n kn C 01222.12)1(【分析】考虑到恒等式12212---+-+=k k n k k n k k n C C C ,仿例2解决.【证明】令∑=+--⋅⋅-=nk kk n k n kn C a 01222,2)1(因为,12212---+-+=k k n k k n k k n C C C ,.2)1(2)1(2)1(,1.2)1(2)1()(2)1(22)1(211)1(2102)1(21)1(212)1(21121221212202221212222112222-+---=--+---=--+--=---=-=----=--=+---=--=⋅-=⋅--=⋅-+⋅-=+⋅-+=⋅-+=∑∑∑∑∑∑∑n r r n n r r n r rr n n r r n r k kn nk kn kk k n nk k n k nk kkn kn kk k n nk k k n k n k nnk kk n k n k nn a C C Ck r C C C C C a 则令所以令∑=---+==⋅-nk n n n n kk n k n ka ab b C 01222,2)1(则 ①.42)1(4)1()(2)1(2)1(2)1(21110)1(22)1(211121112222112222---=---------=----=---=⋅--=-++⋅-+=-+⋅-+=∑∑∑n n n j j jn j n j n n k k n n k k k n k n k nn k n k k n k n k nn b a C a C C C b 又于是由①式得1221112112,4,---------=+--=++=n n n n n n n n n n n a a a a a a a a a a b 即从而推知. 这说明{a n }为等差数列,而a 0=1,a 1=2,故公差d=1,且a n =n+1 .【说明】此题运用变换求和指标的方法,找出了a n ,a n -1,a n -2之间的线性关系式,再由 初始条件求得a n .这种利用递推关系求组合数的方法,在解决较复杂的计算或证明组事恒等式时经常用到.例11:设},,,{},,,,{212211n n B B B D A A A D ==是集合M 的两个划分,又对任何两个不变的子集),1(,n j i B A j i ≤≤有,||n B A j i ≥⋃求证:221||n M ≥并说明等号能否成立?【证明】令},1|,||,min{|n j i B A k j i ≤≤=,不妨设,||k A i =因n B B B ,,,21 两两不交,故n B B B ,,,21 中至多有k 个,j B 使=⋂j B A 1 .设≠⋂j B A 1 .,,,2,1,k n m j ≤=由k 的选取知),,2,1(||m j k B j =≥从而.||1mk Bmj j≥=又因 =⋂j B A 1 .,,1,n m i +=故 ,||||||11n B A B A i i ≥⋃=+ 即 .||k n B i -≥ 所以 ))((||||||||111k n m n mk BB B M nm j jmj jnj j --+≥+==+===).2()(k n m k n n ---= 若,2nk <因,k m ≤故.2)2(2)2(2)2()()2()(||222n k n n k n k k n n k n m k n n M ≥-+=---≥---≥若,2n k ≥则),,,2,1(2||n i n A i =≥ 从而 .2||||||211n A A M n i i n i i ≥==∑==下面说明2||2n M =是可以取到的.显然这时n 为偶数,取,4=n 则8||=M ,令},8,7,6,5,4,3,2,1{=M 易验证M 的两个划分.D 1={{1,2}{3,4}{5,6}{7,8}}, D 2={{1,2}{3,5}{4,6}{7,8}}, 满足题目条件.例12:设n 是正整数,我们说集合{1,2,…,2n }的一个排列(n x x x 221,, )具有性质P ,是指在{1,2,…,2n -1}当中至少有一个i ,使得.||1n x x i i =-+求证,对于任何n ,具有性质P 的排列比不具有性质P 的排列的个数多.(1989,第30届IMO 试题6)【证明】设A 为不具有性质P 的排列的集合,B 为具有性质P 的排列的集合,显然)!.2(||||n B A =+为了证明||||B A <,只要得到)!2(21||n B >就够了.使作容斥原理. 设(n x x x 221,,, )中,k 与n k +相邻的排列的集合为.,,2,1,n k A k =则,)!12(2||-=n x A k ,1,)!22(2||2n j k n x A A j k ≤<≤-=⋂由容斥原理得)!22(4)!12(2||||||211-⋅⋅--⋅⋅=⋂-=∑∑≤<≤=n C n n A AA B n nj k j knk k=)!22(2)!22()1(2)!2(-⋅⋅=-⋅--n n n n n n n )!2(21)!22(2122n n n n =-⋅-⋅> 例13:平面上给定n 个点,其中任何三点不共线,任意地用线段连接某些点(这些线段称为边),则确保图形中出现以给定点为顶点的)(n m m <阶完全图的条件是图形中的边的条数.1)1(222--+-≥m n m m n C C C x【证明】构造抽屉:每个抽屉里有m 个相异点,共可得m n C 个抽屉,又由于同一条边会在22--m n C 个抽屉里出现,根据抽屉原则知,当1)1(222+-≥⋅--m m n m n C C C x 时,才能确保有一个抽屉里有2mC 条边,而这2m C 条边恰好与其中不共线的相异m 点构成一个m 阶完全图. 这就是说,确保图形中出现m 阶完全图的条件是其中边的条数.1)1(222--+-≥m n m m n C C C x 【评述】“完全图”,是图论中的基本概念.(此处从略)例14:设n x x x ,,,21 为实数,满足,12232221=++++n x x x x 求证:对于每一整数2≥k ,存在不全为零的整数,,,,21n a a a 使得),,,3,2,1(1||n i k a i =-≤并且(1987年第28届IMO 试题3).1)1(||2211--≤+++nn n k nk x a x a x a 【证】由柯西不等式得).)(111(|)||||(|2232221222221n n x x x x x x x +++++++≤+++即.||||||21n x x x n ≤+++所以,当10-≤≤k a i 时,有.)1(|)||||)(|1(||||||212211n k x x x k x a x a x a n n n -≤+++-≤+++把区间[0,n k )1(-]等分成1-nk 个小区间,每个小区间的长度1)1(2--k nk ,由于每个i a 能取k 个整数,因此||||||2211n n x a x a x a +++共有nk 个正数,由抽屉原则知必有二数会落在同一小区间内,设它们分别是∑='ni ii xa 1||与,||1∑=''ni i i x a 因此有.1)1(||)(21--≤''-'∑=k nk x a a ni i i i ① 很明显,我们有 .,,2,1,1||n i k a a i i =-≤''-' 现在取⎩⎨⎧<'-''≥''-'=.0,,0,i i i i i i x a a x a a a 如果如果这里,,,2,1n i =于是①可表示为.1)1(||1--≤∑=n ni i i k nk x a 这里i a 为整数,适合.,,2,1,1||n i k a i =-≤例15:设A 是一个有n 个元素的集合,A 的m 个子集m A A A ,,,21 两两互不包含,试证:(1);111||≤∑=mi A n i C (2).21||m C m i A n i ≥∑= 其中||i A 表示i A 所含元素的个数,||i A n C 表示n 个不同元素取||i A 个的组合数.(1993年,全国高中数学联赛二试第二大题) 【分析】若(1)式已证,由柯西不等式立即可得(2)式,因此,关键是证(1)式,又据组合公式知,(1)式等价于!.|)!|(|!|1n A n Ai ni i≤-∑= ① 所以我们用组合的方法来证明不等式①.【证明】(1)对于A 的子集},,,,{||21i A i x x x A =我们取补集},,,,{||21i A n i y y y A -= 并取i A 的元素在前,i A 元素在后,作排列||21,,,i A x x x ,||21,,,i A n y y y - . ② 这样的排列共有|)!|(||i i A n A -个.显然,②中每一个排列,也是A 中的一个排列,若i j ≠时,j A 对应的排列与i A 对庆的排列互不相同,则m A A A ,,,21 所对应的排列总数便不会超过A 中排列的总数,!n 现假设j A 中对应的某一排列'''||21,,,j A x x x ,'''-||21,,,j A n y y y . ③与i A (i j ≠)中对应的某一排列②相同(指出现的元素及元素位置都相同),则当||||i j A A ≤时,i j A A ⊆;当||||i j A A >时,i j A A ⊇,这都与m A A A ,,,21 两两互不包含,矛盾.由于m A A A ,,,21 对应的排列对②互不相同,而A 中n 个元素的全排列有n !个,故得!.|)!|(|!|1n A n A i n i i ≤-∑= 即.111||≤∑=ni A ni C (2)由上证及柯西不等式,有.)1()1)((2112||1||1||m C CCmi mi A n mi A nmi A nii i ∑∑∑∑=====≥≥【评述】本题取自著名的Sperner 定理:设Z 为n 元素,m A A A ,,,21 为Z 的子集,互不包含,则m 的最大值为]2[nn C.例16:设S ={0,1,2,…,N 2-1},A 是S 的一个N 元子集.证明存在S 的一个N 元子集B ,使得集合A +B={},|B b A a b a ∈∈+中的元素模N 2的余数的数目不少于S 中元素的一半. (第40届IMO 预选题)【证明】设|X |为子集S X ⊂中元素的个数;又为X S -,是X 的补集;i C 是i a +对k 个参赛选手有相同的判决,证明.21bb a k -≥ (1998年第39届IMO 试题二)【解】设裁判),,2,1(b i B i =对参赛选手),,2,1(b j A j =的判决为ij d ,其中⎩⎨⎧=".",1,"",0不通过若通过若ij d则(a i i i d d d ,,,21 )中i B 对a 个参赛选手判决的记录),,2,1(b i =,它是一个长度为a 的(0—1)序列.我们来考虑这b 个序列中每两个序列的相同的项的总数M . 一方面,由已知条件每两个序列的相同的项不超过k 个,故 .)1(212k b b k C M b -=⋅≤ ①另一方面,设j A 得到0b 个0(通过),1b 个1(不通过),即(a i i i d d d ,,,21 )的第i 个分量中0b 个0,1b 个1,则0b +1b =.b 由这个分量产生的序列的相同的项有)1(21)1(2111002210-+-=+b b b b C C b b ])[(21)]()[(212120102120b b b b b b b -+=+-+= ).2(21)]2)[(2110210210b b b b b b b b b --=--+=但b b b =+10且b 为奇数)3(≥b ,因此).1()1(4110-⋅+≤b b b b 故)]1)(1(21)1([212210-+--≥+b b b b C C b b=.)1(41)1(21)1(212-=-⋅-b b b从而.)1(412-⋅≥b a M ③综合①、②得,)1(21)1(412k b b b a -≤-⋅ 即.21b b a k -≥。